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ABSTRACT
People counting in extremely dense crowds is an important
step for video surveillance and anomaly warning. The prob-
lem becomes especially more challenging due to the lack
of training samples, severe occlusions, cluttered scenes and
variation of perspective. Existing methods either resort to
auxiliary human and face detectors or surrogate by estimat-
ing the density of crowds. Most of them rely on hand-crafted
features, such as SIFT, HOG etc, and thus are prone to fail
when density grows or the training sample is scarce. In this
paper we propose an end-to-end deep convolutional neural
networks (CNN) regression model for counting people of im-
ages in extremely dense crowds. Our method has following
characteristics. Firstly, it is a deep model built on CNN
to automatically learn effective features for counting. Be-
sides, to weaken influence of background like buildings and
trees, we purposely enrich the training data with expand-
ed negative samples whose ground truth counting is set as
zero. With these negative samples, the robustness can be
enhanced. Extensive experimental results show that our
method achieves superior performance than the state-of-the-
arts in term of the mean and variance of absolute difference.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis
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People counting; convolutional neural networks(CNN); crowd
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1. INTRODUCTION
Crowd analysis, e.g., estimating the number of people in

the crowd, is becoming one of the most important and chal-
lenging problems in the field of multimedia and computer
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Figure 1: Extremely dense crowd samples.

vision. The recurrent tragic stampedes at New Year’s Eve or
pilgrimages and terrorist attacks at the marathon or squares
have shown great significance of crowd analysis on abnor-
mal states alarm. Hence we urgently require powerful and
sophisticated approaches for visual analysis of dense crowds.
Besides, crowd analysis is useful in arrangement, modifica-
tion and expansion of traffic facilities (tunnels, overpasses
and traffic lights), as well. It can also be used to detec-
t, track and manage crowd events like marathons, protests,
and rallies that all may gather hundreds of people. A lot
of works on crowd analysis are proposed including crowd
detection [1], crowd segmentation [7], and collective motion
learning for anomaly detection [11].

In recent years, great efforts have been made for counting
people in natural scenes [2, 3], which can be divided into two
categories: direct and indirect estimation. Direct methods
are mostly based on human detection achieved by face or
parts filters of people [2]. Indirect ones always obtain the
number of people by estimating crowd density ranges. The
general strategy is to learn a regression model between densi-
ty and low level features belonging to corresponding region.
Although the traditional methods have achieved much suc-
cess, most of them verifies on low or medium density crowd-
s. However, in particular scenes like concerts, rallies and
protests, thousands of people may exist and each person may
merely be represented by no more than 10 of pixels in pho-
to records. These situation will certainly make traditional
methods failed. With increase of density, decrease of number
of pixels each person occupies or existence of severe occlusion
among people, crowd counting becomes more difficult and
most of existing techniques may degrade or fail. Moreover,
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Figure 2: Deep model architecture. We feed this deep network with the patches of crowd images and negative
sample images, and its output is the estimated people counts in the input patch.

traditional methods rely on hand-crafted features, such as
SIFT and HOG, which are turned to be sub-optimal for this
task. Since cluttered scene, perspective distortion, or even
environment factors like illumination can provide mislead-
ing information and lead traditional features based human
detection methods, e.g., Deformable Part Models (DPMs),
invalid and prevent people counting from making success.
Recently, deep models especially convolutional neural net-

works have been widely applied to many computer vision
problems like image classification, object detection and face
recognition [9]. Girshick et al. [4] points out that features
extracted from convolutional neural networks [8] trained for
classification are sometimes more effective than hand-crafted
features and can be reusable to broader tasks. Effectiveness
of leveraging convolutional neural networks in people count-
ing task has not been fully explored.
In this paper we develop a deep regression model for count-

ing people in extremely dense crowd images using deep con-
volutional neural networks (CNN). Firstly, we adopt CNN as
our basic framework to learn efficient features for counting
and thus develop an end-to-end system. Secondly, we feed
the CNN with expanded negative samples to reduce false
alarms caused by specific factors caused by dense crowd-
s like cluttered scenes. We collect a few images without
people and set their regression score as 0, which makes our
method more robust.

2. METHOD
We firstly describe the data collection and preparation in

Section 2.1. Then we detail the adopted deep model in Sec-
tion 2.2. Finally we present how we obtain negative samples
in Section 2.3.

2.1 Data Collection and Preparation
Due to the requirement of large number of training data

announced by CNN, we collect a set of images from publicly
available websites, such as Google and Flickr, and mark peo-
ple using a manually designed dotting tool. This set consists
of 51 images each of which has 731 people on average. The
counts range from 95 to 3714 as shown in Figure 3. These
images cover various events including stadiums, concerts,
rallies and Color Run etc.
Perspective effects can induce large variation of people,

which means some people may merely occupy a few pixels
whereas others may take a large regions separately. Con-
sequently when cropping images with larger image size and
lower density of people, operation with fixed and uniform
size, which consisted with that employed on dense crowd-
s, may result in a lot of samples with partial face or body
across the full patches and hence loss representation power

of cropped patches. Besides, we prefer to pay more attention
on counting on extremely dense crowds in which bodies of
most people may not been seen literally. Thus partial sam-
ples cropped by uniform size is definitely profitable, they
may insufficient and make little effects on learning model
for regression. To alleviate influence of partially cropping,
we manually pick out images which may need multi-scale
crop size and operate crop step with other size. Most of
these pairs are cropped with fixed top left points and side
length as 672 and 896, respectively. Totally we get a number
of 5,705 training samples.

Firstly, we warp the cropped gray-scale patches with 227×
227 pixels. Secondly we randomly crop 224 × 224 patches
at four corners and the center over input patches and hori-
zontally flipped for data augmentation. Finally the warped
augmented mean-subtracted patches with a total number of
6,414 are fed to CNN and a 1-dimensional feature vector is
inferred by forward propagating.

2.2 Convolutional Neural Network for Regres-
sion

Considering the excellent performance of CNN performs
in most of computer vision tasks, we employ a CNN archi-
tecture as our base framework. This architecture consists
of five convolutional, some of which are followed by pool-
ing layers, and three fully connected layers. A schematic
diagram of this architecture is presented in Fig. 2.

Convolutional layer. It convolves the input images with
linear sliding filters to generate response maps. If Xi is the
feature map of input or output of ith layer, this convolutional
operation can be denoted as

Xi = Wi ⊗ [Xi−1, 1]
T

where Wi = [Wi1,Wi2, ...,Wik,bi] indicates filters’ pa-
rameters of the ith layer, ⊗ indicates the convolution op-
eration and bi indicates the bias.

Pooling layer. Similar to Bag-of-Words (BoW) [10] and
spatial pyramid [5] operated behind extracted encoded SIFT
vectors, the deep convolutional features obtained by con-
volving can be pooled in a analogous way. Pooling layer
down-samples the convolutional features non-linearly in a
pattern of maximum or average over sliding-window sub-
regions. It can significantly reduce the number of network
parameters;

Fully-connected layer. It can be computed as

yim = WimX(i−1) + bm

where Wim denotes the mth filter of the ith layer. This
layer requires fixed number of inputs and outputs to convert
response maps as close to the ground truth;
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Figure 3: Statistics and samples of the collected
dataset. The statistics information is shown in (a).
X-axis and y-axis denote the image id and the num-
ber of annotated person in the corresponding image,
respectively. (b) and (c) demonstrate the images
containing the least and the most people.

Neuron layer. It applies nonlinear activations, such as
hyperbolic tangent function or rectified linear unit, between
a neuron’s output and the input of next layer.
Loss layer. For regression problem, the loss function

is defined as the sum of squares of differences between the
ground truth and prediction,

LOSS =
1

2N

N∑
j=1

(
pj − gj

)2

,

where pj and gj are the predicted and ground truth numbers
of people in patch j, respectively.
It has been proved that network trained for image clas-

sification [8] can also be effective on other visual comput-
ing tasks. Thus, we replace the last fully-connected layer
consisted of 4096 items with that consisted of 1 item that
means the predicted number of people. Then we use the
pre-trained parameters of five convolutional layers and two
fully-connected layers and fine-tune the model by the follow-
ing collected crowd images.

2.3 Negative Samples
Our framework is an end-to-end system which automati-

cally obtains the high responses around the crowds instead
of resorting to auxiliary human or face detectors. Since we
don’t employ any human appearance or localization relevant
information, some specific regions without person would al-
so get high responses, such as tall lush trees, buildings with
plenty of windows, decorative patterns etc. These high re-
sponses cause a lot of false alarms and seriously affect the
performance. The main reason may be the similar appear-
ance between objects and these crowds.
Therefore we expand our training data by adding a num-

ber of samples with zero label containing the above men-
tioned factors. We add 709 negative samples, which do not
contain any person, to the training set, including lush trees,
buildings and some natural scene images.
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Figure 4: The impact of negative samples on perfor-
mance. X-axis indicates image IDs rearranged from
large AD to small. By feeding the deep model with
negative samples, the mean value of AD can carry
out a significant decrease.

Table 1: Quantitative Comparison on UCFCC.
Methods AD NAD

Fourier[6] 13.8±21.3 96.4±200.4
F+confidence[6] 11.0±19.7 58.7±74.9
Fc+Head[6] 11.1±19.3 63.3±84.0
FHc+SIFT[6] 10.2±18.9 53.3±69.5

traditional CNN 13.9±19.9 74.1±151.4
Our method 8.5±15.0 38.9±63.1

3. EXPERIMENTS
We use standard evaluation criteria, mean and deviation

of Absolute Difference (AD) and these of Normalized Abso-
lute Difference (NAD), to quantify the performance. NAD
can be obtained by normalizing AD with the ground truth
count for each patch or image. For comparison, we eval-
uate the performance of our method on one public people
counting dataset UCFCC [6]. It consists of 50 images with a
total number of 61,396 people with and count of each image
ranges among 94 and 4,543. The number of average peo-
ple per image could achieve 1,306 which surpass the existing
crowd datasets.

In this paper we develop a deep regression model for count-
ing people in extremely dense crowd images using deep mod-
el. To verify the influence of negative samples, we compare
the performance with and without negative samples. As
shown in Figure 4, by feeding CNN with negative samples,
it is obvious that robustness is significantly improved with
almost 50% decrease on mean value of AD. Besides, we also
show mean and deviation of AD and NAD generated by C-
NN and our method in Table 1, and it also achieves almost
50% improvement on mean of AD and NAD by applying
expanded negative samples.

Extensive experimental results show that, compared with
the state-of-the-arts, our method achieves superior perfor-
mance both in terms of mean and variance of absolute dif-
ference. For comparison, we use methods of Haroon Idrees
[6] which obtain the-state-of-the-art on UCFCC dataset. We
report our quantitative results both in Table 1 and Figure
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Figure 5: Quantitative comparison on 6 patches of
UCFCC dataset. The numbers in black boxes are
the ground truth of people in the patches, while the
numbers in blue and red dashed boxes are the es-
timated numbers from Haroon et al. [6] and our
framework respectively. It is obvious that the re-
sults of our algorithm are closer to the ground truth.

5, which shows that our proposed method achieves superior
performances. The first four rows in Table 1 show the im-
provements of gradually integrating a set of different factors
including Fourier Analysis, Head detection and SIFT fea-
ture. Finally it gives best result with AD as 10.2 and NAD
as 53.3. The last two rows show excellent performance of our
deep model, with comprehensive large decrease of mean and
deviation of AD and NAD, a descend of 16.7% and 27.0% to
mean of AD and NAD, respectively. In Figure 5 we present
6 selected patches from UCFCC dataset and show improv-
ing results leading by our method. We display ground truth,
estimation made by [6] and estimation made by our method
in black, blue and red box, separately. Our method can
deal with not only scenes available to head detection (the
below row) but also the dotted ones lacking of human ap-
pearance (the upper one). Besides, we present AD and NAD
of patches in Figure 6, respectively. The mean AD and NAD
of patches per test image is shown with red diamond, devia-
tion with red var, and ground truth with blue dot. It can be
seen that although the ground truth increases, mean ADs
change in a small region and NADs are almost stable except
for ones in region 4 to 15 since less people exist in images.

4. CONCLUSION
In this paper we develop a deep regression model for count-

ing people in extremely dense crowd images. We adopt C-
NN as our basic framework to learn efficient features for
counting. By feeding the deep model with negative samples,
the robustness is significantly improved and false alarms
are remarkably suppressed. Extensive experimental results
show that, compared with the state-of-the-arts, our method
achieve superior performance in term of the mean and vari-
ance of absolute difference.
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Figure 6: Patch estimation performance on UCFCC
dataset. The x-axis shows the image IDs along with
ascending ground truth counts. The means and s-
tandard deviations are shown in red asterisk and
bar, while the ground truth counts in blue dot.
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