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Abstract
Semi-supervised classification is a fundamental
technology to process the structured and unstruc-
tured data in machine learning field. The tradi-
tional attribute-graph based semi-supervised clas-
sification methods propagate labels over the graph
which is usually constructed from the data fea-
tures, while the graph convolutional neural net-
works smooth the node attributes, i.e., propagate
the attributes, over the real graph topology. In this
paper, they are interpreted from the perspective of
propagation, and accordingly categorized into sym-
metric and asymmetric propagation based methods.
From the perspective of propagation, both the tradi-
tional and network based methods are propagating
certain objects over the graph. However, different
from the label propagation, the intuition “the con-
nected data samples tend to be similar in terms of
the attributes”, in attribute propagation is only par-
tially valid. Therefore, a masked graph convolu-
tion network (Masked GCN) is proposed by only
propagating a certain portion of the attributes to
the neighbours according to a masking indicator,
which is learned for each node by jointly consid-
ering the attribute distributions in local neighbour-
hoods and the impact on the classification results.
Extensive experiments on transductive and induc-
tive node classification tasks have demonstrated the
superiority of the proposed method.

1 Introduction
Semi-supervised classification, which leverages both the la-
belled and unlabelled data for prediction, is a traditional
yet popular topic in machine learning for both the unstruc-
tured and structured data [Chapelle et al., 2009; Zhu, 2006].
Traditional attribute-graph based semi-supervised classifica-
tion (AGSS) methods, such as label propagation (LP [Zhu
et al., 2003]) and label spreading (LS [Zhou et al., 2003]),
can effectively classify the unstructured data, i.e., there is
no structural correlations among these data samples. On
the other hand, the graph convolutional neural networks
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Figure 1: Comparison between traditional GCNNs and our pro-
posed Masked GCN. GCNNs propagates the node attributes entirely.
The propagated attributes in GCNNs is computed by the product of
the attributes and edge weight. Masked GCN only propagates cer-
tain part of the node attributes via a mask vector learned for each
node. The propagated attributes in Masked GCN is obtained by the
element-wise product of the attributes and the learned mask. Note
that a darker colour in the mask represents a higher value.

(GCNNs) [Niepert et al., 2016; Duvenaud et al., 2015;
Gao et al., 2018], such as graph convolutional network (GCN
[Kipf and Welling, 2017]) and graph attention network (GAT
[Veličković et al., 2018]), are recently proposed for semi-
supervised node classification of the structured data, i.e.,
there exists structural correlations among these data samples.

The traditional AGSS methods usually take all the features
and labels of the data samples as input. Note that only a cer-
tain portion of the data samples possesses labels and other
samples are unlabelled. Then, they propagate the given labels
over the graph constructed from the input features to predict
the unlabelled data samples. On the contrary, GCNNs take
the real graph topologies as well as the given features and la-
bels as input. Then, they smooth the node attributes with re-
spect to the graph topology and predict the target nodes based
on the smoothed attributes [Li et al., 2018]. Many approaches
with different smoothing operators have been proposed from
either the spectral or spatial perspectives [Monti et al., 2017;
Defferrard et al., 2016; Hamilton et al., 2017].

In this paper, we interpret GCNNs from the perspective
of propagation by analyzing three latest methods, i.e., GCN
[Kipf and Welling, 2017], GAT [Veličković et al., 2018] and
PageRank GCN (PR-GCN [Klicpera et al., 2019]). Instead
of propagating the labels over the attribute-based graph in



Category Symmetric Propagation Asymmetric Propagation
Method GCN PR-GCN Label Spreding GAT Label Propagation
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Table 1: Comparisons of the traditional attribute-graph based label propagation algorithms and GCNNs.

traditional attribute-graph based semi-supervised classifica-
tion techniques, attributes are propagated base on real graph
topologies in GCNNs.

By deep analogy, both the AGSS approaches and GCNNs
can be interpreted from the perspective of propagation and
classfied into two categories (as shown in Table 1):
• GCN, PR-GCN and label spreading (LS) minimize

the objective functions based on symmetric normalized
graph Laplacian, which results in symmetric propaga-
tions.
• GAT and label propagation (LP) minimize the objective

functions based on original graph Laplacian, which re-
sults in asymmetric propagations.

This unified interpretation motivates us to consider that
“Should the attributes be propagated as the labels?”. In gen-
eral, propagation is based on the intuition that “the connected
data samples tend to be similar”. Typically, this intuition is
valid for the labels, i.e., the connected nodes usually possess
similar labels. Therefore, labels are often propagated entirely.
Unfortunately, this intuition is not necessarily correct for the
attributes. Different from the labels, certain attributes should
not be propagated over the network. For example, the inter-
ests of a superstar tend be propagated to his fans, i.e., the fans
tend to have the same interests as their idol. On the other
hand, the gender of the superstar should not be propagated to
his fans, because the gender of the fans cannot be changed ac-
cording to the gender of the superstar. In fact, the connected
nodes only possess a certain portion of similar attributes.

According to the observation above, a masked graph con-
volutional network (Masked GCN) is proposed in this paper,
as described in Fig. 1. Instead of directly propagating all the
attributes in each node, Masked GCN only propagates a por-
tion of its attributes to the neighbours. The selection of the
to-be-propagated attributes is achieved by assigning a mask
to each node. The masks are learned by jointly considering
the local and global information, i.e., the distributions of the

attributes in local neighbourhoods and their impacts on the
classification result. Although the backbone fully-connected
network is similar to GCN, Masked GCN possesses another
two interactive learnable components, the edge weights and
masks for the nodes, which enhance the flexibility of our pro-
posed Masked GCN. These three learnable components can
be jointly trained by minimizing the cross-entropy between
the predicted and given labels.

The contributions are summarized as follows:

• We analyze the traditional attribute-graph based semi-
supervised classification and graph convolutional neural
networks from the perspective of propagation, and clas-
sify them into two categories, symmetric and asymmet-
ric propagations.

• We conclude that the common assumption in label prop-
agation cannot satisfy the practical demands of the at-
tribute propagation and only part of the attributes should
be propagated.

• We propose a masked graph convolution network
(Masked GCN), which satisfies the demands of attribute
propagation, by learning a mask vector for each node.

2 Notations
For a set of data samples V = {vi|i = 1, ..., N}, where
|V | = N , each data sample is associated with a feature
xn ∈ RT . X ∈ RN×T is the collection of these features,
each row of which corresponds to a sample. If there exists
a network among these data samples, it can be represented
by an attributed graph G = (V,E,X), where E stands for a
set of edges and each edge connects two vertices in V . The
sparse adjacency matrixA = [aij ] ∈ {0, 1}N×N is employed
to represent the network topology, where aij = 1 if an edge
exists between the vertices vi and vj , and vice versa. If the
network is allowed to possess self-edges, then ann = 1. Oth-
erwise, ann = 0. If a network is constructed based on the



node features instead of observed links, its adjacency matrix
is represented as W = [wij ] ∈ RN×N , which is the gener-
alized A. dn =

∑
j wnj is the degree of the vertex vn, and

D = diag(d1, d2, ..., dN ) is the degree matrix of the adja-
cency matrix W . Then, the normalized adjacency matrix is
P = D−1A. The graph Laplacian and its normalized form
are defined as L = D−A and L̂ = D−

1
2LD−

1
2 , respectively.

In semi-supervised classification, the labels Yl = {yi} ∈
R|Vl|×F of a set of vertices Vl ⊂ V , where F is the number of
classes, are given. For simplicity, nodes {vn}ln=1 is assumed
be labelled, while nodes {vn}|V |n=l+1 are unlabelled. Then, the
label matrix Yl can be reformed as Y = [Yl;Yu] ∈ R|V |×F ,
where Yu is a zero matrix. The normalized adjacency matrix
can then be expressed as

P =

[
Pll Plu
Pul Puu

]
,

where Pll ∈ R|Vl|×|Vl| and Puu ∈ R|V−Vl|×|V−Vl| are the
sub-matrices of P which correspond to the labelled and unla-
belled nodes, respectively.

3 Comparisons between AGSS and GCNNs
In this section, two traditional AGSS methods and three latest
GCNNs are firstly reviewed. Then, the similarities between
these two types of techniques are analyzed and summarized
accordingly. Note that the symbol hi is employed to denote
the object, which is propagated over the graph. Typically,
the labels are the objects propagated in traditional AGSS ap-
proaches, while the attributes are the objects propagated in
GCNNs. Therefore, we simply employ hi to represent both
the propagated labels in AGSS classification (in Sec. 3.1),
and the propagated attributes in GCNNs (in Sec. 3.2).

3.1 Traditional Attribute-graph based
Semi-supervised Classification

In transductive semi-supervised learning, the unlabeled data
samples given in the training stage is also the to-be-predicted
data in the testing stage. Traditional AGSS approaches are
well-studied transductive semi-supervised learning strategies.

A graph, which reveals the similarities between data sam-
ples, is usually constructed with edges. Let wij denote the
edge between the data samples vi and vj , and it is defined as

wij = exp

(
−
∑
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(xid − xjd)2

σ2
d

)
, (1)

where σd’s are learnable parameters. Then, the semi-
supervised learning process is conducted by propagating the
given labels over the constructed graph. With different prop-
agation strategies and constraints, numerous algorithms have
been proposed, such as label propagation [Zhu et al., 2003],
label spreading [Zhou et al., 2003] and etc.

Label Propagation
According to Gaussian random field on the graph, where the
mean of the field is characterized by the harmonic functions,

Label Propagation (LP) directly minimizes the energy func-
tion

E(H) =
∑

i,j
wij ||hi − hj ||22 = tr(HTLH), (2)

with hi = yi which is fixed as the label yi of the ith data
sample in Vl. Note that H = {hi}Ni=1 is the predicted labels,
L = D − A represents the graph Laplacian matrix of W and
tr(.) stands for the trace operator. By minimizing Eq. (2) with
respect to hi, its iterative updating formula for the unlabelled
data is computed as
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Then, the analytical solution can be expressed as

Yu = (I − Puu)−1PulYl, (4)

where I is an identity matrix with the size of |V −Vl|. The pa-
rameters σd’s are learned by minimizing the average entropy
of the labels for the unlabelled data, which is formulated as

−
∑N

i=l+1
hi log hi + (1− hi) log(1− hi), (5)

with respect to σd. This strategy is based on the intuition that
a well constructed graph will generate confident predictions,
i.e., hi is close to either 0 or 1.

Label Spreading
By considering the smoothness property of the graph, Label
Spreading (LS) formulates the propagation asH(k+1) = (1−
α)L̂H(k) + αY , where L̂ is the normalized Laplacian matrix
of W . This formulation is equivalent to the updating formula

h
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j
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h
(k)
j + αyi, (6)

which possesses the analytical solution as Eq. (7) shows.

H = (1− α)(I − αL̂)−1Y (7)

Eq. (7) is proved to be the solution of the following objective
function [Zhou et al., 2003]
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with α = 1
1+µ . As can be observed, the hard constraint of

the given labels in LP is replaced by a soft constraint, i.e.,
the regularization term

∑
i ||hi − yi||22. Here, all the hyper-

parameters σd’s are set to be σ and tuned manually.

3.2 Graph Convolutional Neural Networks
Graph convolutional neural networks are extended from
the convolutional neural network (CNN [Krizhevsky et al.,
2012]) which processes structured data samples, such as im-
ages or speeches, to process the general graph data sam-
ples. Different from the traditional attribute-graph based
semi-supervised learning, where only the attributes and labels
are given and networks are constructed from the attributes as
described in Sec. 3.1, GCNNs exploits the network topolo-
gies as well as the attributes and labels.



Graph Convolutional Network
Graph Convolutional Network (GCN) [Kipf and Welling,
2017] simplifies many previous models which possess high
complexities, and defines the graph convolution operation as

H
(k+1)
GCN = D̃−

1
2 ÃD̃−

1
2H

(k)
GCN , (9)

with H
(0)
GCN = X , where Ã = A + IN and D̃nn =∑

j Ãnj = dn + 1. The unknown labels can be predicted

by feeding H(k+1)
GCN into a fully-connected layer as QGCN =

HGCNW . The parameter W is obtained by minimizing the
cross-entropy between the given labels and the predictions as

L = −
∑
n∈Vl

F∑
f=1

Ynf log(Qnf ). (10)

PageRank GCN
Since GCN is equivalent to Laplacian smoothing the at-
tributes in the graph [Li et al., 2018], all the nodes tend to
obtain identical attributes as the number of iterations (i.e. the
number of graph convolutional layers) increases. To alleviate
this issue, PageRank GCN (PR-GCN [Klicpera et al., 2019])
improves the original GCN by considering its relationship
with PageRank. The convolution operator in PageRank GCN
is defined as

HPR GCN = (1− α)(I − αD̃− 1
2 ÃD̃−

1
2 )−1X. (11)

Unfortunately, directly calculating the fully personalized
PageRank matrix (1 − α)(I − αL̂)−1 is computationally in-
efficient, because it will generate a dense matrix, which will
induce extra computations in the multiplication with the at-
tribute matrix X . PR-GCN resolves this issue by approxi-
mating HPR GCN in an iterative manner as

H
(k+1)
PR GCN = (1− α)D̃−

1
2 ÃD̃−

1
2H

(k+1)
PR GCN + αX. (12)

Its prediction and training procedures are identical to GCN.

Graph Attention Network
To give consistent performances with variable sized inputs
and effectively exploit the most important parts of the in-
puts, the attention mechanism is introduced by GAT to handle
neighbourhoods with various sizes. GAT replaces the graph
convolutional layer in GCN with a graph attention layer by
leveraging attention mechanism [Bahdanau et al., 2015]. To
obtain the nodes which should be focused on, the attention
coefficients

onk =
exp

(
c(xTnW,x

T
kW )

)∑
k∈N(n) exp

(
c(xTnW,x

T
kW )

) (13)

is computed to reveal the amount of attentions received at
node vk from node vn. GAT adopts the Leaky-ReLU non-
linearity mapping, LeakyReLU([xTnW ||xTkW ]b), as c(., .) in
Eq. (13), where [xTnW ||xTkW ] represents the concatenation
of xTnW and xTkW , and b ∈ R2F stands for the shared param-
eters. O = [onk] ∈ RN×N can be regarded as the re-assigned
weights to the adjacency matrix A = [ank] ∈ RN×N . onk 6=
0 when ank = 1, i.e., the nodes vn and vk are connected.

Then, GAT can be represented as QGAT = OXW and con-
sidered as a re-weighted adjacency matrix based smoothing
as

H
(k+1)
GAT = OH

(k)
GAT , (14)

with H
(0)
GAT = X . After the smoothing operation, a pro-

jection QGAT = HGATW is performed. The parameter W
and attention parameter b can be computed by minimizing
the cross-entropy between the given labels and predictions
according to Eq. (10).

3.3 Comparisons
Here, the traditional AGSS techniques (in Sec. 3.1) and GC-
NNs (in Sec. 3.2) are analyzed from the perspective of propa-
gation, and they are classified into two categories: symmetric
and asymmetric propagations as summarized in Table 1.

Symmetric Propagation (GCN, PR-GCN and LS)
Comparing Eq. (11) and Eq. (12) with Eq. (7) and Eq. (6), re-
spectively, the differences between PR-GCN and LS are sum-
marized as follows: 1) the labels are propagated in LS while
the attributes are propagated in PR-GCN; 2) the normaliza-
tion is 1√

didj
in LS and 1√

(di+1)(dj+1)
in PR-GCN, because

Aii = 1 in PR-GCN while Wii = 0 in LS. If self-loop is
allowed in LS, its normalization will also be 1√

(di+1)(dj+1)

which is identical to PR-GCN. Therefore, PR-GCN [Klicpera
et al., 2019] is equivalent to LS [Zhou et al., 2003], despite
the different propagated objects. The objective function of LS
in Eq. (8) can also serve for PR-GCN by replacing the label
yi with the attribute xi.

Comparing Eq. (12) from PR-GCN with Eq. (9)
from GCN, PR-GCN averages the propagated attributes
D̃−

1
2 ÃD̃−

1
2H and the original attributes X with weights

1 − α and α, respectively, while GCN does not perform
these averages. The objective function of GCN is the first
part of Eq. (8) (which is the cost function of LS), i.e.,
L =

∑
i,j

wij || hi√di −
hj√
dj
||22.

The propagation weights in GCN, PR-GCN and LS are
wij√
didj

. Since wij = wji holds in these algorithms, their

propagations are considered to be symmetric.

Asymmetric Propagation (GAT and LP)
Comparing Eq. (3) from LP with Eq. (14) (where onk defined
in Eq. (13)) from GAT, the difference between them is the
edge weight function. LP adopts Eq. (1), while GAT utilizes

wij = exp
(
bT [hi||hj ]

)
= exp

(
bT1 hi + bT2 hj

)
, (15)

if vi and vj are connected. Note that [hi||hj ] is the concate-
nated vector of hi and hj , and hi possesses the identical size
compared to hj . Therefore, their objective functions and up-
dating formulas are the same as shown in Eqs. (2) and (3),
respectively. Since wij = wji holds in LP, it performs sym-
metric propagations if the normalization is disabled. Since
bi = bj does not exist in most of the situations, wij 6= wji
and thus LP and GAT perform asymmetric propagations.



Dataset #Nodes #Edges #Classes #Features
CiteSeer 3,327 4,732 6 3,703
Cora 2,708 5,429 7 1,433
PubMed 19,717 44,338 3 500
NELL 65,755 266,144 210 5,414

PPI 56,944 818,716 121 50

Table 2: Datasets.

4 Masked Graph Convolutional Network
In this section, we propose our Masked Graph Convolutional
Network (Masked GCN) by providing the motivations, for-
mulations and solutions accordingly.

4.1 Motivations
With the comparisons and summaries in Sec. 3, the inherent
difference between the traditional AGSS techniques and GC-
NNs can be considered as the object to be propagated before
the predictions. Labels are propagated in traditional AGSS
methods, while attributes are propagated in GCNNs. The
common assumption in these methods is “the connected data
samples tend to be similar”. For traditional label propaga-
tions, this assumption usually holds because the connected
data samples tend to possess similar labels. However, this as-
sumption is debatable for attribute propagations. For exam-
ple, each people usually has many characters in online social
networks. Two connected people are often similar for some
characters instead of all the characters. Therefore, the con-
nected nodes are usually similar for a certain portion of their
attributes.

4.2 Formulations and Solutions
Here, Masked Graph Convolutional Network (Masked GCN)
is formulated based on asymmetric propagation and attribute-
enhanced network topology. According to the above intu-
ition, the objective function is defined as follows.

LMasked GCN Asym =
∑

i,j
wij ||hi −M (j)hj ||22 (16)

where hi stands for the attributes of the node vi, and
wij , which is defined in Eq. (15), represents the edge
weight between the nodes vi and vj . Note that M (j) =

diag(m
(j)
1 ,m

(j)
2 , ...,m

(j)
T ) is the diagonal mask matrix of the

node vi, where T is the number of attributes, i.e., the length
of hi (hj). This mask matrix M (j) relaxes the hard constraint
that hi and hj tend to be completely similar and only con-
strain a certain portion of hi and hj to be similar. By mini-
mizing Eq. (16) with respect to hi, the updating formula can
be obtained as

h
(k+1)
i =

∑
j

wij∑
j wij

M (j)h
(k)
j . (17)

As can be observed, the propagated attributes is masked by
M (j) as illustrated in Fig. 1. The mask m

(j)
t of attribute

t in node j is exploited to determine whether the attribute t
in node j should be propagated to its neighbours. If m(j)

t is

large, most of the attribute t in node j will be propagated (e.g.
the red and pink attributes in Fig. 1(b)), and vice versa (e.g.
the orange and green attributes).

Then, the formulation of M (j) can be introduced. Intu-
itively, the mask m

(j)
t of the attribute t in node j should

be determined by both the local and global behaviors of at-
tribute t. Typically,m(j)

t should be affected by the confidence
that node i possesses attribute t. Therefore, the consisten-
cies of attribute t between node vi and its neighbours, i.e.,
−
∑
p∈N(j) wjp(hpt − hjt)

2, are taken in to account in the
proposed method. If the consistency is low, the mask tends
to prevent the attribute t from being propagated, i.e., m(j)

t

should be small. On the other hand, m(j)
t should globally

benefit the classification result. Therefore, a learnable param-
eter σt, which is independent of the nodes, is assigned. By
jointly considering the local and global behaviors, the mask
is defined as

m
(j)
t = exp

− 1

dj

∑
p∈N(j)

wjp(hpt − hjt)2

σ2
t

 , (18)

where Σ = diag(σ1, σ2, ..., σT ) is the matrix which contains
the learnable attribute weights. Similar to GCN and GAT, two
backbone convolutional layers are utilized in Masked GCN,
i.e., the attributes are propagated twice.

By setting H(0)
Masked GCN = X which is the original at-

tributes, H(1)
Masked GCN = {h(1)i }Ni=1 and H(2)

Masked GCN =

{h(2)i }Ni=1 are calculated via Eq. (17). The unknown
labels are predicted by feeding the obtained attributes
H

(2)
Masked GCN into a fully-connected layer as follow.

TMasked GCN = softmax(H
(2)
Masked GCNW ) (19)

where W is the weights in the fully-connected layer.
There exists three learnable components in the proposed

Masked GCN, W in the fully-connected layer (Eq. (19)), b in
edge re-weighting (Eq. (15)) and Σ = diag(σ1, σ2, ..., σT ) in
the learned mask (Eq. (18)). They can be jointly trained via
gradient back-propagation.
Remark 1: In GCN, all the attributes are propagated, which
tend to amend all the nodes to possess the identical attributes
after convergence. Since Masked GCN only propagates part
of the attributes, this issue can be alleviated.
Remark 2: The formulation of Masked GCN are constructed
for the transductive semi-supervised node classification task.
Since GCNNs propagate attributes based on the network
topology instead of propagating labels, the proposed Masked
GCN can be directly applied to inductive semi-supervised
node classification task where the target graphs in the testing
stage are not provided in the training stage.
Remark 3: Although only GAT in asymmetric propagation
is improved to the masked version, other GCNNs, such as
GCN and PR-GCN in symmetric propagation, can also be
improved with the proposed mask. For example, GCN can be



Methods Cora Citeseer Pubmed NELL
MLP 55.1% 46.5% 71.4% 22.9%
ManiReg [Belkin et al., 2006] 59.5% 60.1% 70.7% 21.8%
SemiEmb [Weston et al., 2012] 59.0% 59.6% 71.7% 26.7%
LP [Zhu et al., 2003] 68.0% 45.3% 63.0% 26.5%
DeepWalk [Perozzi et al., 2014] 67.2% 43.2% 65.3% 58.1%
ICA [Lu and Getoor, 2003] 75.1% 69.1% 73.9% 23.2%
Planetoid [Yang et al., 2016] 75.7% 64.7% 77.2% 61.9%
Chebyshev [Defferrard et al., 2016] 81.2% 69.8% 74.4% -
MoNet [Monti et al., 2017] 81.7% 69.9% 78.8% 64.2%

Random-scheme Mask GCN 14.8% 17.2% 35.1% 4.8%

GCN [Kipf and Welling, 2017] 81.5% 70.3% 79.0% 66.0%
Masked GCN (Sym) 82.7% 72.0% 79.3% 68.2%
GAT [Veličković et al., 2018] 83.0% 72.5% 79.0% -
Masked GCN (Asym) 84.4% 73.8% 80.2% 68.9%

Table 3: Transductive learning results.

improved to

LMasked GCN Sym =
∑
i,j

wij

∥∥∥∥∥ hi√
di
−M (j) hj√

dj

∥∥∥∥∥
2

2

,

(20)

wherewij = aij is obtained from graph topology and it is not
learnable as in GCN. Similar to Eq. (16), M (j) also serves as
masks in Eq. (20).
Remark 4: Although T additional learnable parameters σt’s
are introduced in Masked GCN, the number of additional pa-
rameters is relatively small compared to the numbers of pa-
rameters in GCN and GAT. The parameters in the one-layered
GCN are the weights of the fully connected layer, whose
number is T × C (where T and C are the numbers of at-
tributes and classes, respectively). In addition to the weights
of the fully connected layer, GAT also possesses another 2T
parameters, which is employed to determine the weights of
the edges. Therefore, the T additional learnable parameters
in Masked GCN tend not to cause overfitting.

5 Evaluations
In this section, we validate the proposed Masked GCN by em-
pirically evaluating its performances in the semi-supervised
node classification task with both the transductive and in-
ductive learning settings. Masked GCN (Asym) and Masked
GCN (Sym) denotes the proposed method with asymmetric
and symmetric propagations, respectively.

5.1 Datasets
For the transductive learning task, the experiments are con-
ducted on three commonly utilized citation networks [Sen et
al., 2008], Cora, CiteSeer and PubMed, as shown in Table
2. In each network, nodes and edges are research papers and
undirected citations, respectively. The node content is con-
structed by extracting the words from the documents. Papers
are categorized into various classes according to the disci-
plines. In each citation network, 20 nodes per class, 500

nodes and 1000 nodes are employed for training, validation
and performance assessment, respectively. Besides, another
bipartite large network [Carlson et al., 2010], NELL, is con-
structed from a knowledge graph as shown in Table 2. Except
for the entity nodes in the original knowledge graph, separate
relation nodes (ei, r) and (ej , r) are extracted from each en-
tity pair (ei, r, ej). The edges are constructed between each
entity ei and its all relation nodes (ei, r).

For the inductive learning task, the protein-protein interac-
tion (PPI) dataset [Zitnik and Leskovec, 2017] is employed.
PPI dataset consists of 24 attributed graphs, each of which
corresponds to a different human tissue and contains 2,373
nodes in average. Each node possesses 50 features including
the positional gene sets, motif gene sets and immunological
signatures. 121 cellular functions are employed from the gene
ontology sets, which are collected from the Molecular Signa-
tures Database [Subramanian et al., 2005], as labels. Algo-
rithms are trained on 20 graphs, validated on 2 graphs and
tested on 2 graphs, accordingly. The training and validation
graphs are fully labelled, while the graphs for testing are not
given during training and validation processes.

5.2 Baselines
For the transductive learning task, 11 baseline semi-
supervised node classification algorithms are employed, in-
cluding multilayer perceptron (MLP), label propagation (LP)
, semi-supervised embedding (SemiEmb), manifold regular-
ization (ManiReg), graph embedding (DeepWalk), iterative
classification algorithm (ICA), attribute-graph based semi-
supervised learning framework (Planetoid), graph convolu-
tion with Chebyshev filters (Chebyshev), graph convolutional
network (GCN), mixture model networks (MoNet), and graph
attention networks (GAT), for comparisons.

For the inductive learning task, 7 state-of-the-art algo-
rithms are employed, including random classifier (Random),
logistic regression based on node feature without network
structure (Logistic Regression), inductive variant of GCN (In-
ductive GCN) [Kipf and Welling, 2017], three variants of



Methods PPI
Random 0.396
Logistic Regression 0.422
GraphSAGE-mean 0.598
GraphSAGE-LSTM 0.612
GraphSAGE-pool 0.600

Inductive GCN 0.500
Masked GCN (Sym) 0.892
GAT 0.934
Masked GCN (Asym) 0.952

Table 4: Inductive learning results.

GraphSAGE [Hamilton et al., 2017] with different aggrega-
tor functions, and graph attention network (GAT) [Veličković
et al., 2018]. GraphSAGE aggregates the representations
(i.e. features) in local neighbourhoods and concatenates the
aggregations with the corresponding node representations.
GraphSAGE-mean calculates the element-wise means in lo-
cal neighbourhoods as the representations. GraphSAGE-
LSTM feeds the representations from local neighbourhoods
into an LSTM by considering its superior expressive capa-
bility. GraphSAGE-pool, which is symmetric and trainable,
inputs the representations from local neighbourhoods into a
fully-connected neural network and then processes the out-
comes by performing an element-wise max-pooling opera-
tion.

All the results of the baseline methods are either from their
original papers or produced by running the codes from the
authors with their default settings.

5.3 Results
Before we present the results for both the transductive and
inductive learning tasks, the performance of our method with
a random-scheme mask matrix is introduced to show the ne-
cessity of learning the mask as in Eq. (18). The classification
accuracies are shown in Table 3. As can be observed, the
performance with a random mask matrix is similar to that of
random classification and the accuracies are much lower than
that of our mask scheme, because adding a random-scheme
mask matrix to each node is equivalent to assigning random
attributes to each node.

The results for transductive learning task in terms of clas-
sification accuracies are shown in Table 3. To respectively
highlight the improvements of Masked GCN in symmetric
and asymmetric propagations, GCN and its improved ver-
sion Masked GCN (Sym) are placed together while GAT and
Masked GCN (Asym) are placed together. We can find that
Masked GCN significantly improves the performances com-
pared to GCN and GAT. Besides, Masked GCN (Asym) out-
performs other methods including Masked GCN (Sym).

The results for inductive learning task in terms of micro F-1
scores are shown in Table 4. Similar conclusion can be ob-
tained as the transductive learning results. However, the gain
achieved by our proposed method for the symmetric propaga-
tion (GCN) is much significant than that for the asymmetric
propagation (GAT), because the propagation weights in GCN

Methods Cora Citeseer Pubmed
GAT 44.8 72.6 270.6
Masked GCN (Asym) 58.9 92.1 312.3

Table 5: Running time comparison (in seconds).

are only determined by the degrees of two connected nodes.
Therefore, the performance of GCN is relatively low and the
gain induced by Masked GCN is much significant. Besides,
although GAT has achieved a high performance on PPI, its
performance can be further improved by our Masked GCN.

According to the results in both the transductive and induc-
tive tasks, the proposed Masked GCN can obviously improve
the performances compared to the baseline methods, which
also verifies the effectiveness of our principle, i.e., propagat-
ing partial attributes instead of the entire ones.

The running time of our Masked GCN is compared to that
of the state-of-the-art method, GAT, on the four networks
with the transductive learning setting as shown in Table 5.
The results have shown that the running time of Masked GCN
is 1.24 times compared to that of GAT in average. In fact, the
extra time is mainly utilized to learn the parameters of masks.
Case Study. To verify our motivations and contributions, a
case study is conducted on the Pubmed network to specifi-
cally show which propagations will be masked. The Pubmed
network consists of publications about diabetes. Each publi-
cation is described by a word vector from a dictionary which
consists of 500 unique words. As can be observed from our
results, most of the common words (such as “increase”, “mea-
sure”, etc.) are masked, because their propagations do not
significantly impact the classification performance. On the
contrary, the medical terms (such as “kinase”, “metabolic”,
etc.), which tend to give large contributions in the classifica-
tion, possess high propagation rates.

6 Conclusions
In this paper, we observe that the connected nodes are usually
similar for a certain portion of their attributes. According to
this observation, we propose a masked graph convolutional
network (Masked GCN) by masking the attributes to be prop-
agated. The mask is learned by jointly considering the at-
tribute distributions in local neighbourhoods and the impact
on the classification results. The experimental results in both
the transductive and inductive tasks verify the correctness and
superiority of propagating partial attributes instead of the en-
tire ones. In the future, our Masked GCN will be extended to
other heterogeneous networks [Serafino et al., 2018].
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son, and Pierre Vandergheynst. Convolutional neural net-
works on graphs with fast localized spectral filtering. In
NIPS, pages 3837–3845, 2016.

[Duvenaud et al., 2015] David K. Duvenaud, Dougal
Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-
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