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Abstract
The success of graph convolutional neural net-
works (GCNNs) based semi-supervised node clas-
sification is credited to the attribute smoothing
(propagating) over the topology. However, the at-
tributes may be interfered by the utilization of the
topology information. This distortion will induce
a certain amount of misclassifications of the nodes,
which can be correctly predicted with only the at-
tributes. By analyzing the impact of the edges in at-
tribute propagations, the simple edges, which con-
nect two nodes with similar attributes, should be
given priority during the training process compared
to the complex ones according to curriculum learn-
ing. To reduce the distortions induced by the topol-
ogy while exploit more potentials of the attribute
information, Dual Self-Paced Graph Convolutional
Network (DSP-GCN) is proposed in this paper.
Specifically, the unlabelled nodes with confidently
predicted labels are gradually added into the train-
ing set in the node-level self-paced learning, while
edges are gradually, from the simple edges to the
complex ones, added into the graph during the
training process in the edge-level self-paced learn-
ing. These two learning strategies are designed to
mutually reinforce each other by coupling the se-
lections of the edges and unlabelled nodes. Ex-
perimental results of transductive semi-supervised
node classification on many real networks indicate
that the proposed DSP-GCN has successfully re-
duced the attribute distortions induced by the topol-
ogy while it gives superior performances with only
one graph convolutional layer.

1 Introduction
Graph partitioning has contributed tremendously in both
the traditional unsupervised node classification techniques
and the latest semi-supervised node classification approaches
[Kipf and Welling, 2017; Veličković et al., 2018]. From ei-
ther the spectral or spatial perspectives, many graph convolu-
tional neural networks (GCNNs) have been proposed recently
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Figure 1: Different types of misclassified nodes. The nodes may
be misclassified with respect to the original attributes only. It may
also be misclassified by topology based attribute smoothing. The
topology will correct certain incorrect classifications, while inter-
fere some correct predictions. This distortion will induce a certain
amount of misclassifications (the area surrounded by the red dashed
lines) of the nodes.

[Defferrard et al., 2016; Hamilton et al., 2017]. By incorpo-
rating supervised information, GCNN based semi-supervised
node classification methods have significantly improved the
performances of the traditional unsupervised techniques.

Similar to other semi-supervised learning tasks [Chapelle
et al., 2009; Zhu, 2006], semi-supervised node classification
requires efficient incorporations of the unsupervised informa-
tion. When classifying the nodes in the attributed graphs,
the attributes of the unlabelled nodes serve as the unsuper-
vised information. Due to the sparsity of the node attributes,
prediction only based on the original node attributes cannot
fully exploit their relationships and usually results in over-
fittings. Therefore, many GCNNs [Kipf and Welling, 2017;
Veličković et al., 2018] perform operations which are equiv-
alent to the attribute smoothing (propagating) over the graph
[Li et al., 2018]. Therefore, GCNNs actually utilizes the un-
supervised information by augmenting the node attributes in
local neighbourhoods.

Unforunately, this propagation strategy possesses certain
weaknesses. Typically, over propagation may degrade the
prediction performance [Li et al., 2018]. Since the over prop-
agation tends to amend all the nodes to have the identical aug-
mented attributes which certainly reduces the discriminabil-
ities of the nodes. Therefore, existing GCNNs only employ
two stacked graph convolutional layers, i.e., two-hop prop-
agations to prevent the over propagation. Besides, the at-
tributes may be interfered by the utilization of the topology
information. This distortion will induce a certain amount of
misclassification of the nodes, which can be correctly pre-
dicted with only the attributes, as illustrated in Fig. 1.



In this paper, we intend to reduce the negative effects,
i.e., the distortions, caused by the utilization of the topology.
Thus, the impact of the edges in attribute propagations is ana-
lyzed. As elaborated in Fig. 2, there exists two types of edges.
If the two nodes vi and vj , whose attributes are similar, are
connected by an edge (green line), the attributes of each node
will vary slightly after propagations. Since this kind of edges
usually contain less information and the network can quickly
learn from them, we denote them as the simple edges. If the
two nodes vi and vk, whose attributes are quite different, are
connected by an edge (red line), the attributes of each node
will be significantly changed after propagations. This kind
of edges contain rich information and the network usually re-
quires more trainings to learn from them. Therefore, these
edges are denoted as the complex edges.

Spontaneously, a question can be raised that whether these
two kinds of edges should be learned simultaneously by the
network in the training stage? Curriculum Learning (CL
[Bengio et al., 2009]) and Self-Paced Learning (SPL [Ku-
mar et al., 2010]), which mimic the learning process of hu-
man beings, conclude that by learning from simple concepts
to complex ones, the learning of the network can be signifi-
cantly improved. Based on this philosophy, we believe that
the topology information should be evaluated and feed into
the network gradually from the simple edges to the complex
ones during the training process of GCNNs.

To reduce the distortions generated by utilizing the topol-
ogy information while exploit more potentials of the attribute
information, Dual Self-Paced Graph Convolutional Network
(DSP-GCN) is proposed in this paper. Specifically, the un-
labelled nodes with confidently predicted labels are gradu-
ally included into the training set in the node-level self-paced
learning to better exploit the attribute information. To re-
duce the distortions when utilizing the topology information,
edges are gradually, from the simple edges to the complex
ones, added into the graph during the training process in the
edge-level self-paced learning. Since the nodes and edges are
highly correlated, the node-level and edge-level self-paced
learnings are also correlated. Therefore, these two learning
strategies are designed to mutually reinforce each other by
coupling the selections of the edges and unlabelled nodes. If
an unlabelled node is included during the training process, its
edges will likely to be included. On the contrary, if most of
the edges of an unlabelled node is added, this node as well as
its predicted label tend to be put into the training with a high
probability.

Our contributions are summarized as below:

• We observe that the utilization of the topology in GC-
NNs tends to interfere the correct prediction results
which can be obtained with respect to the attributes only,
according to the experiments.

• We propose an edge-level self-paced learning strategy
by gradually train the network from the simple edges to
the complex ones to reduce the negative effects caused
by the utilization of the topology, instead of feeding the
entire topology directly into the network.

• We propose a Dual Self-Paced Graph Convolutional
Network (DSP-GCN) which jointly exploits the node-
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Figure 2: Simple and complex edges. A simple edge (green line)
connects two nodes which contain similar attributes. After smooth-
ing over the simple edge, their node attributes do not vary signifi-
cantly. A complex edge (red line) connects two nodes which contain
much different attributes. After smoothing over the complex edge,
the discriminabilities of the node attributes are reduced.

level and edge-level self-paced learning strategies.
• Experimental results on eight real networks indicate

that DSP-GCN can successfully reduce the distortion
induced by the topology and yield superiority perfor-
mances with only one graph convolutional layer.

2 Preliminaries
2.1 Notations
A network can be represented by an attributed graph G =
(V,E,X). V = {vi|i = 1, ..., N} is a set of |V | = N
vertices, where vi is associated with a feature xi ∈ RK .
X ∈ RN×K represents the collection of the features. Each
row of X corresponds to a node. E stands for a set of edges.
Each of the edges connects two vertices in V . The adjacency
matrix A = [aij ] ∈ RN×N is obtained according to the net-
work topology. If an edge connects the vertices vi and vj ,
aij = 1, and vice versa. If self-edges are allowed in the net-
work, then ann = 1. Otherwise ann = 0. an, which denotes
the nth column of A, can be utilized to represent the local
neighbourhood of the vertex vn. dn =

∑
j anj stands for the

degree of vn while D = diag(d1, d2, ..., dN ) is the degree
matrix of A. The graph Laplacian and its normalized form
are defined as L = D − A and L = D−

1
2LD−

1
2 , respec-

tively. For a network, given the labels Y ∈ R|Vl|×F (where
F represents the number of classes), which belong to a set of
vertices Vl ⊂ V , a typical semi-supervised node classifica-
tion algorithm classifies other nodes in V − Vl according to
the attributed graph. For simplicity, the first l nodes {vi}li=1
are assumed to be labelled.

2.2 Graph Convolutional Network
By simplifying the complex existing models, Graph Convo-
lutional Network (GCN) [Kipf and Welling, 2017] defines the
graph convolution operation as

HGCN = D̃−
1
2 ÃD̃−

1
2X, (1)

where Ã = A+IN and D̃nn =
∑

j Ãnj = dn+1. Then, the
to-be-predicted labels can obtained by feeding HGCN into a
fully-connected layer as

TGCN = HGCNW. (2)



By minimizing the cross-entropy, which is defined in Eq. (3),
between the predictions and given labels, the parameter W
can be obtained.

L = −
∑
n∈Vl

F∑
f=1

ynf log(tnf ) (3)

[Li et al., 2018] concludes the mechanism and success of
GCN that it is equivalent to perform a symmetric Lapla-
cian smoothing (HGCN = D̃−

1
2 ÃD̃−

1
2 ) operation before

the actual predictions. It aims at augmenting the attributes
with topology to alleviate the problem of attribute sparsity.
The performance of the smoothing based classification ob-
viously outperforms the classification based on the original
attributes. Unfortunately, the employment of the topology in-
formation also induces certain negative effects to the classi-
fication results. As illustrated in Fig. 1, some nodes (i.e.
the non-overlapped orange set), which can be correctly clas-
sified according to the original attributes, are actually mis-
classified with respect to the smoothed attributes after the at-
tribute propagations.

2.3 Self-paced Learning
Inspired by the learning process of human beings, i.e., learn-
ing from easy concepts to complex ones, [Bengio et al., 2009]
proposes a curriculum learning (CL) strategy which gradually
includes the training samples from the easy samples to the
complex ones during the training process. Self-paced Learn-
ing (SPL [Kumar et al., 2010]) adopts this strategy by incor-
porating the curriculum design as a regularization term into
the learning objective function as

N∑
i=1

qi`(yi, f(xi, w))− λ
N∑
i=1

qi, (4)

where f(xi, w) represents the prediction function with learn-
able model parameter w, `(yi, f(xi, w)) stands for the loss
function between the prediction f(xi, w) and ground truth yi,
and qi ∈ {0, 1} is the sample weight to indicate whether the
data point xi has been included in the training process. Note
that the second term λ

∑N
i=1 qi is the self-paced regulariza-

tion term, with λ being the pace parameter which controls the
learning pace. The model is trained by jointly minimizing the
objective function in Eq. (4) with respect to the model param-
eterw and the sample weights qi’s by gradually increasing the
pace parameter λ. For a fixed w, the optimal q∗i is

q∗i =

{
1 if `i < λ
0 otherwise , (5)

where `i = `(yi, f(xi, w)) represents the loss of predicting
the data sample xi as f(xi, w). With a small λ, only the data
samples with small losses (i.e. easy to be predicted) are in-
cluded in the training data. When λ gradually increases, more
complex data samples are added.

Self-paced learning has already been extended to semi-
supervised learning and unsupervised matrix factorization.
Self-paced semi-supervised learning augments the training
set with the unlabelled data samples based on the confidence

predictions [Ma et al., 2017]. The unlabelled data samples
are gradually included by combining the self-paced strategy
and co-training of two views. Meanwhile, self-paced matrix
factorization extends the previous self-paced learning strat-
egy which is designed for the data samples to a self-paced
learning for the pairs of data samples and their corresponding
attributes [Zhao et al., 2015].

Self-paced Network Embedding
Recently, self-paced learning is applied to network embed-
ding. [Zhou et al., 2018] follows the co-training strategy in
[Ma et al., 2017] and extends the co-training of two views
to two tasks, i.e., embedding and prediction. However, this
node-level self-paced strategy cannot reduce the negative im-
pact to the attributes induced by the topology. [Gao and
Huang, 2018] adopts the self-paced strategy to select the neg-
ative samples and performs a self-paced training with the
pair of data samples similar to [Zhao et al., 2015]. Un-
fortunately, self-paced negative sampling requires to com-
pute the similarities between almost all the pairs of nodes,
which is computationally inefficient. Besides, similar to
other semi-supervised node classification methods introduced
above, these two methods also ignore the impact of topology
in the self-paced node selections.

3 Proposed Work
In this section, Dual Self-Paced Graph Convolutional Net-
work (DSP-GCN), which reduces the topology distortions on
the attributes, is proposed. DSP-GCN consists of two interac-
tive self-paced learning strategies, node-level and edge-level
strategies. The node-level self-paced strategy gradually in-
cludes the unlabelled nodes, whose labels are predicted with
high confidence scores, into the training set. The edge-level
self-paced strategy gradually incorporates the edges, from the
simple edges to the complex ones, into the graph convolu-
tional operation of GCN. Note that both the strategies will
mutually reinforce each other, because the nodes and edges in
the graph is usually highly correlated. If an unlabelled node
is added into the training set, its edges tend to be included.
Meanwhile, if most of the edges of an unlabelled node has
already been included , this node as well as its predicted label
will likely to be added into training set.

3.1 Node-level Self-Paced Learning
Our node-level self-paced learning augments the training set
to fully exploit the unsupervised information (i.e., the at-
tributes of the unlabelled nodes). Since we gradually add
the unlabelled nodes, which possess the predicted labels with
high confidence scores, into the training set, the objective
function can be formulated as

Lnode =

l∑
i=1

`(yi, g(xi, A,W )) +

N∑
k=l+1

qk`(yk, g(xk, A,W ))

− λnode
N∑

k=l+1

qk, (6)

where the three terms at the right-hand side of the equation
are a supervised loss, an unsupervised loss and a self-paced



regularizer, respectively. yi and yk denote the given labels
of the labelled nodes and the predicted labels of the unla-
belled nodes, respectively. qk ∈ {0, 1} is the weight assigned
to the unlabelled node vk to indicate whether it as well as
its predicted label yk has been added into the training set.
λnode is the pace parameter which controls the learning pace.
If λnode increases, more unsupervised nodes will be added
into the training set, i.e., more unsupervised nodes satisfy the
condition of q∗k = 1, and vice versa. The prediction model
g(xk, A,W ) is identical to GCN as shown in Eqs. (1) and
(2), and the loss function `(., .) is the cross-entropy as shown
in Eq. (3). With a fixed W , minimizing Eq. (6) with respect
to qk gives the same optimal solution as Eq. (5) presents.

3.2 Edge-level Self-Paced Learning

Unfortunately, optimizing Eq. (6) with a fixed topology A is
equivalent to directly add all the edges (i.e., the entire topol-
ogy) into the training of GCN, which may induce certain neg-
ative effects to the attributes as elaborated in Fig. 1. To al-
leviate this issue, the negative impact of the topology to the
discriminabilities of the node attributes is considered and for-
mulated. Since there exists different kinds of edges, which
possess different degrees of training difficulties and have been
illustrated in Sec. 1 and Fig. 2, we propose to exploit the
self-paced learning strategy [Kumar et al., 2010] to gradually
include edges with different degrees of training difficulties
(from the simple edges to the complex ones) into the train-
ing process. To measure the difficulty of learning from the
edge eij , we exploit the attribute variations on the nodes vi
and vj after the attribute propagations as the measurement,
which also indicates the amount of information possessed by
eij . This quantity can be described as the inner product of the
attributes of nodes vi and vj as

sij = 1−
exp(xiBx

T
j )∑

k∈N(i) exp(xiBx
T
k )
, (7)

where B is the learnable parameter to measure the consis-
tency between the corresponding attributes of the two nodes.
For example, “learning” and “inference” are two similar at-
tributes in machine learning community. If the attribute
‘learning” is propagated to a node vi which possesses the at-
tribute “inference” yet without the attribute ‘learning”, the at-
tribute amendment occurred on node vi tends to be minor and
only slightly increases the entropy of node vi.

Instead of adding a self-paced regularizer as the node-level
strategy, our edge-level self-paced learning strategy directly
selects the edges which are included in the training process
via

âij =

{
1 if sij < λedge
0 otherwise, (8)

where âij is edge weight and λedge is the pace parameter
to control the learning pace of the edges. When λedge is
small, only the edges eij with high sij , which will not signif-
icantly increase the attribute entropy of the connected nodes,
is added. When λedge increases, more edges will be included.

3.3 Dual Self-Paced Learning
The node-level self-paced learning in Eq. (6) and edge-
level self-paced learning in Eq. (8) can be respectively tuned
with two pace parameters λnode and λedge. Meanwhile, both
strategies will mutually reinforce each other.

Intuitively, if the prediction confidence of an unsupervised
node is high, this node will be added into the training set ac-
cording to the self-paced learning strategy. The high predic-
tion confidence of a node is usually induced by the consis-
tency between it and its neighbourhoods. Besides, this con-
sistency indicates that the edges between them are the simple
ones, as shown in Fig. 2. Then, these edges are also added
into the graph. On the other hand, the addition of certain
edges into the training set may also induce the addition of
certain nodes in a similar manner to the above situation.

To model the interactions between the two strategies, the
weight qk of unlabelled node and weight âij of edge are
jointly considered to form the loss of the interactions as

Linter = −γ
N∑

k=l+1

qk ∑
j∈N(k)

âkj

d̂k + 1

 , (9)

where d̂k =
∑

j âkj represents the current degree of the node
vk in graph Â. d̂k + 1, which is equivalent to adding a self-
loop to each node as GCN, is employed to avoid the zero
divisor. Since the edge-level self-paced learning in Eq. (8) is
performed as a constraint instead of a loss term as the node-
level self-paced learning. A simple combination of the two
losses in Eqs. (6) and (9) cannot achieve the reinforcement
from the node-level learning to the edge-level learning. To
alleviate this issue, Eq. (8) is modified as

âij =

{
1 if sij < λedge + γ qi

d̂i+1
.

0 otherwise
(10)

If the unlabelled node vi has been added to the training set,
i.e., qi = 1, the probability of edge eij being included will
increase from λedge to λedge + γ qi

d̂i+1
.

3.4 Objective Function and Optimization
By combining Eqs. (6), (9) and (10), the overall objection
function is constructed as

L =

l∑
i=1

`(yi, g(xi, Â,W )) +

N∑
k=l+1

qk`(yk, g(xk, Â,W ))

−λnode
N∑

k=l+1

qk − γ
N∑

k=l+1

qk ∑
j∈N(k)

âkj

d̂k + 1


s.t. âij =

{
1 if sij < λedge + γ qi

d̂i+1
0 otherwise

,

(11)

with the hyper-parameters γ, λnode and λedge. The param-
eters to be learned in Eq. (11) are W , B, yk, qk and âij .
This objective function can be minimized according to an al-
ternative optimization strategy. The optimization process are



Algorithm 1 Dual Self-Paced GCN
Input: Attributed graph G = (V,E,X), labels {yi}li=1
Parameters: γ, pace parameters λnode and λedge
Output: Labels {yi}Ni=l+1 of the target nodes {vi}Ni=l+1

1: while not converged do
2: Update qk via Eq. (12).
3: Update yk via Eq. (13).
4: Update âij via Eq. (10).
5: Update W and B on augmented training set with gra-

dient back-propagation.
6: Augment λnode and λedge.
7: end while
8: return {yi}Ni=l+1

shown in Algorithm 1 with the main steps elaborated as fol-
lows:

Update qk: This step is equivalent to minimizing L in Eq.
(11) without the supervised term and the constraint. Since
qk ∈ {0, 1}, its optimal solution is

q∗k =

{
1 if `k < λnode + γ

∑
j

(
âkj

d̂k+1

)
0 otherwise

. (12)

Here, `k = `(yk, g(xk, Â,W )) represents the difference be-
tween the predictions of two consecutive iterations, where yk
stands for the predicted label in the previous iteration, and
g(xk, Â,W ) represents the predicted label in the current it-
eration according to the new âij , W and B. The difference

threshold is λnode+γ
∑

j

(
âkj

d̂k+1

)
, where the first term λnode

is the pace parameter. The second term γ
∑

j

(
âkj

d̂k+1

)
indi-

cates the probability of this node vk being included in the
training set, if more edges âkj of the unlabelled node vk is in-
cluded. By updating qk, we can improve the self-paced node
selections with our self-paced edge selections.

Update yk: Since only the second term of L in Eq. (11)
contains the variable yk, the optimal y∗k can be obtained by
minimizing `(yk, g(xk, Â,W )). Therefore,

y∗k = g(xk, Â,W ), (13)

where g(xk, Â,W ) is identical to GCN as introduced in Eqs.
(1) and (2), i.e., label is predicted by GCN with parameters
W , B and the topology âij obtained in the previous iteration.

Update âij : The optimal solution of aij has been shown
in Eq. (10). By updating aij , the proposed self-paced edge
selections can be further enhanced with respect to the self-
paced node selections.

Update W and B: In this step, we only have to optimize
the first two terms of L in Eq. (11), i.e.,

l∑
i=1

`(yi, g(xi, Â,W )) +

N∑
k=l+1

qk`(yk, g(xk, Â,W )),

whose parameters are W and B. Here, only the unlabelled
nodes, which are included in the training set, i.e., qk = 1,
will contribute to the second term. Since the cross-entropy

Dataset #Nodes #Edges #Classes #Features
Texas 187 328 5 1,703
Cornell 195 304 5 1,703
Washington 230 446 5 1,703
Wisconsin 265 530 5 1,703
Wiki 3,363 45,006 19 4,972

CiteSeer 3,327 4,732 6 3,703
Cora 2,708 5,429 7 1,433
PubMed 19,717 44,338 3 500
NELL 65,755 266,144 210 5,414

Table 1: Datasets.

in Eq. (3) is adopted as a loss, the gradient back-propagation
can be utilized to obtain W and B similar to GCN [Kipf and
Welling, 2017] and GAT[Veličković et al., 2018].

Remark 1: Comparing with the existing self-paced net-
work embedding approaches, DSP-GCN possesses two obvi-
ous advantages. 1) DSP-GCN considers self-paced learning
on edges to reduce the negative effects caused by employing
the topology. 2) DSP-GCN considers and models the correla-
tions between the node-level and edge-level self-paced learn-
ing to improve the prediction efficiencies.

Remark 2: The graph construction is the updating of âij
in Eq. (10) with sij defined in Eq. (7). The computational
complexity of each edge sij isO(K), whereK is the number
of features. Therefore, the overall computational complexity
of the graph construction is O(MK) where M is the number
of edges in the graph, i.e., the computations of the graph con-
struction will linearly increase when the scale of the network
increases.

4 Experimental Results
In this section, we validate the proposed DSP-GCN by empir-
ically evaluating the performances in the transductive semi-
supervised node classification task. In DSP-GCN, only one
graph convolutional layer is employed instead of the two lay-
ers utilized in GCN and GAT. Here, we set γ = 1 and ini-
tialize λnode = 0.12 and λedge = 0.2 on all the networks.
Note that λnode and λedge are augmented via two multipliers
ranging from 1.05 to 1.11, respectively.

4.1 Datasets
In the experiments, three common citation networks [Sen et
al., 2008], Cora, CiteSeer and PubMed, and a knowledge
graph NELL [Carlson et al., 2010] are employed as shown in
Table 1. In each citation network, papers and undirected ci-
tations are defined as the nodes and edges, respectively. The
node content is represented by the bag-of-word representa-
tion of the documents. Papers are classified into various cat-
egories according to their disciplines. A bipartite graph is
extracted from the knowledge graph as in [Yang et al., 2016].
Besides of the entity nodes, each relation tuple (ei, r, ej) is
decomposed into two connected relation nodes (ei, r) and
(ej , r). The topology is constructed by adding edges between
entity node ei and relation node (ei, r). Besides, five more
networks, including Cornell, Texas, Washington, Wisconsin



Methods Cora Citeseer Pubmed NELL
MLP 55.1% 46.5% 71.4% 22.9%
ManiReg 59.5% 60.1% 70.7% 21.8%
SemiEmb 59.0% 59.6% 71.7% 26.7%
LP 68.0% 45.3% 63.0% 26.5%
DeepWalk 67.2% 43.2% 65.3% 58.1%
ICA 75.1% 69.1% 73.9% 23.2%
Planetoid 75.7% 64.7% 77.2% 61.9%
Chebyshev 81.2% 69.8% 74.4% -
GCN 81.5% 70.3% 79.0% 66.0%
MoNet 81.7% 69.9% 78.8% 64.2%
GAT 83.0% 72.5% 79.0% -

DSP-GCN 85.0% 74.2% 81.2% 67.3%

Table 2: Transductive node classification results.

and Wiki, are employed. Four of them, i.e., Texas, Cornell,
Washington and Wisconsin, are the sub-networks of the We-
bKB network. Each of them is the collection of the webpages
from an university in U.S.. Similarly, nodes in Wiki network
are the webpages from Wikipedia.

4.2 Methods
For comparisons, we employ 11 state-of-the-art semi-
supervised node classification algorithms, including mul-
tilayer perceptron (MLP), label propagation (LP) [Zhu et
al., 2003], semi-supervised embedding (SemiEmb) [Weston
et al., 2012], manifold regularization (ManiReg) [Belkin
et al., 2006], graph embedding (DeepWalk) [Perozzi et
al., 2014], iterative classification algorithm (ICA) [Lu and
Getoor, 2003], graph-based semi-supervised learning frame-
work (Planetoid) [Yang et al., 2016], graph convolution with
Chebyshev filters [Defferrard et al., 2016], graph convolu-
tional network (GCN) [Kipf and Welling, 2017], mixture
model networks (MoNet) [Monti et al., 2017], and graph at-
tention networks (GAT) [Veličković et al., 2018]. Besides,
to give a comprehensive understanding, we also compare
DSP-GCN with 5 community detection methods on the at-
tributed networks. Degree-corrected Stochastic Block Model
(DCSBM) [Karrer and Newman, 2011] and NetMRF [He et
al., 2018] only adopt the network topology, while PCLDC
[Yang et al., 2009], SCI [Wang et al., 2016] and NEMBP
[He et al., 2017] utilize both the network topology and node
attributes. All the results of the baselines are produced by
running the codes from the authors with their default settings.

4.3 Results and Analysis
In the experiments, DSP-GCN is compared to 11 baseline
methods on three citation networks by following the exper-
iment protocols in [Yang et al., 2016], where 20 nodes per
class, 500 nodes and 1000 nodes are employed for training,
validation and performance evaluation, respectively. On the
extracted bipartite graph from NELL, we follow the settings
in [Yang et al., 2016] where the label rate is 0.1%. The per-
formance is measured with accuracy (AC). As shown in Ta-
ble 2, our DSP-GCN outperforms all the baseline methods.
The improvement of DSP-GCN compared to GAT, which

achieves the best performance among the baseline methods,
is moderately significant. Although the performance gain of
accuracy is 1.8% in average, a large proportion of the error
rates has been reduced. Specifically, the average error rates
of GAT and our proposed DSP-GCN on citation networks
are 21.84% and 19.87%, respectively, Then the error rate
reduction, which is achieved by the proposed DSP-GCN, is
(21.84% - 19.87%)/21.84% = 9.02%. It clearly demonstrates
the effectiveness of our DSP-GCN on jointly exploiting the
node content and network topology, which reduces the dis-
tortions to the attributes induced by the topology.

To comprehensively evaluate the proposed DSP-GCN, we
compare it with five methods, which can also be regarded as
node classification techniques. In addition to the three cita-
tion networks, five webpage networks, which is often adopted
to evaluate the community detection methods, are employed.
For the four medium webpage networks, including Cornell,
Texas, Washington and Wsicsonsin, we adopt 20% labelled
nodes for training, 10% labelled nodes for validation, and the
other nodes for testing. For the large Wiki network, the per-
centages of nodes for training and validation are 3% and 3%,
respectively. The results are shown in Table 3. The perfor-
mance is measured with accuracy (AC) and normalized mu-
tual information (NMI). As can be observed, our DSP-GCN
gives relatively consistent performances and significant im-
provements on the five webpage networks.

The extensive results have demonstrated the superiority
and effectiveness of the proposed DSP-GCN under various
circumstances compared to 16 baseline methods. On the
other hand, the original GCN gives unsatisfactory results
(comparable/worse performances compared to the commu-
nity detection methods) on the webpage networks. The un-
stable performances of GCN have revealed that the simple
attribute smoothing based on the topology may cause severe
degradations to the attributes, thus induce an unsatisfactory
prediction result. Besides, the NMI scores of GCN, which
are more sensitive to the prediction results of the classes con-
taining very few nodes than AC, are obviously worse than AC
on the webpage networks. This phenomenon indicates that
the prediction results of GCN for the categories possessing
very few nodes are unsatisfactory [Zhou et al., 2018], which
indicates a severe degradations of the attributes on these rare
nodes after the attribute smoothing. Meanwhile, DSP-GCN
can obtain satisfactory results on rare node classifications.

4.4 Case Study

To further demonstrate the negative effects caused by the
topology in classification, a case study on the Citeseer net-
work is carried out. In this experiment, 25% of the misclas-
sified nodes (74 nodes) in GCN can be correctly classified
with respect to the attributes only, where the classification is
performed by a single fully-connected layer. This number is
reduced to 10% (27 nodes) in our proposed DSP-GCN. The
significant gain of our DSP-GCN verifies that our DSP-GCN
can successfully reduce the attribute distortions caused by the
topology.



Datasets DCSBM NetMRF PCLDC SCI NEMBP GCN DSP-GCN
Criterion AC NMI AC NMI AC NMI AC NMI AC NMI AC NMI AC NMI

Texas 48.1 16.6 30.6 5.5 38.8 10.4 49.7 12.5 53.6 35.1 57.1 5.0 72.1 52.0
Cornell 37.9 9.7 31.8 7.3 30.3 7.2 36.9 6.8 47.2 18.7 46.3 9.1 64.1 39.0
Washington 31.8 9.9 35.0 5.8 30.0 5.7 46.1 6.8 42.9 21.1 54.9 10.5 69.9 40.2
Wisconsin 32.8 3.1 28.6 3.2 30.2 5.0 46.4 13.3 63.4 38.0 55.6 18.8 73.1 54.4
Wiki 2.6 31.2 31.1 25.8 28.8 26.9 29.5 23.4 46.3 47.2 16.4 3.7 51.2 49.2
CiteSeer 26.6 4.1 22.2 1.2 24.9 3.0 34.4 9.2 49.5 24.3 70.3 45.4 74.2 48.7
Cora 38.5 17.1 58.1 37.2 34.1 17.5 41.7 17.8 57.6 44.1 81.5 62.5 85.0 67.1
PubMed 53.6 12.3 55.5 16.9 63.6 26.8 - - 65.7 28.3 79.0 28.0 81.2 46.2

Table 3: Comparisons with different kinds of community detection methods.

5 Conclusions
Topology information is a double-edged sword for GCNN
based semi-supervised node classification. It can be exploited
to alleviate the problem of attribute sparsity by attribute
smoothing over the graph. On the other hand, its employment
in the attribute smoothing also degrades the discriminabilities
of the attributes. To reduce its distortions while exploit more
potentials of the attribute information, we propose Dual Self-
Paced Graph Convolutional Network (DSP-GCN) in this pa-
per. It consists of two highly correlated strategies, node-level
and edge-level self-paced learning strategies, which gradually
add the unlabelled nodes with confidently predicted labels
and the simple edges into training, respectively. Extensive ex-
periments on real networks have demonstrated the superiority
of the proposed DSP-GCN compared to the baseline methods
and its ability to reduces the attribute distortions induced by
topology with only one graph convolutional layer.
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Michael M. Bronstein. Geometric deep learning on graphs
and manifolds using mixture model cnns. In IEEE CVPR,
pages 5425–5434, 2017.

[Perozzi et al., 2014] Bryan Perozzi, Rami Al-Rfou, and
Steven Skiena. Deepwalk: online learning of social rep-
resentations. In ACM SIGKDD, pages 701–710, 2014.

[Sen et al., 2008] Prithviraj Sen, Galileo Namata, Mustafa
Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-
Rad. Collective classification in network data. AI Mag-
azine, 29(3):93–106, 2008.
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