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Abstract

In the past few years, semi-supervised node classi-
fication in attributed network has been developed
rapidly. Inspired by the success of deep learn-
ing, researchers adopt the convolutional neural net-
work to develop the Graph Convolutional Networks
(GCN), and they have achieved surprising classifi-
cation accuracy by considering the topological in-
formation and employing the fully connected net-
work (FCN). However, the given network topol-
ogy may also induce a performance degradation if
it is directly employed in classification, because it
may possess high sparsity and certain noises. Be-
sides, the lack of learnable filters in GCN also lim-
its the performance. In this paper, we propose a
novel Topology Optimization based Graph Convo-
lutional Networks (TO-GCN) to fully utilize the
potential information by jointly refining the net-
work topology and learning the parameters of the
FCN. According to our derivations, TO-GCN is
more flexible than GCN, in which the filters are
fixed and only the classifier can be updated during
the learning process. Extensive experiments on real
attributed networks demonstrate the superiority of
the proposed TO-GCN against the state-of-the-art
approaches.

1 Introduction

Objects in real world, which is usually modeled by nodes in
typical graphs/networks, are likely to be connected in various
approaches. For example, people are connected through so-
cial network and online social networks. Computers are con-
nected via intranets and Internet. Proteins are connected by
the existence of electrostatic forces. To explore the character-
istics and mechanisms of these networks, network analysis is
introduced [Newman, 2003]. In network analysis, node clas-
sification, which is also named as network partition, commu-
nity detection and graph clustering, is one of the most widely
studied topic [Fortunato, 2010; Fortunato and Hric, 2016;
Tao et al., 2017].
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Figure 1: The difference between Graph Convolutional Networks
(GCN) and our proposed TO-GCN. Learnable variables are shown
with a background color. GCN takes the given network topology
A and node feature X as input and only learns the parameters of
FCN W with label Z. TO-GCN jointly learns the network topology
O (red line and disk) and the parameters of the FCN W to fully
explore the labels information Z.

Classical node classification is developed based on the uti-
lization of the network topology. Although they contribute
significantly in understanding the characteristics and mecha-
nisms of the networks, their performances are typically un-
satisfactory due to the sparsity properties of the networks and
the noises in the networks. To improve the performances, nu-
merous side information is adopted. Among them, label and
content information are the most commonly utilized [Tu et
al., 2016; Yang et al., 2013]. By effectively exploiting the
labels and network topology, label propagation [Zhu et al.,
2003] achieves a great performance boost. Many algorithms
are later proposed to utilize the pairwise constraint informa-
tion, which is another kind of supervised information in the
form of must-link and cannot-link [Lu and Peng, 2013]. By
exploring the correlations between node feature and network
topology structure, node classification task in attributed net-
works has achieved great success and performance improve-



ment [Wang er al., 2016].

Recently, many efforts have been made to resolve the task
of semi-supervised node classification in attributed networks,
which predicts the labels by exploiting the network topology,
node features and labels. Motivated by the success of deep
learning [Goodfellow et al., 2016], especially the convolu-
tional neural networks (CNNs) [Krizhevsky et al., 2012], re-
searchers extend CNNs to process the irregular graph data,
e.g., graphs and manifolds. Among these extensions, Graph
Convolutional Networks (GCN), which simplifies ChebNet
[Defferrard et al., 2016], has attracted a large amount of at-
tentions due to its simplicity and high performance [Kipf and
Welling, 2017]. As shown in Figure 1(A), GCN is equiv-
alent to smoothing the node features in the neighbourhoods
and process them with a fully connected network (FCN). The
success of GCN is yielded by the network topology, which is
shown in [Li et al., 2018], and the label information, which is
only employed to train the parameters in FCN.

Unfortunately, GCN has not fully exploited the potential
of the network topology and the flexibility of the FCN is also
limited. Specifically, the given network topology is not op-
timal due to certain sparsity and noises. Some nodes in one
class may not be close, while other nodes belonging to differ-
ent classes may be directly connected. These phenomenons
have not been taken into considerations by GCN. On the other
hand, the flexibility of GCN is limited compared to CNN.
Typically, CNN consists of two learnable components, convo-
lutional layers (including pooling layers) and fully connected
layers. The former one can be regarded as the feature extrac-
tor with learnable filters, while the latter one is equivalent to
a learnable classifier. On the contrary, the filters A in GCN
are fixed and only the classifier is learnable (Figure 1(A)).

To better utilize the network topology via refinement and
improve the flexibility of the network, we propose a novel
Topology Optimization based Graph Convolutional Networks
(TO-GCN). As shown in Figure 1(B), the given labels are uti-
lized to simultaneously and jointly learn the network topol-
ogy and the parameters of the FCN, which provides more
flexibility compared to GCN.

Specifically, with the given labels being the pairwise con-
straints (must-link and cannot-link), the network topology is
refined to satisfy the pairwise constraints and predict the un-
known labels according to the given labels. To measure the
consistencies between the learned network topology and pair-
wise constraints, constraint propagation is formulated as a
minimization of an objective function with the refined topol-
ogy being the parameters. This model is optimized with re-
spect to the refined topology and the parameters of FCN.
Analysis of the joint optimization algorithm indicates that the
learned topology is affected by both the given constraints and
classification results.

Our main contributions are summarized as follows:

e We analyze the impact of network topology to the per-
formance of semi-supervised node classification in at-
tributed networks and demonstrate that the label infor-
mation has not been fully explored in most of the exist-
ing methods.

e We propose a novel Topology Optimization based Graph

Convolutional Networks (TO-GCN), which jointly
learns the network topology and the parameters of the
FCN with respect to the given labels.

e We provide an analysis of the joint optimization algo-
rithm to demonstrate its superiority compared to the
straightforward separate optimization approach.

2 Backgrounds and Motivations

2.1 Notations and Definitions

Define an attributed network as G = (V,E,X) with
nodes/vertices V. = {vj,v9,...,un} and edges E =
{e1,€2,...,err}. The attributes of all the vertices are repre-
sented as an attribute matrix X € RY*F where the nt" row
of which, x,, € R'¥, corresponds to the attributes of ver-
tex v, in the form of a F'-dimensional vector. The network
topology is represented by an adjacency matrix A = [a;;] €
RN*N_ The elements in the adjacency matrix possess binary
value, i.e., a;; = 1, if an edge exists between the vertices
v; and vj, and vice versa. D = diag(d1,da, ..., dn), where
dn =3 ; Onj is the degree of vertex vy, is the degree matrix.

In general, semi-supervised node classification predicts the
labels Y € {0, 1}V > of the vertices in V/, given the network
G = (V, E, X) and some labelled nodes in set V in the form
of Z = [Z,.] € {0,1}V*C where C is the number of classes
and Z,. = 1if and only if the vertex v,, belongs to M class.

2.2 Label Propagation

The semi-supervised node classification originates from
graph-based semi-supervised learning, which makes full use
of the limited number of labels by exploring the graph struc-
ture. The philosophy behind them is the assumption that
nearby vertices on a graph tend to share the same label. Thus,
they can be formulated as minimizing the objective function

wij (yi — y;)?, (D

where w;; is the similarity between the vertices v; and v;.
Unfortunately, most of the graph-based semi-supervised
learning algorithms ignore either network topology or node
feature. When the node features are neglected, some methods
like LPA [Raghavan et al., 2007] only exploit the label propa-
gation on the network (topology information), i.e., w;; = a;;,
which is an element in the adjacency matrix. Other methods
propagate the labels in similarity graph, which is constructed
from the node features without taking the topological infor-
mation into consideration [Zhu et al., 2003]. In the similarity
graph, w;; = exp (||z; — x;|3/0?) is the similarity calcu-
lated between the vertices v; and v; with reference to their
features. The process of the label propagation in graph can
be seen as refining the graph structure with the given labels.

2.3 Graph Convolutional Neural Networks

Recently, semi-supervised node classification algorithms tend
to improve the performance by jointly considering the net-
work topology and node attributes (graph data) due to their
necessity. Inspired by the successful applications of deep
learning to the regular grid data (e.g. images and videos),
researchers consider to adopt the deep learning techniques



to process the irregular graph data (e.g. graphs or mani-
folds) [Defferrard et al., 2016; Duvenaud er al., 2015; Niepert
et al., 2016; Hamilton et al., 2017; Scarselli et al., 2009;
Xu et al., 2019]. To alleviate this difficulty, spectral ap-
proaches apply the convolution operation directly to the spec-
trum of the graph (i.e., the singular values of graph Laplacian)
by treating the node attributes as signals in graph according
to the spectral graph theory.

goxx = Ugg(AN)U", )
where U and A represent the singular vectors and singular
values of the graph Laplacian L = D~Y/2(D — A)D~'/2,
ie,L =UAUT, respectively.

Unfortunately, the high computational complexity of sin-
gular value decomposition (SVD) prevents the spectral ap-
proaches from being applied to large graphs. To overcome
this deficit, may simplifications have been proposed. Cheb-
Net [Defferrard et al., 2016] approximates the spectral fil-
ter with P*" order Chebyshev polynomials as gy * = =

Zp 0 0, Tp(L)x, where T}, and 6,, are the Chebyshev polyno-

mials and coefficients, respectively. GCN (Kipf and Welling
2017) further simplifies ChebNet as

goxx=0(I+D Y2AD /), A3)

by constraining the Chebyshev polynomials with 1¢ order
and the largest singular values with 2, where I denotes the
identity matrix. By denoting A = A+ I and D,,,, = Y ; Anj
and generalizing one input channel x and one spectral filters
6 to I input channels X and C spectral filters © € RF*C,
GCN becomes

H=o(D *AD % X0), @)

where o(.) is the nonlinear activation function, such as soft-
max or ReLU, as shown in Figure 1(A). According to the
experiments, stacking two GCNs, which is shown in Eq. (5),
will provide the best performance.

Z = f(X, A) = softmax (121 ReLU(AX@(O))@(U) , ()

where A = D2 AD~z. The parameters ©(°) and ©) can
be calculated by minimizing the cross-entropy errors of the

labeled nodes
-, X Veestz). ©

where V; denotes the set of labelled nodes. Recent litera-
ture [Li et al., 2018] indicates that the graph convolution op-
eration D=2 AD~2 X in GCN is equivalent to a Laplacian
smoothing operation applied to the local neighbourhood, i.e.,
the graph convolution operation is essentially averaging the
node attributes in a local neighbourhood with weight \/ﬁ,
where d; is the degree of node v;.

Graph attention network (GAT) [Veli¢kovié er al., 2018]
extends GCN by imposing the attention mechanism [Bah-
danau er al., 2015] to the neighbouring weight assignment
and formulates the weight between vertices v,, and vy, as

exp (c(z] ©,2]©))
ZkeN(j) exp (c(m{@, m]T@)) ’

Oij = @)

Dataset FCN GCN GCN-GT
Citeseer 57.1% 72.0% 100%
Cora 56.2% 81.3% 100%
PubMed 70.7% 79.2% 100%

Table 1: Classification results with different topologies.

where c(x,y) is the self-attention with a shared attentional
mechanism ¢ : R x R — R. As can be observed, GAT
is equivalent to estimating the edge weights according to the
attribute similarities between the connected nodes.

Mixture model networks (MoNet) [Monti et al., 2017] uni-
fies some convolutional operations on non-Euclidean struc-
tured data (graph or manifold) as mixture CNNs.

2.4 Motivation

After the review of the existing schemes, the main drawbacks
of these methods, label propagation (LP) and graph convolu-
tional networks (GCN), are summarized that three kinds of
information are not fully utilized by the existing approaches.

LP predicts the labels by combining either the network
topology or node features with the given labelled nodes. Ob-
viously, LP approaches have not fully explored all the avail-
able information, including the network topology, node fea-
tures and given labels.

GCN in Eq. (4), which is represented in Figure 1(A), can
be rewritten as

H=o(D *AD %) (XO) ), (8)
—_—
First Term  Second Term

where the first term is the given graph Laplacian without the
parameters, and the second term is the fully connected net-
work (FCN) which directly employs the node features as in-
puts. [Li et al., 2018] claims that the classification perfor-
mance is significantly improved compared to GCN without
the Laplacian smoothing term (first term). Therefore, the
given network topology (for Laplacian smoothing) plays a
very important roles in the classification task.

Based on the above observation in [Li er al., 2018], we
further obtain that “A clearer network (community) struc-
ture will improve the performance of semi-supervised node
classification”. The presence of community (modular/cluster)
structures, in which the nodes are densely connected within
the communities and seldomly connected across the commu-
nities, is a common property of networks. For better illus-
tration, we conduct experiments on three attributed networks,
Cora, Citeseer and PubMed, with the same attribute matrix
and labelled nodes yet three different network topologies.

e FCN only utilize the node features without the graph
convolution operation;

e GCN takes the given network topology A as input;

o GCN-GT employs the ground truth membership matrix
G = [gij] € {0,1}NV*N where g;; = 1 if and only if
the vertices v; and v; are in the same class.

It is obvious that the community structure of GCN-GT is

clearer than that of GCN, and the community structure of
GCN is clearer than that of FCN.



As can be observed in Table 1, the performance is im-
proved when the network structure becomes clear. This cer-
tainly reveals that a refined network topology will benefit
the classification performance. However, the network topol-
ogy is fixed in GCN, which limits the flexibility of the net-
work. Some previous work have shown that the network
structure can be improved with the labels [Zhu et al., 2003;
Lu and Peng, 2013]. However, the given label information
has not been properly integrated with the network topology
in GCN. Therefore, GCN has not fully utilized the given la-
bel information.

3 Topology Optimization based Graph
Convolutional Networks

The existing work reviewed in Section 2 motivates us to re-
fine the network topology. Although there exists previous
methods, which refine the network topology with the given
labels, these label information has not been fully exploited.
Therefore, in this paper, we consider to utilize the given la-
bels to simultaneously and jointly refine the network topol-
ogy and learn the parameters of the FCN. The flow chart of
our proposed method is shown in Figure 1(B). In this sec-
tion, our network topology refinement method is firstly in-
troduced. Then, the proposed Topology Optimization based
Graph Convolutional Networks (TO-GCN) is presented, fol-
lowed by the optimization algorithm. Finally, the analysis of
TO-GCN is given from the model and optimization perspec-
tives.

3.1 Network Topology Refinement

To refine the network topology with the given labels and
maintain the topology to be non-negative, the refinement is
modeled as a label propagation process. With the assump-
tion that the nearby vertices in a graph tend to share the same
label, Eq. (1) can be reformed to

1 s 1 T
min 5> 7 aigllys — ;3 = min STr(VTLY)

,]
5t Yn =2, VU, €V, (&)

where V; stands for the set of labelled vertices, z, €
{0,1}¥ and y,, € {0, 1}'*X are the ground-truth and pre-
dicted labels of the vertex v,,. The n** rows of Y and Z are
yl and 2T, respectively. L = D — A is the graph Lapla-
cian of network with the adjacency matrix A. By relaxing the
elements in Y to be in R™V*¥ | the constrained integer opti-
mization in Eq. (9) can be relaxed to

1 A
min 5Tr(YTLY) + §||Y ~Z||%. (10)

Its optimal Y* is also the optimal solution to the following
problem according to [Wang et al., 2012]

1 A
min 5Tr(LYYT) + 5||YYT - ZZTA.  an
By denoting Q = [Q;;] = ZZ7 € {0,1}V*N | Q,; equals to

1 (must-link constraint) if and only if the vertices v; and v;
belong to the same class based on the given labels Z. Since

the refinement is achieved with the given label information
instead of directly obtaining the node label Y, we let O =
[0;5] = YYT € RNVXN a5 the refined network topology and
rewritten Eq. (11) as

1 A
méniTr(LO)—i-gHO—QH%. (12)

The must-link constraints (the pairs of nodes belong to the
same class) are preserved during the transformation from Eq.
(10) to Eq. (11). However, the cannot-link constraints (the
pairs of nodes belong to different classes), which reduce the
similarity (edge weight) between the nodes belonging to dif-
ferent classes, are ignored during the transformation. There-
fore, Eq. (12) is revised to penalize the high similarities be-
tween the nodes from different classes as

o1 A «
min STr(LO) + 110 = Q% + 5 3 Ol — 2411
i\J

Let G = [Gi;] € {0,1}V*N | where G;; = 1 if and only
if the vertices v; and v; belong to different classes. Then,
the objective function of our network topology refinement
method becomes

1
win S Tr((L+aG)0) + M0 = QI (13)

where () and G are the pairwise constraint matrices and can
be obtained from the given label matrix Z. By minimizing
Eq. (13), the given topology A is refined to O with the help
of the given labels.

3.2 Topology Optimization based Graph
Convolutional Networks

To exploit the network topology refinement in GCN, a
straightforward approach, which is named P-GCN, is to sim-
ply perform the refinement in Eq. (13) at first, and then per-
form GCN on the refined network topology.

However, this approach is sub-optimal, because the
pre-processed refined topology only facilitates the semi-
supervised node classification by providing a high modular
network structure while ignoring its direct impact to the clas-
sification results. Detailed analysis is provided at the end of
this section.

Therefore, Topology Optimization based Graph Convolu-
tional Networks (TO-GCN) is proposed to jointly learn the
network topology and the parameters of a fully connected
network (FCN) as shown in Figure 1(B). Similar to GCN,
the cross-entropy loss in Eq. (6) is adopted to measure the
classification errors, and the final objective function is

%}8 »Cclassify + ['refine

c
:%}8 - Z Z Znelog(Hpe) + Tr (L + aG)O) +
neV; c=1
A
10— Qll%, (14)

where the first term is the classification loss and the second
is the topology refinement loss. H = [H,.] € RV*C is the



prediction matrix and
H = f(X,0) = softmax (0 ReLU (0XW<°>) W<1>) ,

where W = {W(© W1} is the parameters of FCN.

3.3 Optimization

To jointly learn the refined network topology O and FCN pa-
rameters ¥/, we alternatively update one at a time while fix
the other. When the refined network topology O is fixed, the
updating of the FCN parameters W is identical to the updat-
ing procedures in GCN, and we thus omit the details of it.
For convenience, the process of updating O with fixed W is
described in details.

Although the second and third terms in Eq. (14) both pos-
sess analytical solutions, the gradient decent approach is still
adopted to optimize Eq. (14), because the first term does not
have a close-form solution. Since the Laplacian matrix L and
the constraints matrices GG and () are symmetric, the gradient
of Lyefine With respect to O is

aﬁreﬁne
00

where L + aG — MA@ can be computed in advance, since it
does not vary in each iteration.

Then, we compute the gradient of L.jqssify With respect
to O. For simplicity, we consider the one-layer convolution
operation i.e., H = softmax (OXW). Note that the pre-
diction of the node v,,, H,, = softmax (O,,B), will only be
affected by O,,, the n'" row of the topology matrix, where
B = XW is fixed when W is fixed. Thus, the gradi-
ent of Leqssify With respect to Oy is equivalent to that

of Lejassify(n) = (— Zle Zne log(an)) with respect to
Onk, as shown in Eq. (14). According to the Chain Rule,

= (L +aG - A\Q) + A0, (15)

OLrecpine(n) _ 3 OLregine(n) OTnp

aOnk aTnp aOn}c ’
OLyrefine(n © 0log(Hpe)
Z?’l(’ k)

where H,,. = softmax(T,.) and T,c = ), OniBic. Since

C
Dlog(He
Y Zue=1 and Odog(tne) _ 5

0Ty

where ., is the Kronecker delta and 6., = 1 if and only if
c = p, then

aﬁ'r'efine (Tl)
DTy

C
= - Z ch (6cp - an) = an - an-

c=1
0Ty
o0 = By.p, then,
a‘crefine(n)
aOnk

Besides, since

= Z(an - an)ka>
p

and it can be transformed to the matrix form
aﬁre fine
00

since B = XW. By combining Egs. (15) and (16), the total
gradient in the matrix form is

oL
20

Tips for Implementation: To speedup the optimization, the
refined network topology O is firstly initialized by minimiz-
ing Eq. (13) without considering the backward-propagation
of the classification errors. Besides, the updating rule in Eq.
(17) is only applied to update the weights of the existing
edges and the must-link constraints, i.e., A + (. Thus, the
complexity of TO-GCN is O(M) instead of O(N?), where
N and M are the numbers of nodes and edges, respectively.

Remark: The extra cost of the learnable graph is the topol-
ogy updating in Eq. (17). For efficiency, the topology is ini-
tialized via constrained propagation, as shown in Eq. (13),
and the updating in Eq. (17) is only applied to update the
weights of the existing edges and the must-link constraints.
Therefore, the increased computations are linearly propor-
tional to the number of edges. and the proposed TO-GCN
can be applied to large-scale networks.

3.4 Insights

Here, we introduce some insights of the proposed method to
further illustrate the superiority of TO-GCN and the advan-
tage of jointly learning the refined network topology and pa-
rameters of the FCN.

=(H-2)B" = (H-2)WT'X", (16

=(H - 2)WTXT + (L +aG - 2Q)+)0. (17)

From the Model Perspective

To elaborate the advantage of our proposed TO-GCN against
GCN, they are both compared to the Convolution Neural Net-
work (CNN). CNN consists of two learnable components:
convolutional layers (including pooling layers) and fully con-
nected layers. The former layers can be regarded as the fea-
ture extractor with learnable filters, while the latter layers are
equivalent to a learnable classifier. In our proposed TO-GCN
(Figure 1(B)), the learnable network topology O can be re-
garded as the learnable filters while FCN with parameters
W is equivalent to the learnable classifier. Therefore, TO-
GCN and CNN are similar. On the contrary, the filters A
is fixed and only the classifier is learnable in GCN (Figure
1(A)). Therefore, TO-GCN is more flexible than GCN.

From the Optimization Perspective
The updating rule of O in Eq. (17) consists of three terms
whose roles are elaborated in details as follows.

The first term is the main difference between the straight-
forward approach and the joint learning mechanism. S =
[Snk] = (H — Z)WT XT can be regarded as the correlation
between the prediction error Z — H and the prediction from
node attributes X W. S, can then be written as

Suk = (hy — 2) (@ W)T, (18)

where h,, and z,, represent the predicted and ground-truth la-
bel vectors of the vertex v,,, respectively.
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Figure 2: Visualizations of the learning process on the Cornell network. Three subfigures are the adjacency matrix, constraint matrix
constructed from 10% labelled data, and learned adjacency matrix, respectively. The cyan boxes contain the intra-class edges while the
orange boxes contain the inter-class edges. The color brightness indicate the weights of edges.

Then, we analyze the role of S,,x. If the ground truth and
the predicted label of node v,, are identical, then S,,;, = O.
Otherwise, if the ground truth and the predicted label of node
vy, are ¢ and j, respectively, then

By — zp = (0,...,0, 1 ,0,...,0, —=1,0,...,0).  (19)
~ ~~
J i

Spk can be rewritten as Sy, = —xi(w; — w.;), where w ;
is the jth column of W. Since xxw ; is the confidence of
node vy, being classified into class j, zx(w; — w;) is the
confidence difference of node vy, being classified into classes
1 and j based on the node attributes . Therefore, updating
O with S = (H — Z)WT XT reduces the weights O, if the
classification result of v; makes v,, being misclassified.

The second term is the combination of the graph Laplacian
and constraint matrix, which reveals the impact of the con-
straints to the refined network. The third term is to guarantee
the updating process to be performed regularly.

Overall, by jointly learning the refined network topology
and the parameters of FCN, the network topology is refined
by both the given constraints and classification results. There-
fore, TO-GCN is better than the straightforward P-GCN.

4 Evaluations

In this section, we evaluate the proposed TO-GCN with ex-
tensive experiments on real attributed networks and provide
some visualizations for better illustrations.

4.1 Datasets and Setup

As in previous work, three citation networks, in which the
vertices and edges are documents and undirected citations re-
spectively, are utilized for performance evaluation. Node at-
tributes are the bag-of-words representations of documents.
Each node is assigned a label based on its discipline. The
statistics of the networks, Cora, CiteSeer and PubMed, are
summarized in Table 2. Following the setup in [Yang er al.,
2016] and [Kipf and Welling, 20171, the network topology,
the features of all the nodes and the labels of 20 nodes per
class are available for training. The performance of all the
baseline methods are evaluated on 1,000 test nodes with 500
additional nodes for validation. Note that the balancing pa-
rameter between Lcjgssify and Lyefine are not employed,
which is equivalent to set the balancing parameter to be 1.
a and )\, which are the hyperparameters for cannot-link and

Dataset Nodes Edges Classes Features
Citeseer 3,327 4,732 6 3,703
Cora 2,708 5,429 7 1,433
PubMed 19,717 44,338 3 500

Table 2: Datasets.

must-link constraints, are set according to the results of the
validation set.

4.2 Baselines

Our proposed model are compared to 10 state-of-the-art ap-
proaches, including multilayer perceptron (MLP), label prop-
agation (LP) [Zhu er al., 2003], semi-supervised embedding
(SemiEmb) [Weston et al., 2012], manifold regularization
(ManiReg) [Belkin er al., 20061, graph embedding (Deep-
Walk) [Perozzi et al., 2014], iterative classification algorithm
(ICA) [Lu and Getoor, 2003], graph-based semi-supervised
learning framework (Planetoid) [Yang er al., 2016], graph
convolution with Chebyshev filters [Defferrard et al., 2016],
graph convolutional networks (GCN) [Kipf and Welling,
20171, and mixture model networks (MoNet) [Monti et al.,
2017]. All the results of the baseline approaches are ei-
ther from their original papers or obtained with their original
codes and default settings. To show the superiority of the joint
learning strategy, TO-GCN is also compared to the straight-
forward version, P-GCN, where the refined topology matrix
is pre-computed and fed into GCN.

4.3 Results Analysis

As shown in Table 3, the results of semi-supervised node
classification indicate that the proposed TO-GCN consis-
tently outperforms other state-of-the-art methods and the
straightforward P-GCN. The superior performance of TO-
GCN demonstrates that both the proposed topology refine-
ment and the jointly learning mechanism are vital to the per-
formance improvements. As can be observed, the perfor-
mance improvement for the Pubmed network is limited, be-
cause the network topology has not been appropriately re-
fined due to the messy structure of Pubmed and the small di-
mensions of the features. The former aspect causes the con-
straint propagation to be inefficient, while the latter one af-
fects the learnable weights obtained from the backward prop-
agated classification error. To demonstrate the robustness of



Methods Cora Citeseer Pubmed
MLP 55.1% 46.5% 71.4%
ManiReg 59.5% 60.1% 70.7%
SemiEmb 59.0% 59.6% 71.7%
LP 68.0% 45.3% 63.0%
DeepWalk  67.2% 43.2% 65.3%
ICA 75.1% 69.1% 73.9%
Planetoid 75.7% 64.7% 77.2%
Chebyshev  81.2% 69.8% 74.4%
GCN 81.5% 70.3% 79.0%
MoNet 81.7% 69.9% 78.8%
P-GCN 82.4% 70.9% 79.3%
TO-GCN 83.1% 72.7 % 79.5%

Table 3: Node classification results.

the proposed TO-GCN compared to GCN, an experiment is
conducted on Cora by adding 3% noisy edges are conducted.
The accuracy degradations of GCN and TO-GCN are 11.2%
and 8.7%, respectively, which also verifies the superiority of
TO-GCN.

4.4 Visualizations

To elaborate the results with more intuitions, we intend to
present more insights of the learned adjacency matrix. Since
the network is sparse, it is difficult to effectively visualize
the learned adjacency matrices of the above three networks.
Therefore, we conduct these visualizations on medium-sized
Cornell network from the WebKB dataset. It consists of 195
connected webpages, which are classified into 5 classes. Each
webpage is annotated by 1703-dimensional binary-valued
word attributes. Since the dimensions of node content are
much larger than the number of nodes, the dimensions of
node content are reduced to 50 via PCA to prevent the over-
fitting problem. 10% of the nodes are randomly selected for
training. The results are introduced in Figure 2. The nodes
are re-ordered according to the ground-truth labels, and the
color brightness indicates the weights of the edges. The struc-
ture of the learned graph is the combination of network topol-
ogy and the constraints constructed form the labels. During
the training process, the weights of the edges are refined by
the pairwise constraints and the back-propagation of the clas-
sifier. As can be observed, the weights of inter-class edges
(orange boxes) are significantly reduced while those of intra-
class edges (cyan boxes) remain at a high level (Figure 2(D)).

5 Conclusions

In this paper, we observe that the network topology (both
the structure and weights) contributes significantly in semi-
supervised node classification. A clear community structure
(modularity) of network usually induces a high classification
accuracy. Besides of this observation, existing approaches
have not fully utilized the potentials of three types of infor-
mation, including network topology, node features and given
labels. Therefore, we propose a novel Topology Optimization
based Graph Convolutional Networks (TO-GCN) to fully uti-
lize these three types of information by jointly refining the

network topology and learning the parameters of FCN. Ex-
tensive experiments on real attributed networks demonstrate
the superior performance of the proposed TO-GCN against
the state-of-the-arts.
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