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Analyzing Heterogeneous Networks with Missing
Attributes by Unsupervised Contrastive Learning
Dongxiao He, Chundong Liang, Cuiying Huo, Zhiyong Feng, Di Jin, Liang Yang, and Weixiong Zhang

Abstract—Heterogeneous information networks (HINs) are
potent models of complex systems. In practice, many nodes in
a HIN have their attributes unspecified, resulting in significant
performance degradation for supervised and unsupervised repre-
sentation learning. We developed an unsupervised heterogeneous
graph contrastive learning approach for analyzing HINs with
missing attributes (HGCA). HGCA adopts a contrastive learning
strategy to unify attribute completion and representation learning
in an unsupervised heterogeneous framework. To deal with a
large number of missing attributes and the absence of labels
in unsupervised scenarios, we proposed an augmented network
to capture the semantic relations between nodes and attributes
to achieve a fine-grained attribute completion. Extensive ex-
periments on three large real-world HINs demonstrated the
superiority of HGCA over several state-of-the-art methods. The
results also showed that the complemented attributes by HGCA
can improve the performance of existing HIN models.

Index Terms—Heterogeneous information networks, unsuper-
vised learning, contrastive learning, missing data.

I. INTRODUCTION

MANY real-world systems, e.g., transportation networks,
power grids, and social networks, are best viewed

and formulated as networks. The overarching problem of
mining and analyzing valuable information in networks has
been actively studied for decades [1], [2], [3]. As a more
capable representation scheme using multiple types of nodes
and edges, heterogeneous information networks (HINs) were
recently introduced to model complex systems with various
types of entities and relations [4]. Low-dimensional embed-
ding techniques have also been adopted to derive compact
representations of HINs and extract network-specific informa-
tion, such as heterogeneous network structural properties and
node semantic relations [4]. Several methods have been devel-
oped for heterogeneous network embedding (HNE), including
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Fig. 1. (a) The DBLP dataset with four types of nodes, where only paper
nodes have attributes whereas other nodes have no attribute; (b) An average
imputation strategy is adopted by the existing methods. Missing attributes are
assigned by the vectors of average attributes of their directly connected paper
nodes.

proximity-preserving methods, message-passing methods, and
relation-learning methods [5]. Among these methods are the
popular ones based on heterogeneous graph neural networks
(HGNNs) which have been applied to, e.g., node classifica-
tion [6], [7] and link prediction [8], [9].

To be effective, HGNN-based methods require node at-
tributes to be well-specified, including their types and val-
ues. However, missing data is ubiquitous in data analytic
problems. For problems of HIN analysis, node attributes are
often missing or incomplete primarily due to the difficulty in
data collection or defining attribute types and values. Take
a simple heterogeneous network from the database and logic
programming website (DBLP) [10] as an example (Fig. 1(a)),
the network has four types of nodes (author, paper, term, and
venue) and three kinds of links. The attributes of paper nodes
come from the keywords in their titles, whereas the other types
of nodes have no attributes, which are non-trivial to accurately
define.

Missing node attributes impose a huge challenge to devel-
oping effective methods for HNE, especially HGNN-based
methods. As a work-around scheme to the missing data
issue, the existing HGNN methods usually adopt imputation
strategies, such as neighbor’s average or one-hot vector as done
in MAGNN [8]. Consider again the example in Fig. 1(a), the
missing attributes are filled in by the average attributes of their
directly connected paper nodes (Fig. 1(b)). These imputation
methods are non-optimal and may introduce noises or even
errors to the data to be analyzed further.

Labeling nodes is costly and time-consuming so that unsu-
pervised learning is desirable, as attempted lately in develop-
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ing some HGNN methods [11], [12]. Nonetheless, the prob-
lem of missing data is exacerbated in unsupervised learning
because it depends on complete and accurate data to build
effective unsupervised models, to be discussed further in the
next section with a motivating example. Since imputation
may introduce errors, new approaches must be developed
when designing unsupervised learning methods for HNE with
incomplete data.

We set forth to design an effective unsupervised approach
to learn low-dimensional representations of complex HINs
with missing node attributes. We developed HGCA, an end-
to-end unsupervised heterogeneous graph contrastive learning
method for HINs with missing attributes. We designed a novel
contrastive learning strategy to integrate the processes of at-
tribute completion and heterogeneous network embedding into
a unified unsupervised framework. We introduced a contrastive
objective for maximizing the agreement between two low-
dimensional node representations, one for the actual node
attributes and the other for learned attributes. In other words,
the contrastive learning strategy helped implicitly train the
attribute completion module so that complemented attributes
were trustworthy and could be used in place of actual at-
tributes. Furthermore, to ensure every complemented attribute
to be accurate, we considered a HIN with missing attributes
as an augmented heterogeneous network and learned joint
embeddings of nodes and attributes to capture their semantic
relations to help derive missing attributes. We carried out
extensive experiments to compare the new HGCA method with
several state-of-the-art approaches. The results showed that
HGCA significantly outperformed the existing HIN methods
and validated the generality of the new method for comple-
menting missing attributes.

The rest of the paper is organized as follows. In Section II
we experimentally investigate the impact of missing attributes
on semi-supervised/unsupervised HIN representation learning.
We discuss related work in Section III and the notations
and definitions used in this paper in Section IV. We present
the HGCA method in Section V and experimental results in
Section VI. We conclude in Section VII.

II. A MOTIVATING EXAMPLE

To appreciate the complexity and inherent issues of missing
attributes when mining heterogeneous information networks
(HINs), particularly in an unsupervised setting, we first con-
sidered an example to motivate the development of HGCA.
In particular, we analyzed the impact of missing attributes
and how inaccurate and erroneous attributes derived from the
existing methods could severely affect semi-supervised and
unsupervised learning. In the experiment, we compared the
average imputation strategy and our new attribute-completion
process on DBLP data with missing attributes [10] using
a semi-supervised model MAGNN [8] and an unsupervised
model we developed for HGCA as discussed in Section V-D.

Figures 2(a) and 2(b) show the classification results of the
semi-supervised models with complemented attributes from
average imputation (MAGNN-avg) and our attribute com-
pletion process (MAGNN-ac). The two models have clas-
sification accuracies of 93.02% and 94.40%, respectively.

(a) MAGNN-avg (b) MAGNN-ac

(c) HGNN-avg (d) HGNN-ac

Fig. 2. Visualization of author node embeddings in DBLP under different
settings. Different colors denote different classes. (a) MAGNN-avg. The result
of a semi-supervised model MAGNN [8] with complemented attributes from
average imputation. The classification accuracy is 93.02%. (b) MAGNN-
ac. The result of the semi-supervised model MAGNN with our attribute
completion process. The classification accuracy is 94.40%. (c) HGNN-avg.
The result of an unsupervised model (HGNN, discussed in Section V-D) with
complemented attributes from average imputation. The classification accuracy
is 78.45%. (d) HGNN-ac. The result of the unsupervised model HGNN with
our attribute completion process. The classification accuracy is 91.06%.

Figure. 2(c) and . 2(d) show the results of the unsupervised
models with complemented attributes from average imputation
(HGNN-avg) and our attribute completion process (HGNN-
ac). Their corresponding classification accuracies are 78.45%
and 91.06%.

Attributes complemented in different ways have a negligible
impact on semi-supervised learning: their accuracies differ
only by 1.38% (Fig. 2). The results of MAGNN-avg and
MAGNN-ac have clear separation and denser cluster struc-
tures. This may be because attributes of different classes
may be easily separated in label-guided training so that in-
accurate attributes may still help generate good embedding.
Intuitively, semi-supervised learning guided by labels can filter
out incorrect information in complemented attributes and avoid
significant performance degradation.

However, complemented attributes significantly affect un-
supervised learning. The performance of average imputation
(HGNN-avg) is 11.61% worse than that of our attribute
completion method (HGNN-ac). Unsupervised learning does
not use labels (i.e., no labels are used to build the constraint
relationship between attributes and classes), but instead needs
to mine hidden patterns in the data to guide model training.
The noises and errors in complemented attributes from simple
imputation methods can make pattern discovery difficult and
degrade the performance of unsupervised learning. Therefore,
it is imperative to develop effective methods for attribute
completion to make unsupervised learning feasible for mining
and analyzing HINs.
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III. RELATED WORK

A. Heterogeneous Graph Neural Networks

Graph neural networks (GNNs) [1], [2] are effective for
analyzing graph-structural data. Most GNNs follow the prin-
ciple of message passing. They learn node representations
by aggregating information from neighboring nodes based on
the guidance of topological structure. GNNs have achieved
superior performance in many downstream tasks, such as node
classification [13], [14], graph classification [15], [16], and
some tasks in computer vision (e.g., gait recognition [17]).

Recently, many heterogeneous graph neural networks have
been proposed for heterogeneous information network (HIN)
analysis, particularly for learning node embeddings based on
node attributes by aggregating the information from neighbor
nodes while capturing heterogeneous structural properties and
node semantic relations. These methods are semi-supervised.
HAN [6] uses hierarchical attention to simultaneously learn the
importance between nodes and between meta-paths. The node-
level attention aims to learn the importance between a node
and its meta-path-based neighbors, while the semantic-level
attention can learn the importance of different meta-paths.
MAGNN [8] further considers intermediate nodes along the
meta-paths. It designs several encoder functions for distilling
information from meta-path instances and employs a similar
hierarchical attention mechanism as HAN for generating node
representations. Because domain knowledge is required for
defining meta-paths, some methods try not to use meta-
paths [18], [19] to remove this limitation. GTN [7] learns
a soft selection of edge types and composites relations for
generating useful multi-hop connections, which have the same
effect as meta-paths. GTN can identify useful connections be-
tween unconnected nodes on the original graph while learning
effective node representations on the new graphs in an end-
to-end fashion. Unlike GTN implicitly learning meta-paths,
HetSANN [20] designs aggregation operations directly on the
original graph. It uses type-aware attention layers instead of
convolutional layers [13] to capture the interactions among
different types of nodes. Thus it can incorporate information
from high-order neighbors of different types through message
passing across layers. HGT [21] holds the same idea as Het-
SANN. It adopts meta-relation-based mutual attention to learn
node embeddings. Besides, HGT argues that most methods are
incapable of modeling web-scale heterogeneous graphs and
ignore the dynamic nature of HINs. It designs a heterogeneous
mini-batch graph sampling algorithm for scalable training and
uses a relative temporal encoding technique to capture graph
dynamics.

There are also some unsupervised methods. HetGNN [9]
considers jointly heterogeneous structural information and
heterogeneous content information of each node. It encodes
the interactions of heterogeneous content within a node and
aggregates node content embeddings based on different neigh-
boring groups. It performs unsupervised learning by a graph
context loss. R-GCN [22] considers edge heterogeneity by
multiple convolution processes, each of which corresponds to
one type of edge. It maximizes the likelihood of observing
edges in HINs to optimize parameters in an unsupervised

setting. CompGCN [23] extends R-GCN by leveraging a
variety of entity-relation composition operations to jointly
learn embeddings of nodes and relations. DMGI [11] models
the global properties of a HIN. It maximizes the mutual
information (MI) [24] between node representations and a
global representation of the entire graph and uses a regu-
larization to learn a consensus embedding for each node by
taking into account the inter-relationship among meta-path-
based relations. NSHE [12] preserves the node pair similarity
and network schema structure and learns embeddings in an
unsupervised way. Although the above methods have achieved
good performance, they all require complete attributes which
are often not available in practice.

B. Graph Contrastive Learning

Contrastive learning becomes popular first in visual rep-
resentation learning [25], [26]. It uses data augmentation to
obtain two correlated views of the given data and adopts a
contrastive loss to learn representations that maximize the
agreement between the two views [27], [28], [29]. As a type
of unsupervised method, it performs comparably with semi-
supervised methods. Contrastive learning has recently been
extended to graphs. One of the primary challenges of graph
contrast learning is how to design data augmentation strategies
for generating correlated data views. Taking advantage of
the properties of a graph, GRACE [30] generates two graph
views by removing edges and masking node attributes and
then uses a contrastive loss to maximize the agreement of
node embeddings in these two views. GCA [31] extends the
augmentation strategy of GRACE to adaptive augmentation
that incorporates various priors for topological and semantic
aspects of the graph. Besides, some existing works try to
generate contrastive samples in an automatical way, which
is similar with automated graph learning [32], [33], [34].
JOAO [35] proposes a bi-level optimization approach to auto-
mate the augmentation selection, which alleviates the reliance
on the design of augmentations. AutoGCL [36] uses embedded
node features to predict the probability of selecting a certain
augment operation, which learns to generate an augmented
graph view in a data-driven manner.

To explore the pre-training scheme for node-level tasks,
GCC [37] introduces pre-training tasks as subgraph instance
discrimination in and across networks and adopts contrastive
learning to empower graph neural networks to learn the
intrinsic and transferable structural representations. To explore
the pre-training scheme for graph-level tasks, GraphCL [38]
adopts different graph-level augmentations and uses a graph
contrastive loss to make representations invariant to perturba-
tion. IGSD [39] is also a graph-level representation method.
It improves the idea of knowledge distillation [40], [41] to
iteratively performs teach-student distillation by contrasting
augmented views of graph instances.

More recently, HeCo [42] applied contrastive learning to
HINs. It employs network schema and meta-paths as two
views to capture both local and high-order structures, and
performs contrastive learning across the two views. Despite
the success of HeCo, it ignores the important role of attributes
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in creating data views and fails to deal with HINs with missing
attributes.

C. Learning with Attribute-Missing Data

The problem of missing attributes is ubiquitous in data
analytic problems. Several methods have been proposed to
address this problem. GRAPE [43] argues that some existing
methods for learning with attribute-missing data rely too much
on assumptions of data distribution without paying attention
to the relationship between samples. GRAPE tackles the
attribute-missing problem using a graph-based approach. It
constructs the relationships among samples and attributes and
can use graph neural networks to perform attribute completion
and label prediction simultaneously with no data distribu-
tion assumption. There are also some methods for graph-
structured data with missing attributes. GCNMF [44] is one of
these methods. Arguing that conventional strategies separate
attribute imputation and graph representation learning, which
degrade performance, GCNMF integrates the processing of
attribute completion and graph representation learning within
the same graph neural network (GNN) architecture. The main
idea of GCNMF is to represent missing attributes by a Gaussian
Mixture Model (GMM), transform GMM into a layer of
GNN, and train the overall system by an end-to-end learning
process. SAT [45] is a method for graphs with attributes of
some nodes entirely missing. SAT makes a shared-latent space
assumption so that attribute and topology information can be
projected into a common space where missing attributes can
be complemented by topology representations. It then uses
dual encoders to learn the representations of attributes and
topology separately and aligns the paired latent representations
via adversarial learning [46], [47], [48]. It is important to note
that the above methods do not apply to HINs. The complexity
of missing attributes and complex network structures make
representation learning a great challenge for HINs.

IV. DEFINITIONS AND NOTATIONS

We now define the key terms and notations used throughout
the paper.

Definition 1 (Heterogeneous Information Networks (HINs)):
A HIN G = (V, E ,F ,R, X) consists of a set of nodes V
with a corresponding node-type set F , a set of edges E with
a corresponding edge-type set R, and a set of attribute X ,
along with a function φ : V → F to map nodes to node types
and function ϕ : E → R to map edges to edge types, where
|F| + |R| ≥ 2. The edge set can also be represented by an
adjacency matrix A ∈ Rn×n, where n = |V|, and Ai,j is 1 if
there is an edge between nodes vi and vj or 0, otherwise.

Definition 2 (Attribute-Missing in HINs): IN general, for
a node and its attributes, attribute-missing means that the
attribute values of this node are partially or completely un-
specified. In HINs, a common scenario of attribute-missing,
is that the values of some attribute types of some nodes are
entirely missing, while the nodes with other attribute types
have no missing attributes. Formally, given a HIN G with node
set V and node-type set F , attribute-missing in HINs means

TABLE I
NOTATIONS AND EXPLANATIONS

Notations Explanations
M A meta-path
V The set of nodes
V+, V− The set of nodes with existing/missing attributes
N (vi) The neighbor set of node vi
Si A group of neighbor nodes of vi
A, AM Adjacency matrix and meta-path-based adjacency matrix
X , X̄ Original/Complemented node attributes
X(1), X(2) Two attribute views
Znode, Zattr Joint embeddings of nodes/attributes
H The embeddings of nodes in HGNN

that there exists a subset F ′ ⊂ F and F ′ ̸= ∅, and a node
vi ∈ V having no attribute iff its type belongs to F ′.

Definition 3 (Meta-Path and Meta-Path-based Adjacency):
A meta-path M is defined as a path F1

R1−−→ F2
R2−−→

...
Rl−→ Fl+1 with node types F1, F2, ..., Fl+1 ∈ F and

edge types R1, R2, ..., Rl ∈ R, which can be simplified as
F1F2...Fl+1. Given a HIN and a meta-path M, there are
many node sequences in the HIN following the schema defined
by M. We name these node sequences meta-path instances
of M. A meta-path-based adjacency is an adjacency matrix
AM ∈ Rn×n, where if node vi and vj are connected via a
meta-path instance of M, then AM

i,j = 1, or 0 otherwise.
The notations that we will use and their explanations are

summarized in Table I. Uniformly, uppercase notations denote
sets, lowercase notations denote nodes, and subscript indicates
node numbers.

V. METHOD

We start with an overview of our proposed HGCA method
and then present its major components, including the joint
embedding, attribute completion, heterogeneous graph neural
network (HGNN), and contrastive learning strategy.

A. Overview

HGCA is an end-to-end unsupervised contrastive learning
method designed for analyzing heterogeneous graphs with
missing attributes. It integrates an attribute completion process
and HGNN module into a unified unsupervised method using
a contrastive learning strategy. The new method is designed
not only for completing attributes but also for learning node
representations.

HGCA contains four components: joint embedding, attribute
completion, HGNN, and contrastive learning strategy (Fig. 3).
The joint embedding module transforms heterogeneous infor-
mation networks (HIN) with missing attributes into an aug-
mented heterogeneous network where the original attributes
are treated as a new type of nodes. HGCA then uses pre-
defined meta-paths to learn embeddings of nodes and attributes
jointly through a collaborative random walk method(Fig. 4). In
the attribute completion module, HGCA computes the values
of missing attributes using joint embeddings as guidance. Sub-
sequently, HGCA produces two data views by using different
attributes (one on the complemented attributes and the other
on the original attributes) and learns node representations by
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Fig. 3. The flow chart of the HGCA method. The patterns with different shapes and colors represent different types of nodes, among which squares without
borders represent a new type of nodes abstracted from attributes. Given a HIN with missing attributes, HGCA first learns joint embeddings by using a
collaborative random walk. It then uses the joint embeddings as priors to complete missing attributes and generates two data views with different attributes. A
pair of parameter-shared HGNNs is applied to learn the final node representations. Two contrastive objective functions are used to optimize the overall model.

two parameter-sharing HGNN modules. These two HGNN
modules are composed of intra-group aggregation, inter-group
aggregation within a meta-path, and semantic aggregation be-
tween meta-paths. Finally, HGCA adopts a contrastive strategy
to optimize the attribute completion module and the HGNN
module together.

B. Joint Embedding

A network has many characteristics. In particular, ever node
has its characteristic values, represented by node attributes.
We introduce joint embeddings of nodes and characteristics
to explore available information in HGCA to better estimate
missing attributes. Specifically, HGCA first transforms a HIN
with missing attributes into an augmented heterogeneous net-
work where attribute nodes are introduced to represent char-
acteristics as a new type of nodes (Fig. 4). It then adds edges
linking the original nodes and attribute nodes based on char-
acteristic (or attribute) values. The high-order relations among
original and attribute nodes can be captured by meta-path
instances among the original nodes and meta-path instances
between original and attribute nodes. HGCA then explores
this augmented network to mine semantic relations among
characteristics and nodes by collaborative random walk [49]
and represent nodes and characteristics in joint low-dimension
embeddings, which are used as a prior for attribute completion.

The meta-path-based random walk in HGCA is to capture
the local neighbor structures in the augmented heterogeneous
network. Given a meta-path Mp : F1

R1−−→ F2
R2−−→ ...

Rl−→
Fl+1 and node vi with type Fi, the transition probability at
step i is defined as

p(vi+1|vi,M) =

{
1

|NFi+1
(vi)|

0

Ai,i+1 = 1, φ(vi+1) = Fi+1

otherwise

(1)
where NFi+1

(vi) presents neighboring nodes of vi with type
Fi+1 and φ(vi+1) = Fi+1 denotes the type of vi+1. The
random walk ensures the semantic relationships among nodes

and characteristics to be properly preserved. HGCA then
uses skip-gram [50] to learn joint embeddings of nodes and
characteristics by maximizing the predicted probability of the
local neighbor structures captured by the random walk. The
objective function can be formulated as

arg max
θ

∑
v∈V

∑
F∈F

∑
u∈NF (v)

log p(u|v; θ) (2)

where V is the set of nodes, F the set of node types,
NF (v) the set of type F neighbor nodes of node v, which is
sampled by the random walk. HGCA uses a softmax function
p(u|v; θ) = exp(zu·zT

v )∑
o∈V exp(zo·zT

v )
to calculate the probability that v

and u are local neighbors, where zv is the embedding of node
v, a vector learned by a skip-gram model with one-hot vector
as input. The embeddings of original and attribute nodes can
be formulated as Znode and Zattr, respectively. Each row of
Znode represents an embedding vector of a node denoted as
znodev . Likewise, each row of Zattr represents an embedding
vector of a characteristic of attributes, denoted as zattrc .

C. Attribute Completion

Deviated from the idea of imputing attribute values using
neighbor information, HGCA derives missing attribute values
using the joint embeddings described above. Consider a node
vi with missing attributes whose d characteristics are unavail-
able. To accurately estimate these attributes, HGCA evaluates
the similarity between the node embedding znodevi and the
embeddings Zattr of the d characteristics. This evaluation is
based on the rationale that the joint embeddings of nodes and
attributes contain semantic relations among nodes and these
characteristics so that the similarity between a node and a
characteristic can be used as the attribute value of the node.
Given node embedding znodevi and the embedding zattrcj of the
jth characteristic, the attribute value can be computed as

value = znodevi W̄ (zattrcj )
T (3)
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represents a characteristic). HGCA first transforms a HIN with missing
attributes into an augmented heterogeneous network and then learns joint
embeddings by using a collaborative random walk.

where W̄ is a learnable parameter to make similarity value
more accurate and the inner product is used to compute
similarities. Given the joint embeddings Znode and Zattr of
all nodes and characteristics, the complemented attributes can
be expressed as

X̄ = ZnodeW̄ZT
attr (4)

where X̄ is the complemented attributes. As a result, each
dimension value of missing attributes can be learned accurately
under the guidance of joint embeddings.

With missing attributes completed, the complemented at-
tributes and the heterogeneous topology are sent to the HGNN
module to derive the final representations. As unsupervised
contrastive learning, HGCA adopts two different data views,
one from complemented attributes and the other from the orig-
inal attributes. Specifically, given the complemented attributes
X̄ of all nodes and the original attributes X of some nodes,
the two attribute views can be expressed as:

X(1) = {xi, x̄j |∀vi ∈ V+,∀vj ∈ V−} (5)

X(2) = {x̄i|∀vi ∈ V} (6)

where V+ is the set of nodes with given attributes, V− the
set of nodes with missing attributes, xi/x̄i the ith row of
X/X̄ representing the original/complemented attribute vector
for node vi, and X(1) and X(2) are the two attribute views
with each row being an attribute vector of a node.

Even though the most common case of attribute missing in
HINs is node-type-specific, the attribute completion module is
also applied to other cases. This is because complemented and
original attributes can be combined in X(1). When the original
attributes are given in the dataset, we use them in Formula 5,
while when the attributes are missing, we use complemented
attribute instead.

D. Heterogeneous Graph Neural Network

HGCA learns transformed representations of nodes by a
multi-layer perceptron (MLP) and then uses the heterogeneous

Intra-Group

Aggregation

Inter-Group  

Aggregation

Semantic 

Aggregation
Target 

Node

 




 

Meta-paths

Fig. 5. The architecture of the HGNN module, including intra-group aggre-
gation, inter-group aggregation within a meta-path, and semantic aggregation
between meta-paths. Two kinds of meta-paths (four meta-path instances in
total) are used here for simplicity.

graph neural network (HGNN) to learn the final node repre-
sentations. It computes

hi
′ = σ (MLP (xi)) (7)

where xi is the attribute vector of node vi, h
′

i the transformed
representation of vi, and σ(·) an activation function.

The HGNN module adopts an attention-based [51] hier-
archical aggregation process, which consists of intra-group
aggregation, inter-group aggregation within a meta-path, and
semantic aggregation between meta-paths (Fig. 5). In the first
step of intra-group aggregation, the context nodes within a
meta-path instance contribute differently to the target node,
so it is reasonable to divide them into different groups. For a
meta-path Mp : F1

R1−−→ F2
R2−−→ ...

Rl−→ Fl+1, HGCA groups
neighbor nodes of node vi into

S
Mp−Fl

i = {vj |dist(i, j) = l,1(vi, vj ,Mp) = 1} (8)

where dist(i, j) is the distance between node vi and vj ,
1(vi, vj ,Mp) an indicator that equals to 1 iff node vi and
vj are in the same meta-path instance of Mp. For simplicity,
we denote SMp−Fl

i as SFl
i . The intra-group aggregation can

then be formulated as

αFl
ij =

exp
(
σ
(

aTMp
· [QFl(hi

′)||KFl(hj
′)]
))

∑
vk∈S

Fl
i

exp
(
σ
(

aTMp
· [QFl(hi

′)||KFl(hk
′)]
)) (9)

hFl
i = hi

′ +
∑

vj∈S
Fl
i

αFl
ij · V Fl(hj

′) (10)

where QFl ,KFl , V Fl are linear functions with parameters
specific to SFl , aMp

is a learnable parameter specific to meta-
path Mp, σ(·) is an activation function, and || denotes a
concatenation operation.

The second step is inter-group aggregation within a meta-
path. HGCA uses the attention mechanism to distinguish
different groups within a meta-path and performs weighted
aggregation to derive the embedding under a meta-path as

wFl =
1

|V|
∑
vi∈V

(qMp )
T · tanh(WMp · hFl

i + bMp) (11)
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βFl =
exp(wFl)∑

k

exp(wFk)
(12)

HMp =
∑
k

βFk ·HFk (13)

where WMp and bMp are the weight matrix and bias vector
specific to meta-path Mp, respectively. qMp is also a learnable
attention vector specific to Mp.

The last step is semantic aggregation between meta-paths.
Similar to inter-group aggregation, HGCA uses a semantic
attention mechanism to distinguish the semantic importance
of different meta-paths [6]. Given P meta-paths, the final
representation of node vi can be express as

Hfinal =
∑P

p=1
γMp ·HMp (14)

where γMp is the weight of meta-path Mp, which can be
computed similarly as in Formula 12.

E. Contrastive Learning

HGCA uses a parameter-sharing network (HGNN mod-
ule in Section V-D) to learn node embeddings in the
two attributes views X(1) and X(2) in Section V-C, de-
noted as H(1) = HGNN(X(1), A,M; θ) and H(2) =
HGNN(X(2), A,M; θ), where θ are shared parameters. Con-
trastive objectives have been used to train GNN [30], [31],
[38], which enforce two embeddings of a node in different
views to agree with each other and to be distinguishable from
the embeddings of other nodes [52]. Since using a contrastive
objective is to maximize the agreement of node embeddings
in two views, it can make the complemented attributes and
the real attributes play the same role in constructing the final
embeddings.

Since meta-paths provide a strong prior that two nodes
connected by a valid meta-path instance are closely related,
a meta-path-based modified contrastive objective is used in
HGCA. In particular, HGCA maximizes the similarity not only
between two representations of the same node but also the
representations of the two nodes connected by a meta-path
instance. That is because two nodes connected by a meta-path
instance have a strong semantic relationship and can be seen
as a positive sample pair. As a result, node representations are
distinguishable and semantic information in HINs is preserved
at the same time. Given P meta-paths and corresponding
meta-path-based adjacency matrices, HGCA first computes a
contrastive coefficient of the node pairs as

Ω =
∑P

p=1
ηp ·AMp (15)

where ηp is a hyper-parameter to indicate the importance
of meta-path Mp in the contrastive objective function. For
embeddings in each view, the contrastive loss function can be
formulated as

ψ(H,H ′) =
1

|V|
∑
vi∈V

− log
e⟨hi,h

′
i⟩ + Pos(H,H ′; vi)

e⟨hi,h′
i⟩ +Neg(H,H ′; vi)

(16)

Pos(H,H ′; vi) =
∑
k ̸=i

ωi,k · e⟨hi,hk⟩+
∑
j ̸=i

ωi,j · e⟨hi,h
′
j⟩ (17)

Neg(H,H ′; vi)=
∑
k ̸=i

(1−ωi,k)·e⟨hi,hk⟩+
∑
j ̸=i

(1−ωi,j)·e⟨hi,h
′
j⟩

(18)

⟨hi, hj⟩ = cos(hi, hj)/τ (19)

where cos(·) is the cosine function, τ a temperature parameter,
and ωi,j a contrastive coefficient in Ω. The overall loss
function of embeddings of two views are then defined as

Ĥ(1), Ĥ(2) = f1(H
(1)), f1(H

(2)) (20)

L1 = −ψ(Ĥ
(1), Ĥ(2)) + ψ(Ĥ(2), Ĥ(1))

2
(21)

where f1(·) is a MLP with one hidden layer and non-linearity
activation. Furthermore, HGCA adopts a contrastive loss be-
tween the final embeddings and the original attributes so that
the node embeddings can contain more valuable information

H̃(1), H̃(2) = f2(H
(1)), f2(H

(2)) (22)

X̃ = f3(X) (23)

L2 = −ψ(H̃
(1), X̃) + ψ(H̃(2), X̃)

2
(24)

where f2(·), f3(·) are two MLPs with hidden layers and
non-linearity activation. Note that in L2, Ω is a zero-matrix
because HGCA only computes a contrastive loss between the
embedding of a node and its attribute vector. The final loss
function is defined as

Lfinal = λL1 + (1− λ)L2 (25)

where λ is a hyper-parameter for adjusting the balance be-
tween L1 and L2.

VI. EXPERIMENTS

We first discuss the experiment setup, including datasets,
baselines, and experimental settings. We then present the
comparison results on three tasks (node classification, node
clustering, and visualization). We discuss additional experi-
ments to demonstrate the generality of the new HGCA method
and consider a parameter analysis.

A. Experimental Setup

To analyze the effectiveness of HGCA, we performed exten-
sive experiments on three real-world HIN datasets (Table II).

1) DBLP1 [10]: We extracted a subset of DBLP containing
information of 4057 authors (A), 14328 papers (P), 8789
terms (T), and 20 venues (V). Authors were divided into
four research areas (Database, Data Mining, Artificial

1https://dblp.uni-trier.de
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Intelligence, and Information Retrieval). For this dataset,
paper nodes have attributes derived from their titles and
other nodes have no attribute.

2) ACM2 [6]: We extracted a subset of ACM for 4019
papers (P), 7167 authors (A), and 60 subjects (S). The
papers were labeled according to their fields (Database,
Wireless Communication, and Data Mining). For the
ACM dataset, paper nodes have attributes derived from
their abstract, and other nodes have no attribute.

3) Yelp3 [53]: We extracted a subset from Yelp Open
Dataset containing 2614 businesses (B), 1286 users (U),
4 services (S), and 9 rating levels (L). The business
nodes were labeled by their categories. For this dataset,
business nodes have attributes composed of keywords
about their description and other nodes have no attribute.

We comprehensively compared HGCA with eight state-
of-the-art embedding methods, which can be grouped into
four homogeneous and four heterogeneous methods as well
as divided into three semi-supervised and five unsupervised
methods.

1) metapath2vec (mp2vec) [54]: An unsupervised hetero-
geneous embedding method. It uses meta-path-based
random walk and skip-gram to generate embeddings.
We tested all meta-paths separately and report the best
result.

2) GAT [14]: A semi-supervised homogeneous embedding
method. It learns node embeddings using the attention
mechanism and local neighborhood structures. We tested
all meta-paths separately and report here the best results.

3) GAE [55]: An unsupervised homogeneous embedding
method. It uses a graph convolution encoder to learn
latent representations and uses a decoder to reconstruct
network topology. We tested on all meta-paths separately
and report here the best results.

4) DGI [56]: An unsupervised homogeneous embedding
method. It maximizes the mutual information (MI) be-
tween the graph-level summary representation and the
local patches to learn embeddings. We tested on all
meta-paths separately and report here the best results.

5) GMI [57]: An unsupervised homogeneous embedding
method. It learns node embeddings by directly maxi-
mizing the MI between the input and output of a graph
neural encoder in terms of node attributes and topologi-
cal structure. We tested on all meta-paths separately and
report here the best results.

6) HAN [6]: A semi-supervised heterogeneous embedding
method. It uses node-level attention to learn node em-
beddings in each meta-path-based homogeneous graph
and uses semantic attention to aggregate them to form
final embeddings.

7) MAGNN [8]: A semi-supervised heterogeneous em-
bedding method. It learns embeddings through three
steps (Node Content Transformation, Intra-meta-path
Aggregation, Inter-meta-path Aggregation), and designs

2http://dl.acm.org/
3https://www.yelp.com/dataset

TABLE II
STATISTICS OF DATASETS

Dataset Nodes Edges hasAttributes Meta-Paths

DBLP

Author(A):4057
Paper(P):14328
Term(T):8789
Venue(V):20

A-P:19645
P-T:85810
P-V:14328

Paper
APA
APTPA
APVPA

ACM
Paper(P):4019
Author(A):7167
Subject(S):60

P-P:9615
P-A:13407
P-S:4019

Paper PAP
PSP

Yelp

Business(B):2614
User(U):1286
Service(S):4
Level(L):9

B-U:30838
B-S:2614
B-L:2614

Business
BUB
BSB
BLB

different intra-meta-path encoders to further improve
performance.

8) DMGI [11]: An unsupervised heterogeneous embed-
ding method. It maximizes the MI between the graph-
level summary representation and the local patches
in each meta-path-based homogeneous graph to learn
corresponding embeddings of each graph and uses the
consensus regularization to minimize the disagreements
among them to form final embeddings.

For all baseline methods that require attributes, we used the
average imputation strategy to complete the missing attributes
in the above three datasets. The embedding dimensions of
all methods evaluated were set to 64 for a fair comparison.
For semi-supervised methods, the labeled nodes were divided
into training, validation, and testing sets in the ratio of
10%, 10%, and 80%, respectively. For the proposed HGCA
method, we set temperature parameter τ = 0.5 and loss
coefficient λ = 0.5. For the contrastive coefficients in L2,
we set ηAPA, ηAPTPA, ηAPV PA = 0.1, 0.1, 0.8 in DBLP,
ηPAP , ηPSP = 0.4, 0.6 in ACM, and ηBUB , ηBSB , ηBLB =
0.2, 0.6, 0.2 in Yelp. Unless specified, we used H(1) as final
embeddings of HGCA for evaluation.

B. Node Classification

Node classification has been extensively used to evaluate
the quality of learned node embeddings. After learning the
node embeddings, we used a linear support vector machine
(SVM) [58] classifier to classify nodes. To ensure a fair
comparison, we only classified the nodes in the test set because
labels in the training and validation sets were already used in
semi-supervised methods. We trained the SVM with different
training ratios from 10% to 80%. We report here the results
of average Macro-F1 and Micro-F1 over 10 runs.

The results are shown in Table III where the best results
are in bold fonts and the second-best results are underlined.
The newly developed unsupervised HGCA method outper-
formed the baseline methods compared, including three semi-
supervised methods (GAT, HAN, MAGNN), in most cases
considered. Compared with the best results from the baseline
methods (i.e., DMGI on ACM and MAGNN on Yelp &
DBLP), HGCA improved the best results by 0.33%-4.10% and
reduces errors by 4.11%-32.03%. The improvement is primar-
ily due to HGCA’s capacity of attribute completion and unsu-
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TABLE III
PERFORMANCE EVALUATION OF NODE CLASSIFICATION ON THREE DATASETS

Datasets Metrics Training Semi-supervised Unsupervised

GAT HAN MAGNN metapath2vec DGI DMGI HGCA

ACM

Macro-F1

10% 0.8951 0.8923 0.8882 0.6947 0.8955 0.9161 0.9210
20% 0.8977 0.9038 0.8941 0.7011 0.9006 0.9222 0.9254
40% 0.8992 0.9099 0.8983 0.7043 0.9019 0.9251 0.9300
60% 0.9007 0.9130 0.9018 0.7073 0.9034 0.9279 0.9328
80% 0.8976 0.9141 0.9011 0.7113 0.9020 0.9257 0.9321

Micro-F1

10% 0.8942 0.8913 0.8881 0.7381 0.8954 0.9149 0.9201
20% 0.8967 0.9026 0.8936 0.7444 0.8992 0.9207 0.9245
40% 0.8983 0.9089 0.8981 0.7480 0.9004 0.9237 0.9292
60% 0.8998 0.9119 0.9011 0.7522 0.9017 0.9261 0.9318
80% 0.8970 0.9130 0.9006 0.7557 0.9000 0.9238 0.9303

Yelp

Macro-F1

10% 0.5403 0.7385 0.8686 0.5396 0.5404 0.7242 0.9096
20% 0.5407 0.7724 0.8786 0.5396 0.5407 0.7506 0.9157
40% 0.5407 0.7848 0.8985 0.5400 0.5407 0.7649 0.9284
60% 0.5400 0.7858 0.9058 0.5396 0.5400 0.7709 0.9303
80% 0.5382 0.7893 0.9057 0.5370 0.5382 0.7793 0.9359

Micro-F1

10% 0.7301 0.7598 0.8668 0.7286 0.7303 0.7852 0.9029
20% 0.7306 0.7885 0.8784 0.7289 0.7306 0.7988 0.9087
40% 0.7314 0.7992 0.8986 0.7295 0.7314 0.8068 0.9219
60% 0.7297 0.7997 0.9064 0.7297 0.7297 0.8100 0.9242
80% 0.7282 0.8041 0.9062 0.7278 0.7282 0.8155 0.9303

DBLP

Macro-F1

10% 0.8190 0.8923 0.9252 0.7482 0.6892 0.9188 0.9079
20% 0.8220 0.9038 0.9270 0.7666 0.7711 0.9224 0.9228
40% 0.8217 0.9100 0.9269 0.8214 0.8109 0.9250 0.9302
60% 0.8212 0.9130 0.9275 0.8425 0.8217 0.9260 0.9325
80% 0.8202 0.9141 0.9301 0.8420 0.8268 0.9288 0.9382

Micro-F1

10% 0.8323 0.8913 0.9308 0.7586 0.7610 0.9251 0.9191
20% 0.8351 0.9026 0.9325 0.7761 0.8067 0.9287 0.9310
40% 0.8346 0.9089 0.9325 0.8289 0.8313 0.9295 0.9369
60% 0.8342 0.9119 0.9334 0.8502 0.8382 0.9315 0.9380
80% 0.8332 0.9130 0.9357 0.8495 0.8406 0.9331 0.9434

TABLE IV
PERFORMANCE EVALUATION OF NODE CLUSTERING ON THREE DATASETS

Dataset Metrics mp2vec GAE DGI GMI DMGI HGCA

ACM NMI 0.3765 0.4059 0.6153 0.3763 0.6066 0.6816
ARI 0.3026 0.3319 0.6370 0.3022 0.5827 0.6793

Yelp NMI 0.3890 0.3919 0.3942 0.3942 0.3684 0.3943
ARI 0.4249 0.4257 0.4262 0.4260 0.3244 0.4278

DBLP NMI 0.5413 0.5257 0.6615 0.4101 0.7029 0.6816
ARI 0.5756 0.4986 0.7050 0.4056 0.7086 0.7118

pervised contrastive representation learning and the effects of
integrating the fine-grained attribute completion process and
the representation learning process in a unified framework. In
addition, metapath2vec, GAT, and DGI performed worse than
the other methods (Table III). Metapath2vec only used network
topology to learn node representation while ignored attributes.
Its poor performance revealed the importance of attribute
information. GAT and DGI only used one meta-path-based
homogeneous adjacent matrix as input, which only contained
one type of semantic relationship. The poor performance
of GAT and DGI showed the importance of heterogeneous
semantic relations in HIN analysis. Our new HGCA method
not only considered a variety of semantic relations between
nodes but also accurately completed the missing attributes,
which improved performance when combined.

We also compared the performance of H(1) and H(2)

of HGCA (see Fig. 3) on the node classification task. For
simplicity, we computed the average Macro-F1 and Micro-
F1 with different training ratios and reported the difference
between the two. Compared to H(1), the performance of
H(2) drops to 0.58% and 0.61% for Macro-F1 and Micro-F1,
respectively, on ACM dataset, and it decreases to 0.66% and
2.04% on Yelp dataset. This may be because H(2) is generated
based on the attribute view X(2), which consists entirely of
complemented attributes, whereas H(1) uses attribute view
X(1), which contains some existing real attributes. Inevitably,
attribute completion cannot fully restore the real attributes so
that H(2) is slightly worse than H(1). Despite this fact, the
performances of both H(1) and H(2) are better than all base-
lines. Generally, the performance difference between H(1) and
H(2) is very small, showing the success of attribute completion
in HGCA. Moreover, H(2) has performance improvements
of 0.96% and 0.25% in terms of Macro-F1 and Micro-F1
respectively on the DBLP dataset, which further demonstrates
that complemented attributes have great contributions for good
embeddings.

C. Node Clustering

We considered the problem of node clustering in our exper-
iments. We chose five unsupervised methods (metapath2vec,
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(a) HAN (b) DMGI (c) MAGNN (d) HGCA

Fig. 6. Visualization of embeddings of business nodes in Yelp. Different colors correspond to different business categories. Among the four methods, HAN
and MAGNN are semi-supervised methods, DMGI and our HGCA are unsupervised methods.

(a) ACM (b) Yelp (c) DBLP

Fig. 7. The result(%) of node classification under different attribute inputs. The basic model is MAGNN. In the above histograms, the blue and yellow
bars correspond to the result of MAGNN with complemented attributes from average imputation (MAGNN-avg) and that from HGCA (MAGNN-ac),
correspondingly. We report Macro-F1 (on the top) and Micro-F1 (on the bottom) on three datasets.

GAE, DGI, GMI, and DMGI) as the baselines for compar-
ison. After learning node embeddings, we ran the K-Means
algorithm 10 times. We report here the average normalized
mutual information (NMI) and adjusted rand index (ARI)
as evaluation metrics. HGCA was the best performer on
five of the six cases considered (Table IV). DGI achieved a
competitive performance, being the second-best in four of the
six cases. This is probably in part because we tested all pre-
defined meta-paths separately and reported the best results for
DGI. The proposed HGCA used all pre-defined meta-paths
simultaneously and automatically learned weights for different
meta-paths, which is an advantage over DGI.

D. Visualization

Different from analyzing the impact of missing attributes
on semi-supervised and unsupervised representation learning
in Section II, we intuitively compared the performance of
different methods to visually examine the performance of
HGCA. We selected two semi-supervised methods and one
unsupervised method for comparison. We utilized t-SNE [59]

to project the embeddings of business nodes in Yelp into a 2-
dimensional space, where nodes with different colors belong to
different classes (Fig. 6). As shown, the results of HGCA have
clearer boundaries and denser cluster structures than the other
methods compared, demonstrating the superior performance of
HGCA. In contrast, HAN and DMGI performed poorly where
nodes of different classes were mixed and overlapped. These
two methods transformed HINs into multi-relational networks
that contained only nodes of target types and ignored other
nodes and attributes. HGCA not only used all nodes in HINs
for learning embeddings but also accurately completed missing
attributes to make unsupervised learning effective.

E. The Generality of HGCA

Accurate attributes are the key to good performance. We
designed an experiment to assess whether the attributes com-
plemented by HGCA can be used as a beneficial input to
other HIN models. We employed attributes complemented
by HGCA as the input to a HGNN model i.e., MAGNN,
which was denoted as MAGNN-ac. For comparison, we also
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(a) The 298-th paper node (Wireless Communica-
tion)

(b) The 410-th paper node (Data Mining)

Fig. 8. Visualization of attributes of papers in the form of a word cloud. Take the ACM network as an example, we randomly select two paper nodes with
different fields (labels) and use the top 10 words in attributes to generate the word clouds. The title of each sub-figure is the paper’s field and paper ID. The
bigger the font of the word, the more important its semantics in complemented attributes.
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(c) DBLP

Fig. 9. Analysis of the parameter sensitivity of λ. We report the average result of the node classification task under different training ratios on three datasets.

employed attributes complemented by average imputation as
the input to MAGNN, which was denoted as MAGNN-avg.
We compared the classification results of embedding generated
by the two variants of MAGNN. MAGNN-ac performed
significantly better than MAGNN-avg in all datasets tested
(Fig. 7). This is most likely because the average imputation
strategy introduced errors and noises to the complemented
attributes, making MAGNN perform poorly. The new HGCA
method estimated missing attributes accurately. Importantly,
the attributes complemented by HGCA have a good generality
and can be used as input to improve the performance of other
HIN models, which demonstrates the value of this work for
HIN representation learning.

F. Illustration of complemented attributes

We selected two paper nodes in ACM as examples to
visualize their attributes in the form of a word cloud (Fig. 8).
In this work, we aimed to classify papers according to their
three fields of Wireless Communication, Data Mining, and
Database. The paper nodes in the ACM dataset have attributes
in the form of bag-of-words vectors derived from their ab-
stracts. Therefore, each dimension of a paper node’s attribute
vector will correspond to a word in the abstract. We restored
the semantics of every dimension and generated a word cloud
based on the complemented attribute values by our HGCA. As
shown in Figure 8, the most important words correctly reflect
the paper’s field, demonstrating the effectiveness of attribute
complementation of our HGCA model.

G. Parameter Analysis

We investigated how model parameters affected HGCA
performance. The most important hyperparameters of HGCA
are the balancing parameter of loss λ in Lfinal and the weight
of meta-paths η in L1. Here we report the average result of
node classification with different training ratios.

We first analyzed the balancing parameter λ in all three
datasets, by performing a grid search with a step size of 0.1
(e.g., varying in {0.2, 0.3, ..., 0.8}). HGCA achieved the best
performance when λ = 0.5 on ACM and Yelp and λ = 0.6 on
DBLP. Its performance degraded when λ was large or small
(Fig. 9). This observation indicates that the contrastive loss
between the embeddings of the two views and the contrastive
loss between the embeddings and attributes are both important.

We also analyzed the weight of meta-paths η in the ACM
dataset where two commonly used meta-paths are “paper-
author-paper” (PAP) and “paper-subject-paper” (PSP). We
performed a grid search of η from 0.0 to 1.0 with a step size
of 0.2. The larger the value of η, the greater the contribution of
the corresponding meta-path in constructing positive samples.
HGCA achieved good performance when 0.2 ≤ ηPSP ≤ 0.8
and it was not sensitive to ηPAP (Fig. 10). This result indicates
that a larger ηPSP can help select more effective positive
sample pairs to improve model performance. It is reasonable
that two papers sharing the same subject are more likely to
be in the same field so that PSP is more important than
PAP. Therefore, well-designed meta-paths can improve the
performance of HGCA, which may very well be true for all
HIN models based on meta-path priors.
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Fig. 10. Analysis of the parameter sensitivity of η on ACM dataset. Shown
are the average accuracies of node classification under different training ratios.

VII. CONCLUSION

We studied and confirmed that the problem of missing
attributes can cause severe performance degradation for un-
supervised representation learning methods on heterogeneous
information networks (HINs). To fill the gap between attribute-
missing and unsupervised representation learning on HINs, we
developed an unsupervised heterogeneous graph contrastive
learning method to integrate missing-attribute completion and
node representation learning into an end-to-end architecture.
The proposed HGCA method learned joint embeddings via
a collaborative random walk to mine the semantic relations
among nodes and attributes to achieve an accurate and fine-
grained attribute completion. HGCA used a meta-path-based
heterogeneous graph neural network (HGNN) to learn node
representations. The attribute completion and HGNN mod-
ules were integrated by a contrastive learning strategy. This
learning strategy made the complemented attributes reliable
and beneficial to the HGNN module. It also made node
representations discriminative for downstream tasks. Extensive
experiments on three large real-world datasets demonstrated
the superiority of the new HGCA approach over state-of-
the-art methods. Experimental results also showed that the
complemented attributes by the new model can generally
benefit other HIN models, showing the generality and rigor
of the new method for HIN representation learning.
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