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ABSTRACT
Existing topic modeling approaches possess several issues, includ-
ing the overfitting issue of Probablistic Latent Semantic Indexing
(pLSI), the failure of capturing the rich topical correlations among
topics in Latent Dirichlet Allocation (LDA), and high inference
complexity. In this paper, we provide a new method to overcome
the overfitting issue of pLSI by using the amortized inference with
word embedding as input, instead of the Dirichlet prior in LDA. For
generative topic model, the large number of free latent variables
is the root of overfitting. To reduce the number of parameters, the
amortized inference replaces the inference of latent variable with a
function which possesses the shared (amortized) learnable parame-
ters. The number of the shared parameters is fixed and independent
of the scale of the corpus. To overcome the limited application
of amortized inference to independent and identically distributed
(i.i.d) data, a novel graph neural network, Graph Attention TOpic
Network (GATON), is proposed to model the topic structure of
non-i.i.d documents according to the following two observations.
First, pLSI can be interpreted as stochastic block model (SBM) on a
specific bi-partite graph. Second, graph attention network (GAT)
can be explained as the semi-amortized inference of SBM, which
relaxes the i.i.d data assumption of vanilla amortized inference.
GATON provides a novel scheme, i.e. graph convolution operation
based scheme, to integrate word similarity and word co-occurrence
structure. Specifically, the bag-of-words document representation
is modeled as a bi-partite graph topology. Meanwhile, word embed-
ding, which captures the word similarity, is modeled as attribute
of the word node and the term frequency vector is adopted as the
attribute of the document node. Based on the weighted (attention)
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(a) The probabilistic graphical model of pLSI

(b) The bi-partite graph of pLSI
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Figure 1: The intuition of this paper. First, Graph Attention
Network (GAT) is interpreted as the semi-amortized infer-
ence of Stochastic Block Model (SBM) in Section 4.4. Second,
probabilistic latent semantic indexing (pLSI) is interpreted
as SBM on a specific bi-partite graph in Section 5.1. Finally,
a novel graph neural network, Graph Attention TOpic Net-
work (GATON), is proposed for topic modeling based on the
above two interpretations in Section 5.2.

graph convolution operation, the word co-occurrence structure
and word similarity patterns are seamlessly integrated for topic
identification. Extensive experiments demonstrate that the effec-
tiveness of GATON on topic identification not only benefits the
document classification, but also significantly refines the input
word embedding.

CCS CONCEPTS
• Computing methodologies → Natural language process-
ing;

KEYWORDS
Graph Neural Network, Stochastic Block Model, Graph Attention
Network, Topic Modeling, Bipartite Network

ACM Reference Format:
Liang Yang, Fan Wu, Junhua Gu, Chuan Wang, Xiaochun Cao, Di Jin,
and Yuanfang Guo. 2020. Graph Attention Topic Modeling Network. In
Proceedings of The Web Conference 2020 (WWW ’20), April 20–24, 2020,
Taipei, Taiwan. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3366423.3380102

https://doi.org/10.1145/3366423.3380102
https://doi.org/10.1145/3366423.3380102
https://doi.org/10.1145/3366423.3380102


WWW ’20, April 20–24, 2020, Taipei, Taiwan Liang Yang, Fan Wu, Junhua Gu, Chuan Wang, Xiaochun Cao, Di Jin, and Yuanfang Guo

1 INTRODUCTION
Topic modeling aims to discover the latent semantics of the docu-
ments. Most state-of-the-art topic modeling approaches, including
Probabilistic Latent Semantic Indexing (pLSI), simply represent doc-
ument as bag-of-words and construct generative models for text
corpora. By fitting the model to the observed document collection,
latent topics can be revealed via certain inference algorithms. Un-
fortunately, the large number of latent variables in these generative
models, which grows exponentially with the number of documents
and topics, makes the inferences inefficient and induces overfittings
to the training documents.

Although Latent Dirichlet Allocation (LDA) [5] alleviates the
overfitting issue by introducing Dirichlet priors for latent vari-
ables, it fails to capture the rich topical correlations among topics,
because the introduced Dirichlet priors assume that topics occur
independently. Many subsequent literatures attempt to relax the
independence assumption of the Dirichlet prior. Correlated Topic
Model (CTM) [4] explicitly models the correlation patterns by adopt-
ing a logistic-normal prior with covariance matrix. Despite of its
impressive representation power, its high inference complexity,
which is induced by the non-conjugacy of logistic-normal prior,
prevents it from applying in practice. Correlated Topic Modeling
with Topic Embedding (CTMTE) [16] extracts the correlation struc-
tures of the latent topics by introducing Gaussian distribution based
topic embeddings. However, its complicated hybrid inference algo-
rithm, which leverages the reparameterization trick in variational
inference, makes it difficult to implement.

In parallel with the generative topic modeling came the research
of word embedding. Word embedding aims at learning distributed
word representation, where words with similar meanings tend to
be close in a lower-dimensional embedding space, instead of the
traditional one-hot representation. Most of the word embedding
algorithms, including Skip-gram and CBOW [37], are neural lan-
guage models, which measure the words similarity based on their
co-occurrences within a local context window. However, most of the
generative topic models often ignore this word similarity, which is
a supplement to the bag-of-words document representation. There-
fore, to incorporate word embedding into topic modeling, existing
approaches usually adopt topic embedding into neural language
model and model the relationships between words and topics by
jointly modeling their embeddings [13, 16, 29, 30]. Unfortunately,
these approach are often incapable to model high-order correlation
between documents.

In this paper, we attempt to overcome the overfitting issue of
pLSI by exploiting amortized inference with the word embedding
as input, instead of the Dirichlet prior in LDA. The intrinsic rea-
son of overfitting is the large number of parameters to learn. For
generative topic model, the large number of free latent variables,
which is much more than can be justified by the data, is the root
of overfitting. To regularize the inference process and reduce the
number of parameters, amortized inference is adopted. The amor-
tized inference replaces the inference of the latent variables with a
function which shares (amortizes) the learnable parameters. The
number of the learnable parameters is then fixed and independent
of the scale of the corpus. Typically, amortized inference can be
used to process the independent and identically distributed (i.i.d.)

data. For example, VAE adopts amortized inference to model image
data. Unfortunately, the documents in topic modeling is not i.i.d.,
because the words in documents are often semantically correlated.

To integrate word embedding into generative topic modeling
with Semi-Amortized inference, we have obtained the following
two observations. First, pLSI can be interpreted as stochastic block
model (SBM) on a bi-partite graph by comparing the generative
processes of pLSI and SBM as shown in Figure 1. Second, graph
attention network (GAT) is equivalent to the semi-amortized in-
ference of SBM as shown in Figure 1, via certain mathematical
deductions. The vanilla amortized inference [22] converts the in-
ference problem of a large number of latent variables to a learning
problem with shared (amortize) parameters, and thus significantly
reduces the number of parameters. The semi-amortized inference,
which combines the amortized inference [22] and traditional EM in-
ference [11], relaxes the i.i.d data assumption of amortized inference.
According to these two observations, a novel bi-partite graph atten-
tion network, named Graph Attention TOpic Network (GATON),
is proposed for topic modeling. Our GATON integrates word simi-
larity and word co-occurrence structure via a novel approach, i.e.,
graph convolution operation. Specifically, the bag-of-words doc-
ument representation is modeled as a bi-partite graph topology.
Meanwhile, the word embedding representation, which captures
the word similarity, is modeled as the attribute of the word node
and the term frequency is considered as the attribute of document
node. Via the weighted (attention) graph convolution operation, the
bag-of-words structure and word similarity patterns are seamlessly
integrated for topic identification.

The main contributions are summarized as follows.

• We propose a novel approach to overcome the overfitting is-
sue in topicmodeling. Instead of directly imposing the Dirich-
let prior, which prevents from mining topic correlations, we
adopt amortized inference, with the word embedding as in-
put, to significantly reduce the number of to-be-estimated
parameters. This novel approach inherently explores topic
correlation, and benefits from both the probabilistic topic
models and word embedding approaches.

• We reveal the connections between the generative stochas-
tic block model (SBM) and graph neural networks (GNNs),
especially graph attention network (GAT). According to our
mathematical deductions, GAT is equivalent to the Semi-
Amortized inference algorithm of SBM. This observation
may facilitate the development of novel GNNs for different
kinds of graphs.

• We observe that the probabilistic latent semantic indexing
(pLSI), which is a probabilistic topic model, can be seen as
SBM on a specific bi-partite graph, where the documents
and the words are the two kinds of the nodes, respectively.

• To relax the i.i.d. data assumption of vanilla amortized infer-
ence, we pioneer to propose a novel graph neural network
model, named Graph Attention TOpic Network (GATON),
for correlated topic modeling. GATON, which constructs the
graph topology with the bi-partite graph of documents and
words, explores the topic structure by convolving the node
attributes over the graph with an attention mechanism.
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2 RELATEDWORKS
Topic model originates from the dimension reduction in informa-
tion retrieval. Latent semantic indexing (LSI) adopts the singular
value decomposition (SVD) of the term-by-document matrix [10].
Probabilistic latent semantic indexing (pLSI) develops a generative
probabilistic model of the text corpora by assuming each docu-
ment being a mixture of the topics [18]. To alleviate the overfitting
to the training data, Latent Dirichlet Allocation (LDA) is intro-
duced by imposing latent variables with Dirichlet prior. To relax
the topic independence assumption induced by the Dirichlet prior,
Correlated Topic Model (CTM) adopts a logistic-normal prior to
explicitly model the correlations with a Gaussian covariance matrix
[4]. Unfortunately, non-conjugacy of logistic-normal prior requires
huge computations, which can be slightly reduced by introducing
independent factor models or efficient sampling [7, 28].
Neural Variational Topic Modeling. Recently, the development
of deep generative networks and stochastic variational inference
enable the variational inference via neural network, i.e., neural
variational inference. Auto-encoding variational Bayes provides
a general framework for deep generative model, and its example
variational auto-encoder (VAE), which consists of a generative net-
work (decoder) and a inference network (encoder), is designed for
the generation of i.i.d. data, such as images. Neural variational doc-
ument model (NVDM) [36] applies VAE to unsupervised document
modeling by assuming document with bag-of-words representation
as i.i.d data. Neural variational latent Dirichlet allocation (NVLDA)
[46] alleviates the difficulty of non-location scale family of the
Dirichlet prior by replacing the Dirichlet prior with Laplace approx-
imation, which is also a Gaussian distribution. Gaussian Softmax
Model (GSM) [35] extends NVDM [36] by constructing the topic
distribution with a softmax function, which is applied to the projec-
tion of the Gaussian random vectors. Neural Variational Correlated
Topic Modeling (NVCTM) [31] overcomes the common drawback
of above NVI approaches, which are incapable of modeling topic
correlations due to the isotropic Gaussian topic distribution, by
proposing Centralized Transformation Flow to reshape the topic
distribution. The main drawback of existing Neural Variational
Topic Modeling is the assumption that the documents should be
i.i.d to adopt VAE. In fact, the documents are composed of words,
which tend to be correlated instead of completely independent.
Therefore, the correlations between documents are critical for topic
modeling and under-fitted by NVI.
Topic Modeling with Word Embedding. Recently, some meth-
ods are proposed to explore topic correlations in embedding space
[13, 16, 29, 30]. With the help of the similarity information con-
tained in word embedding, topic modeling can be significantly
improved. Usually, the approaches of topic modeling with word
embedding can be divided into two categories. Methods in the
first category directly introduce topic embedding into the word
embedding approaches. Collaborative Language Model [51] collab-
oratively models the topics and learns the word embeddings by
considering complementary global and local context information
based on matrix factorization. Skip-gram Topical word Embedding
(STE) [45] learns the word embeddings and latent topics in a unified
skip-gram framework to obtain the topic-specific word embeddings,
and thus addresses the issue of polysemy. Although this kind of

methods seamlessly integrates topic modeling into word embed-
ding framework, the statistical characteristics of documents are
lost.

Methods in the second category tend to modify the genera-
tive process of the topic model by exploiting word embedding
[9, 19, 39, 42, 52, 56, 57]. Word Featured LDA (WF-LDA) [42] treats
the word information as features rather than an explicit constraint
and relaxes the single global hyper-parameter for topic’s word distri-
bution to multiple ones according to the word similarity. To reduce
the out-of-vocabulary (OOV) words caused by the fixed vocabulary
of word types, Gaussian LDA [9] replaces topic’s Multinomial dis-
tribution over word with multivariate Gaussian distributions in the
word embedding space. Latent feature LDA (LF-LDA) [39] incorpo-
rates the inner product of topic and word embeddings in modeling
the topic-word distributions to relax the assumption that topics
are unimodal in the embedding space in Gaussian LDA [9]. Latent
Concept Topic Model (LCTM) [19] introduces a latent concept be-
tween topic and word, and models each topic as a distribution over
the latent concepts, each of which is a localized Gaussian distri-
bution in the word embedding space. Correlated Gaussian Topic
Model (CGTM) [52] replaces words in documents with meaning-
ful word embeddings, and models topics as multivariate Gaussian
distributions in the word embeddings.

Although statistical characteristics of documents are retained
in the methods of the second category, word embedding is only
exploited to constrain the generation process of the documents,
thus it has not been fully explored.

3 PRELIMINARIES
3.1 Notations
The corpora consists ofM documents O = {o1,o2, ...,oM }. A docu-
ment o is a sequence of No words, o = {w1,w2, ...,wNo }, wherewn
is the nth token in the sequence and drawn from aU -words vocabu-
lary. For simplicity, each tokenw is represented as aU -dimensional
unit-basis vector w = {w1,w2, ...,wU }, where only a single ele-
ment equals to one and all the others equal to zero. Ifwu = 1, the
tokenw is occupied by the uth word in the vocabulary. For topic
modeling problem, the number of topics, T , is given.

An attributed network can be modeled as an attributed graph
G = (V ,E,X ). V = {vi |i = 1, ...,N } is a set of N vertices, each
of which, vi , is associated with an attribute xi ∈ RF . Network
topology is composed by a set of edges, E = {e = (vi ,vj )}, each of
which connects two vertices in V . X = [xi j ] ∈ R

N×F represents
the collection of the attribute features. Each row of X , i.e., xTi ,
corresponds to the attributes of a node. For convenience, xi ∈ RF

and x ., j ∈ RN are utilized to denote the ith row (all the attributes
of vertex vi ) and jth column (the jth attribute of all the vertices)
of X in vector form, respectively. Besides, the adjacency matrix
A = [ai j ] ∈ R

N×N represents the network topology, where ai j = 1
if an edge connects the vertices vi and vj , and vice versa. dn =∑
j anj stands for the degree of vn and D = diag(d1,d2, ...,dN ) is

the degree matrix of A. The graph Laplacian and its normalized
form are defined as L = D − A and L̂ = D− 1

2 LD− 1
2 , respectively.

Generally, the number of communities, K , is given.
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3.2 Amortized Inference
In probabilistic generative models, the key task is to estimate the
posterior distributions of the latent variables and parameters given
the observed variables. Since this evaluation is infeasible in many
practical cases, variational inference (VI), which is a deterministic
approximation scheme, analytical approximates qi (zi |λi ) to the
posterior distribution by making some assumptions about the form
of posterior distribution, such as Gaussian distribution. Variational
inference reformulates the estimation problem as the optimization
of parameter λi [20]. This optimization, however, is challenging
for large datasets and non-conjugate models, because it separately
updates each latent variable with a conjugate posterior distribution

λi = λi + ϵ∇ELBO(λi ,x), (1)

where ELBO is the evidence lower bound. To alleviate this issue,
amortized variational inference (AVI) is developed to reformulate
the variational inference as a prediction neural network which is
shared (amortized) across all the data in the dataset [21, 22, 34]. The
prediction neural network maps the data to the parameters of its
posterior distribution or latent representation as

λi = f (xi ,ϕ), (2)

with the shared parameter ϕ. AVI can alleviate the overfitting is-
sue caused by the large amount of parameters λi via sharing the
parameter ϕ. Variational auto-encoder (VAE) is an example which
utilizes AVI to jointly train the generative and inference network
[22, 44].

4 SBM VS. GAT
In this section, a well-known generative community detection
method, stochastic block model (SBM) with EM optimization algo-
rithm, and a well-behaved graph neural network, graph attention
network (GAT), are accordingly reviewed. Then, the comparisons
are given from the perspective of propagation. At last, from the
perspective of inference, GAT is interpreted as Semi-Amortized
inference of SBM which possesses the advantages of both the tradi-
tional VI and amortized VI.

4.1 Stochastic Block Model
Overlapping community detection divides the network into over-
lapping sub-networks by considering that each node may share
certain properties with many nodes which may belong to different
groups. A common strategy in overlapping community detection
is to estimate the categorical distribution of each node instead of
estimating all of its communities. In [2], a generative model for
overlapping community detection is introduced. Given N nodes,
to generate the topology, the model is parametrized by a set of pa-
rameters θik , which represent the propensity of node vi belonging
to community k . Then, θikθ jk is the expected number of edges in
community k between the nodes vi and thus vj , and

∑
k θikθ jk is

the expected number of edges between the nodes vi and vj . The
observed edge can be modeled by Poisson distribution with the
mean value as the expected number of edges. As shown in [2],
the adoption of Poisson distribution allows the existences of multi-
edges and self-edges, which are common in most of the real-world
networks. Thus, the probability of generating the observed graph

G with adjacency matrix A is

P(G |Θ) =
∏
i<j

(∑
k θikθ jk

)ai j
ai j !

exp

(
−

∑
k

θikθ jk

)
(3)

∏
i

(
∑
k θikθik )

aii /2

(aii/2)!
exp

(
−
1
2

∑
k

θikθik

)
.

Note that aii = 2 denotes a self-edge. Taking the logarithm of Eq.
(3) and omitting the constants, the formula can be transformed to

log P(G |Θ) =
∑
i<j

ai j log

(∑
k

θikθ jk

)
−

∑
i jk

θikθ jk . (4)

Directly maximizing Eq. (4) with respect to θik cannot obtain any
analytical solution. By applying Jensen’s inequality

log

(∑
k

xk

)
≥

∑
k

qk log
xk
qk
,

where qk is any probability satisfying
∑
k qk = 1, and the exact

equality can be achieved if qk = xk/
∑
r xr . Eq. (4) can be trans-

formed to

log P(G |Θ) ≥
∑
i jk

[
ai jqi j (k) log

θikθ jk

qi j (k)
− θikθ jk

]
, (5)

where qi j (k) is any probability satisfying
∑
k qi j (k) = 1, and the

exact equality can be achieved if

qi j (k) =
θikθ jk∑
k θikθ jk

= дk

(
θikθ jk

)
, (6)

where дk (.) denotes the normalization over the dimension of com-
munity membership. Here, qi j (k) is only defined for observed edges
i.e. ai j = 1. By concatenating qi j (k), where k = 1, 2, ...,K , into
qi j ∈ R

K , the vector-form of Eq. (6) is

qi j =
θi ⊙ θ j

θTi θ j
=

(
θi

θTi θ j

)
⊙ θ j , (7)

where θi ∈ RK is the concatenation of θi j and ⊙ represents the
element-wise product between two vectors. When qi j (k) is fixed,
the optimal θik can be obtained by maximizing Eq (5) with respect
to θik as

θik =

∑
j ai jqi j (k)∑

i θik
. (8)

By summing Eq (8) over i and multiplying with
∑
i θik , we can

obtain (
∑
i θik )

2 =
∑
i j ai jqi j (k) and Eq. (8) can be reformulated as

θik =

∑
j ai jqi j (k)√∑
i j ai jqi j (k)

= дi
©«
∑
j
ai jqi j (k)

ª®¬ , (9)

where дi (.) denotes the normalization over all the nodes. Eq. (9)’s
vector-form can be represented as

θi = дi
©«
∑
j
ai jqi j

ª®¬ . (10)

By alternately optimizing between Eqs. (6) and (9), the log-likelihood
can be maximized. Note that the value of θi is randomly initialized.
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This iterative optimization is equivalent to the E-step and M-step
in expectation maximization (EM) algorithm and it can be proved
that the log-likelihood increases monotonically as the number of
iterations increases.

4.2 Graph Attention Network
Motivated by the successful applications of deep learning to the
regular grid data (e.g. images and videos), developing deep learn-
ing techniques to process the irregular graph data, i.e. graph neu-
ral networks (GNNs), became popular in both theory and prac-
tice [40, 50, 53–55, 58, 59]. GNNs can be categoried into spectral
ones and spatial ones. Originated from spectral graph theory, spec-
tral GNNs apply deep operations, e.g. convolution, in spectral do-
main and progressively overcome the high computation complexity
caused by the spectral decomposition. Motivated from a first-order
approximation of spectral graph convolutions, graph convolutional
network (GCN) [23] employs a layer-wise propagation rule for
neural network models, which operate directly on graphs as

H (l+1) = σ
(
W (l )H (l )D̃− 1

2 ÃD̃− 1
2
)
, (11)

where Ã = A+ IN , D̃ represents the degree matrix of Ã, i.e., the ith

diagonal elements d̃i =
∑
j Ãi j andW (l ) stands for the trainable

weight matrix of a fully-connected layer. H (l ) ∈ RD×N is the repre-
sentations of the lth layer after propagation and H (0) = X contains
the original node attributes. σ (.) denotes the nonlinear activation
function, such as ReLU. Eq. (11) can be formulated in a node-wise
form

h
(l+1)
i = σ

©«
∑

j ∈N (i)∪i

1√
(di + 1)(dj + 1)

W (l )h
(l )
j

ª®¬ , (12)

where h(l )i , the ith column of H (l ), is the representation of node vi
in the lth layer. N (i) represents the neighbourhood of vector vi .
Although GCN significantly improves the performance, its main
drawback is the fixed propagation weight 1√

(di+1)(dj+1)
, which is

completely determined by the degrees of the two connected nodes.
To overcome that drawback, graph attention network (GAT)

[48] attempts to learn the propagation weight by leveraging the
self-attention mechanism [1]. It alternately proceeds between the
weight learning and the attribute propagation as

αi j = softmaxj (a(Wh
(l )
i ,Wh

(l )
j )) (13)

=
exp

(
LeakyReLU(bT [Whi | |Whj ])

)
∑
k ∈N (i) exp

(
LeakyReLU(bT [Whi | |Whk ])

) ,
h
(l+1)
i = σ

©«
∑

j ∈N (i)

αi jWh
(l )
j

ª®¬ ,
where a(., .) stands for a neural network, | | denotes the concatenate
operator and b ∈ R2D

′

is the learnable weight vector. To facilitate
the discussion of connections between GAT and Community De-
tection, the above two steps can be reformulated as the following

three steps:

h′i = Wh
(l )
i (14)

h′′i j = αi jh
′
j (15)

= softmaxj (LeakyReLU(bT [h′i | |h
′
j ])h

′
j

h
(l+1)
i = σ

©«
∑
j
ai jh

′′
i j
ª®¬ , (16)

whereW and b are two learnable parameters. This iterative opti-
mization is initialized with node attributes as

h
(0)
i = xi . (17)

Eq. (14) can be considered as a mapping from hi to h′i through a
fully-connected neural network parameterized byW . Eq. (15) can
be regarded as the propagated information from vj to vi , whose
weight αi j is obtained from a mapping parameterized by b, which
takes the concatenation of h′i and h

′
j as input. After the above two

steps, Eq. (16) propagates the information h′′i j from vj to vi . The
predicted labels Y = [yik ] ∈ R

N×K are the output of the last layer,
i.e. h(L)i , where i = 1, 2, ...,N . For simplicity, Yl = [yik ] ∈ R

|Vl |×K

contains the predicted labels of the nodes with given labels. The
parametersW andb can be learned byminimizing the cross-entropy
between the predicted labels and ground-truth labels on the labelled
nodes

L = −
∑
vi ∈Vl

K∑
k=1

zik lnyik . (18)

This attention mechanism has also been extend to model meta-
paths in heterogeneous information network [49] and signed edges
in signed network [12].

4.3 Comparisons
The complete comparisons between SBM (Eqs. (7) and (10)) and
GAT (Eqs. (15) and (16)) are shown in Table 1. It can be observed
that both of them exploit a similar weighted propagation principle
(Eqs. (10) and (16)). Their detailed differences are given as follows.

• Latent Variable: In SBM, the latent variable is initialized
randomly without any learning strategy. On the contrary,
GAT learns the latent variables from the corresponding node
attributes via a fully-connected (FC) layer which is parame-
terized byW . Similar to the amortized inference in Eq. (2),
this FC layer is shared across all the nodes.

• Propagation Weight: In SBM, the element-wise propaga-
tion weight is optimized via gradient descent without any
learnable parameters. On the other hand, GAT learns the
edge-wise weights from the concatenated latent variables
of the connected nodes with a regression model which is
parameterized by b. The regression model is also shared
across all the edges, which is also equivalent to that of the
amortized inference in Eq. (2).

In general, SBM infers each latent variable and propagation weight
separately, while GAT learns the latent variables and propagation
weights based on an amortized (shared) scheme. According to their
similarities and differences, the connections between GAT and SBM
are summarized in the next subsection.
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Table 1: Comparisons between Stochastic Block Model and Graph Attention Network.

Stochastic Block Model Graph Attention Network

Latent Variable θi (community membership) hi (node representation)
Initialization random initialization xi (node attributes)

Amortized Mapping without mapping h′i =Wh
(l )
i with learnable parameterW

Propagation Weight θi
θTi θ j

softmaxj (LeakyReLU(bT [h′i | |h
′
j ])

Propagation Weight Granularity element-wise edge-wise
Propagation Weight Learnability without learnable parameters with learnable parameter b

Propagated Information θi (original latent variable) h′i (latent variable after mapping)
Weighted Information qi j =

(
θi

θTi θ j

)
⊙ θ j h′′i j = softmaxj (LeakyReLU(bT [h′i | |h

′
j ])h

′
j

Propagation Rule θi = дi
( ∑

j ai jqi j
)

h
(l+1)
i = σ

( ∑
j ai jh

′′
i j

)
4.4 GAT as Semi-Amortized Inference of SBM
Recall that the amortized inference, such as VAE [22], directly maps
the inputs to the representations or latent variable parameters as
shown in Eq. (2) with an i.i.d. assumption of the data. However, the
nodes in networks are usually connected and correlated. Therefore,
the direct adoption of the amortized inference to the network data
may cause under-fitting of the correlations among nodes.

GAT provides a novel scheme to incorporate the Amortized
Inference in modeling the network. This novel scheme, named as
Semi-Amortized Inference, combines the amortized inference with
the traditional variational inference. As shown in Eqs. (14), (15) and
(16), GAT performs latent variable propagations (Eq. (16)) as well
as the amortized inference step (Eqs. (14) and (15)). According to
the analysis in Section 4.3 and Table 1, the propagation rules of
SBM and GAT are identical. Note that the propagations in SBM are
performed in theM-step in EM algorithm, which possesses the same
philosophy as variational inference [3]. Therefore, the propagations
(Eq. (16)) in GAT can be considered as the traditional variational
inference, which alleviates the difficulty of the amortized inference
on modeling the node correlations in the network. In summary,
GAT can be regarded as the Semi-Amortized Inference (SAI)
of SBM,which alternately performs the amortized inference
(Eqs. (14), (15)) and traditional inference (Eq. (16)). SAI can
simultaneously provides a fast inference speed and certain flexibility
of modeling correlations.

5 PROPOSED MODELS
In this section, the probabilistic latent semantic indexing (pLSI) is
firstly reviewed and reformulated as stochastic block model (SBM)
of a specific bi-partite graph. Then, a novel graph neural network
for topic modeling, Graph Attention TOpic Network, is presented
according to the observations in Section 4.4.

5.1 Topic Modeling as SBM on Bi-partite Graph
Probabilistic latent semantic indexing (pLSI) is a well-known gener-
ative topic model and the basis of many topic modeling approaches.
For example, Latent Dirichlet Allocation introduces the Dirichlet
priors to latent variables of pLSI to alleviate its overfitting issue.
pLSI assumes the following generative process for each document
o in a corpus O :

(1) Choose the number of word No ∼ Poisson(ηo ) for document
o;

(2) For each of the No wordswon in document o;
(a) Choose a topic zon ∼ Multinomial(θo );
(b) Choose a wordwon ∼ Multinomial(βzon ).

The probabilistic graphical model of this generative process is rep-
resented in Figure 2(a). In the generative process, ηo ∈ R is the
Poisson parameter to determine the length of the document. In
many models, such as LDA, this process is omitted by assuming
all the documents possessing the same length. θo ∈ RT is the topic
distribution of document o. βt ∈ RU denotes the word distribution
of topic t . η, Θ and B represent the collection of ηo , θo and βt , re-
spectively. zon ∈ 1, 2, ...,T stands for the topic assignment of nth
word in document o.

The likelihood of the above model on an observed corpora O is

P(O |η,Θ,B) =

M∏
o=1

p(No |ηo )

No∏
n=1

T∑
zon=1

p(zon |θo )p(won |zon ,B)

∝

M∏
o=1

ηNo
o exp(−ηo )

No∏
n=1

T∑
z=1

U∏
u=1

(θozβzu )
wu
on . (19)

By letting nou =
∑No
n=1w

u
on be the frequency of wordu which ap-

pears in document o, and normalizing the multinomial distribution,
Eq. (19) can be rewritten as

P(O |η,Θ,B) =
M∏
o=1

ηNo
o exp(−ηo )

U∏
u=1

(
∑T
z=1 θozβzu )

nou

nou !
. (20)

Since
∑U
u=1 nou = No is the number of word in document o and

ηNo
o

U∑
u=1

T∑
z=1

θozβzu = η
No
o

T∑
z=1

θoz = η
No
o ,

Eq. (20) can be reformed as

P(O |η,Θ,B) =
M∏
o=1

U∏
u=1

exp

(
−(ηo

T∑
z=1

θozβzu )

)
(ηo

∑T
z=1 θozβzu )

n
ou

nou !
.
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(a) The probabilistic graphical model of pLSI

(b) The bi-partite graph of pLSI
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Figure 2: Two representations of pLSI. The blue and green ob-
jects denote the documents and words, respectively. The red
objects (both lines and boxes) represent thewords contained
in the documents. (a) The probabilistic graphical model rep-
resentation of pLSI. The red box represents the words (green
circles) contained in the document (blue box). (b) The bi-
partite graph representation of pLSI. The red lines (edges),
which connect document nodes andword nodes in bi-partite
graph, indicate that documents contain words. The weight
of edge, which connects document o and word u, is the fre-
quency of word u in document o.

By absorbing ηo into parameters θoz as θ ′oz = ηoθoz , Eq. (20) can
be revised as

P(O |Θ,B) =
M∏
o=1

U∏
u=1

exp

(
−

T∑
z=1

θ ′ozβzu

)
(
∑T
z=1 θ

′
ozβzu )

nou

nou !
. (21)

By comparing the likelihood of pLSI in Eq. (21) with that of SBM
in Eq. (3), pLSI and SBM can be connected [15]. The latent variable
θik in SBM is the propensity of node vi belonging to community
k , while the latent variable θoz and normalized β ′uz = βzu/

∑
t βtu

in pLSI are the propensities of document o and word u belonging
to topic z, respectively. The community in SBM is similar to the
topic in pLSI. The edgeAi j in SBM corresponds to the nou , which is
the frequency of word u in document o, in pLSI. Thus, pLSI can be
regarded as the SBM of a specific graph, i.e., bi-partite graph, where
documents o and words u are the two kinds of nodes, respectively.
As shown in Figure 2(b), only the edges between words and doc-
uments exist in this bi-partite graph, and the edge weights is nou ,
i.e., the frequency of word u in document o. Therefore, the topic
modeling problem can be regarded as a specific bi-partite graph
modeling problem, and many network modeling approaches can
be then adopted to identify different topics.

5.2 Graph Attention TOpic Network
In this subsection, a novel graph neural network, Graph Attention
TOpic Network (GATON), is proposed for topic modeling. The mo-
tivation of GATON bases on the above two interpretations, which
are also shown in Figure 1: interpretation of pLSI as the SBM of a
specific bi-partite graph in Section 5.1 and interpretation of GAT as
semi-amortized inference of SBM in Section 4.4. Therefore, GATON

is designed to follow the semi-amortized inference of SBM on a
bipartite network.

5.2.1 Node Attribute. As reviewed in Section 3.2 and interpreted
in Section 4.4, semi-amortized inference significantly reduces the
number of parameters (latent variables) by learning the shared
(amortized) function which maps the node attributes to latent vari-
ables. SBM divides network only based on its topology, while GAT
leverages node attributes to help the inference of SBM. Similarly, the
bipartite network, which pLSI is equivalent to, only possesses topol-
ogy structure yet lacks the node attributes. Therefore, the adoption
of semi-amortized inference on the bi-partite graph, which consists
of document nodes and word nodes, assigns the attributes to both
the document and word nodes. Note that the assigned attributes
should reflect the individual properties of each node. Besides, the
information contained in node attributes may better be different
from that contained in network topology. The overall configuration
of GATON is shown in the left subfigure of Figure 3.

Word node attribute. Since the bi-partite graph represents the
inclusion relationship between documents and words, word node
attributes should reflect the semantics of the word itself i.e., word
with similar semantics should possess similar attributes, and vice
versa. Therefore, the one-hot word representation is less appro-
priate, because the differences of the one-hot representations of
any two different words are identical. A more suitable choice for
word represention is the word embedding, which embeds the word
similarity into real-valued vector as

xword
u = embedding(u), (22)

where embedding(.) represents the embedding function such as
CBOW, Skig-gram [37] andGloVe [41]. Note that word embedding is
independent of the co-occurrence of words in the documents, which
is reflected by the bi-partite graph topology, thus the information
contained in word embedding is different from that contained in
the bipartite network.

Document node attribute.The document is composed ofwords,
thus, it is natural to model the document attributes as the bag-of-
words representation of the document. Unfortunately, the bag-of-
words representation has already being contained in the bi-partite
graph topology, because edge reveals the inclusion relationship
between document and word, and each edge weight represents the
number of the corresponding words contained in the document.
Note that the edge weights in GAT are not fixed. They are learned
from a shared (amortized) normalized regression function, which
takes the attributes of its two corresponding nodes as input, as
shown in Eq. (13). Therefore, the bi-partite graph topology can be
simplified to an unweighted one, and the document attributes can
be modeled as term frequency vector

xdocument
o = (no1,no2, ...,noU ), (23)

where U is the number of words in the vocabulary, and nou is
the frequency of word u in document o. Therefore, the weighted
bi-partite graph in Figure 2(b) is represented as the unweighted
bi-partite graph with attributes in the left subfigure of Figure 3.

5.2.2 Amortized Inference. Similar to GAT, GATON also intro-
duces two amortized inference steps to infer the node and edge
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Configuration of GATON

Figure 3: The propagation scheme of GATON. The left subfigure is the setup of the GATON, where the initialized representa-
tions of words and documents are word embedding (in green) and term frequency (in blue) vectors, respectively. Horizontal
"-" and vertical "|" lines denote the information contained in two different word nodes, while slash "/" and backslash "\" stand
for information contained in two different document nodes. The crosses ("+" or "×") represent the combinations of informa-
tion from two different (word or document) nodes. The middle and right subfigures are the first and second layers of GATON,
which consist of two components: propagations fromword to document (top-down arrow) and propagations fromdocument to
word (bottom-up arrow). The one-layer propagation explores the relationships betweenwords and documents, while two-layer
propagations explore the relationships (word-word and document-document) between the same kinds of nodes as indicated
by the red lines, which connect two nodes that have exchanged their information (indicated by crosses in nodes).

latent variables with shared mapping functions. Note that this spe-
cific bi-partite graph possesses two significant differences from
homogeneous networks. 1) There are two kinds of nodes, i.e., doc-
ument nodes and word nodes, in the bi-partite graph, and their
dimensions are different. 2) The impact between two kinds of nodes
is not symmetric i.e., the impact of words to documents may be
different from that of documents to words.

Since there exists two types of nodes, two different mapping
functions are defined as

ĥword
u = Wwordxword

u , (24)

ĥdocument
o = W documentxdocument

o . (25)

Note thatWword andW document are the parameters for two map-
ping functions, respectively, and they cannot be shared due to
different embedding semantics and embedding dimensions.

Due to the unsymmetrical impacts, two different normalized
regression functions are introduced as

αo→u =
exp

(
LeakyReLU(bTo→u [ĥo | |ĥu ])

)
∑
t ∈N (o) exp

(
LeakyReLU(bTo→u [ĥo | |ĥt ])

) , (26)

αu→o =
exp

(
LeakyReLU(bTu→o [ĥu | |ĥo ])

)
∑
z∈N (u) exp

(
LeakyReLU(bTu→o [ĥu | |ĥz ])

) , (27)

where αo→u and αu→o denote the attention from document o to
word u and that from word u to document o, respectively. Note that
ĥo and ĥz are the representations of documents as in Eq. (24), and ĥu
and ĥt are the representations of words as in Eq. (25). For simplicity,
superscripts are omitted and o and u represent document and word,
respectively. N (o) and N (u) are the neighbours of document o and
word u, respectively. Note that all the neighbours of a document
are the words belonging to it, while all the neighbours of a word
are the documents containing this word. bTo→u and bTu→o stand for
the parameters of the impact of document to word and that of word
to document, respectively, and they cannot be shared due to the
different roles.

5.2.3 Propagation as Semi-Amortized Inference. So far, the rep-
resentations of two kinds of nodes and the edge weights of two
directions have been obtained. As in GAT, the propagations are car-
ried out via semi-amortized inference. In GATON, the propagations
are bidirectional as

ho = σ
( ∑
t ∈N (o)

αu→oĥt
)
, hu = σ

( ∑
z∈N (u)

αo→u ĥz
)
, (28)

where σ (.) is the nonlinear activation function, such as ReLU. This
process is shown in Figure 3, which illustrates the propagations of
one-layered GATON. In the propagation, the first-order inclusion
relationship of word in document is explored. On one hand, by prop-
agating information from word to document, the representations
of documents can absorb the information possessed by the word
embedding, which reflects the word semantic. Then, the documents,
which contain similar words or words with similar semantic, can
obtain similar representations. On the other hand, by propagating
information from document to word, the representations of words
can acquire information contained in the documents, to which the
word belongs. Then, the words, which belong to similar document
set or document with similar word distribution, can possess the
similar representations. Similar to GAT [48], multi-head attention
[47] can be employed to stabilize the learning process. The final
ho and hu are the concatenation of the results from S independent
attention mechanisms.

5.2.4 High-order Propagation. Although one-layered propaga-
tion captures the inclusion relationships, the high-order relation-
ships (word-to-word, document-to-document) cannot be exploited.
Thus, multiple GATON layers are stacked to model the multi-hop
relationships. Taking two-layered GATON as an example (shown
in Figure 3). In the first layer, word embedding information (green
short lines) is utilized to enhance the representations of documents
(blue circles), while document information (blue short lines) is
adopted to improve the representations of words (green circles). In
the second layer, word representation, which has been improved
with document information (blue short lines in green circles), is
exploited to further revise the representations of documents for the
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second time via propagations, thus it can explore the document-
document relationships (red line between the blue circles with
blue crosses). Similarly, the word-word relationships can also be
explored (red line between the green circles with green crosses).

To achieve the amortized inference in different layers, Eqs (24)
and (25) are extended to

ĥl+1u = W l+1
u hlu , (29)

ĥl+1o = W l+1
o hlo , (30)

where hlu and hlo are the word and document representations of
the previous layer, h0u = xword

u and h0o = xdocument
o , respectively.

Besides, the attentions (αo→u and αu→o ) in Eqs. (26) and (27), and
propagations in Eq. (28) are also extended to multiple-layer.

5.3 Objective Function
The parameters of GATON are Ω = {W

(l )
o ,W

(l )
u ,b

(l )
u→o ,b

(l )
o→u |l ∈

{1, 2, ...,L}}, where L is the number of layers, and the final rep-
resentations of words and documents are Hword = {h

(L)
u |u ∈

{1, 2, ...,U }} and Hdocument = {h
(L)
o |o ∈ O}, respectively. To ob-

tain them, the reconstruction error of the bi-partite graph from the
representations of words and documents Hword and Hdocument ,

L(Ω) =
∑

nou,0
| |nou− < h

(L)
o ,h

(L)
u > | |22 + λ | |Ω | |22 ,

is minimized with respect to the parameter Ω, where < h
(L)
o ,h

(L)
u >

is the inner product ofh(L)o andh(L)u and λ is the parameter employed
to balance the reconstruction error and regularization.

6 EVALUATIONS
Datasets. Two text datasets, 20NewsGroups1 and Reuters-215782
are employed for performance evaluation. 20NewsGroups dataset,
20News for short, consists of 18,846 newsgroup documents (11,314
for training and 7,532 for testing), which are classified into 20
categories. Reuters-21578, Reuters for short, contains about 10,000
documents. Due to the high imbalanced numbers of the documents
in all the categories, only the 7,674 documents in the largest 8
categories, are employed. In the preprocessing step, stop words and
words with total frequency lower than 10 are removed, and all the
words are converted to lowercase.

Settings. For all the datasets, we employ a two-layered GATON
model. Word embeddings from CBOW, Skip-gram [37] and GloVe
[41] are adopted to model the node attributes, and the correspond-
ingly constructed GATONs are named as, GATON-C, GATON-S
and GATON-G, respectively. The dimensions of word embeddings
are set to 50 for all the experiments. The first layer adopts only 4
attention heads and the exponential linear unit (ELU) [8] as the
nonlinear activation function. The second layer consists of only one
attention head and it employs the softmax for nonlinear mapping.
For the topic discovery task, the output dimension of the second
layer is set as the number of topics. For the word embedding task,
the output dimension of the second layer is set as the same as that of
the other word embedding methods, i.e. 50. For the document classi-
fication task, the output dimension of the second layer is set to 200.
1http://qwone.com/jason/20Newsgroups/
2http://www.daviddlewis.com/resources/testcollections/reuters21578/

Table 2: Topic coherence performances on both datasets.

Dataset 20News Reuters
#Top-words 5 10 20 5 10 20

NMF -18.05 -85.53 -417.19 -11.28 -66.41 -335.61
pLSI -15.15 -78.59 -365.69 -13.22 -70.07 -333.57
LDA -15.30 -80.48 -368.82 -12.09 -69.80 -352.29

Gauss-LDA -19.45 -94.52 -435.90 -24.22 -108.45 -478.43
LF-LDA -16.58 -78.54 -385.73 -13.26 -71.35 -369.00
CLM -11.62 -60.30 -282.79 -11.48 -63.08 -313.45

GATON-C -10.17 -55.82 -245.29 -10.06 -57.46 -285.90
GATON-S -10.92 -55.98 -244.73 -10.35 -56.75 -277.34
GATON-G -11.55 -58.13 -285.91 -11.66 -61.03 -299.35

During the training process, the L2 regularization with λ = 0.0005
and the dropout with p = 0.6, is applied to the inputs of both layers
and attention coefficients. The model is initialized by Glorot and
optimized via Adam SGD whose initial learning rate is 0.002.

6.1 Topic Coherence
Metric and baselines Coherence score [24, 38] is a well-adopted
metric to evaluate the coherence of topics. Intuitively, it should
measure the frequency that top words in the same topic co-occur
in documents. Given R topic words U t = {ut1,u

t
2, ...,u

t
R } of topic t ,

its coherence score with respect toU t is defined as

C(t ,U t ) =

R∑
r=2

r∑
l=1

log
J J (utr ,u

t
l ) + 1

J (utl )
,

where J (utl ) is the number of documents containing word utl , while
J J (utr ,u

t
l ) is the number of documents containing both utl and u

t
r .

Then, the overall quality can be measured by the average of the
coherence score over K topics as C̃ = 1

T
∑T
t=1C(t ,U

t ). For fair
evaluation, the number of topic words are set from 5, 10 and 20.

Six baseline methods are employed for comparison. Among them,
LDA [5], Non-negative Matrix Factorization (NMF) [26] and pLSI
[18] are the topic modeling approaches without word embedding,
while Gauss-LDA [9], LF-LDA [39] and CLM [51] are the ones based
on word embedding, which is obtained from Skip-gram [37].

Results analysis. The results are shown in Table 2. It can be
observed that pLSI, LDA and LF-LDA achieve similar performances.
Although Gauss-LDA and LF-LDA leverage the word embedding,
their performances on topic coherence do not achieve any improve-
ment. The performance of CLM is better than other baselines on
the 20News dataset, but it only obtains similar performance as NMF
on the Reuters dataset. This phenomenon may be caused by the
detailed scheme of incorporating word embedding, which inter-
feres the topic modeling. GATON consistently outperforms others
on both datasets. Our outstanding performances may be induced
by the approach of incorporating word embedding, which only
reduces the number of parameters and facilitates the inference.

6.2 Document Classification
Metric and Baselines. Macro-averaged precision, recall and F1-
score are adopted as the metrics, because macro-averaging is more
informative for dataset with imbalanced categories.
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Table 3: Document classification performances on datasets.

Dataset 20News Reuters
Metrics Prec. Recall F1 Prec. Recall F1

NMF 0.704 0.701 0.697 0.911 0.877 0.891
pLSI 0.722 0.712 0.709 0.919 0.896 0.906
LDA 0.727 0.722 0.719 0.888 0.870 0.879

Gauss-LDA 0.309 0.265 0.227 0.462 0.315 0.353
LF-LDA 0.716 0.714 0.709 0.893 0.591 0.661
CLM 0.825 0.818 0.816 0.944 0.916 0.929

TWE 0.525 0.466 0.437 0.794 0.512 0.626
PV-DBOW 0.510 0.491 0.459 0.755 0.505 0.549
PV-DM 0.428 0.386 0.361 0.681 0.434 0.507
TopicVec 0.713 0.713 0.712 0.925 0.921 0.922
MeanWV 0.704 0.703 0.701 0.920 0.896 0.905
TV+Mean 0.718 0.715 0.716 0.922 0.916 0.916

GATON-C 0.822 0.803 0.812 0.975 0.979 0.977
GATON-S 0.859 0.842 0.850 0.944 0.937 0.940
GATON-G 0.716 0.767 0.741 0.914 0.896 0.905

In addition to the baseline methods used in Section 6.1, other
six approaches, which exploits word embedding, are employed for
comparison. Topical Word Embeddings (TWE) [32] incorporates
topic embedding into the Skip-gram word embedding framework.
PV-DBOW and PV-DM [25] are doc2vec models. TopicVec [30] is
a generative topic model which also considers the word sequence.
MeanWV takes the mean of word embedding in TopicVec [30].
TV+Mean is the concatenation of the TopicVec and MeanWV.

Results Analysis. The results are shown in Table 3. It can be
observed that GATON-S and GATON-C remarkably outperform
the baseline methods, including TopicVec [30] and CLM [51] which
are the state-of-the-arts on integrating word embedding and topic
modeling. Different performances may be caused by different mech-
anisms on integrating word embedding and topic modeling. Most
of the existing approaches only simply assume that the represen-
tations of documents and words should contain the information
in both the word similarity and co-occurrence. For example, TWE,
MeanWV, PV-DBOW and PV-DM all represent the documents by
utilizing the embeddings of words which are contained in it. The
proposed GATON, however, explicitly considers heterogenous im-
pacts and high-order relationships between words and documents
by weighting the impacts between documents and words based on
attention mechanism and stacking multiple layers.

6.3 Word Embedding
Here, the performance of word embedding refinement is evaluated.
The refined word embeddings in GATON are the representations
of word nodes in bi-partite graph, i.e., hu ’s.
Metric andBaselines.The quality of word embedding ismeasured
based on the Spearman’s rank-order correlation with the human
ratings. Word pairs are ranked based on their cosine similarities
in embedding space. The ranking of word pairs is compared to the
human-assigned similarity scores in seven datasets including Word-
Sim353 (W353) [14] (WordSim Relatedness (WSim) and WordSim
Similarity (WRel)), Men [6], Turk [43], SimL [17], and Rare [33].

Table 4: Word embedding performances on 20News dataset.

W353 WRel WSim Men Turk SimL Rare

SPPMI 0.461 0.444 0.465 0.444 0.551 0.131 0.245
SPPMI+SVD 0.451 0.435 0.449 0.426 0.489 0.166 0.349
PV-DBOW 0.477 0.442 0.486 0.449 0.488 0.139 0.285

TWE 0.317 0.231 0.407 0.190 0.260 0.084 0.184
CLM 0.526 0.486 0.550 0.477 0.525 0.189 0.411

CBOW 0.488 0.451 0.494 0.432 0.529 0.151 0.407
Skip-Gram 0.492 0.479 0.473 0.456 0.512 0.155 0.407

GloVe 0.300 0.279 0.320 0.192 0.268 0.049 0.230

GATON-C 0.563 0.531 0.579 0.505 0.569 0.232 0.470
GATON-S 0.552 0.527 0.573 0.516 0.560 0.242 0.473
GATON-G 0.461 0.405 0.460 0.352 0.435 0.154 0.358

For comparison, five word embedding methods are employed,
including CBOW and Skip-gram [37], GloVe Glove, Shifted Positive
PMI (SPPMI) matrix and its dimension reduced version with SVD
(SPPMI+SVD)[27]. Besides, another four word embedding refine-
ment approaches, PV-DBOW and PV-DM [25], TWE [32] and CLM
[51] are also employed.

Results Analysis. The results are shown in Table 4. Most of the
word embedding approaches including CBOW, Skip-gram, SPPMI
and SPPMI+SVD give the similar performance. The word embed-
ding refinement approaches, PV-DBOW, PV-DM and TWE cannot
significantly improve the performance since they intended to inte-
grate word embedding into topic modeling instead improvement
word embedding. Although CLM outperforms other baselines, its
performance is limited by its essence of learning word embedding
instead of refining word embedding. Our proposed GATON consis-
tently achieves the best performance due to its refinement nature,
which refines word embedding by taking it as input and augmenting
it with the discovered topics.

7 CONCLUSIONS
In this paper, we provide a new approach to overcome the over-
fitting issue of pLSI by exploiting amortized inference with word
embedding as input, instead of the problematic Dirichlet prior in
LDA. Although the vanilla amortized inference can significantly re-
duce the number of parameters by replacing the inference of latent
variables with a function which shares the (amortized) learnable
parameters, it has limited ability to handle the i.i.d. data. Therefore,
a novel graph neural network, Graph Attention TOpic Network, is
proposed to model the topic structure of non-i.i.d documents, be-
cause graph neural networks are equivalent to the semi-amortized
inference of SBM on non-i.i.d. network data and pLSI is equiva-
lent o SBM on a specific bi-partite graph. Extensive experiments
demonstrate that GATON’s effectiveness on topic identification,
document classification and word embedding.
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