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Abstract—Graph Neural Networks (GNNs) have become a hot
topic for their potentials in modeling the irregular data and
providing state-of-the-art performance in many fields. Most of
the existing GNNs are deliberately designed for semi-supervised
learning tasks, where supervision information (labelled node)
is utilized to mitigate the oversmoothing problem of message
passing. Unfortunately, the oversmoothing problem tends to be
more severe in unsupervised tasks, since supervision information
is not available. Since community structure/cluster is an essential
characteristic of network, a natural approach to reduce the
oversmoothing problem is to also constrain the node embeddings
to maintain their own characteristics to prevent all the node
embeddings from becoming too similar to be distinguished. In this
paper, a novel Optimal Transport based Graph Neural Network
(OT-GNN) is proposed to overcome the oversmoothing problem
in unsupervised GNNs by imposing the equal-sized clustering
constraints to the obtained node embeddings. To solve the
combinatorial optimization problem, the constrained objective
function of unsupervised GNN is relaxed to an Optimal Transport
problem, and a fast version of the Sinkhorm-Knopp algorithm
is adopted to handle large networks. Besides of being employed
to train existing GNNs, such as Graph Convolutional Network
(GCN) and Graph Attention Network (GAT), for node embedding
and clustering in an unsupervised manner, OT-GNN can also be
exploited to regularize other unsupervised GNNs, such as Graph
AutoEncoder, for the link prediction task. Extensive experiments
on node clustering, classification and link prediction demonstrate
the superior performance of our proposed OT-GNN.

Index Terms—graph neural network, network embedding,
unsupervised learning, node clustering

I. INTRODUCTION

Graph Neural Networks (GNNs) [1], [2] have become a hot
topic in deep learning for their potentials in modeling irregular
data. GNNs have been widely used and achieved state-of-
the-art performance in many fields, such as computer vision,
natural language processing, traffic forecasting, chemistry and
medical analysis, etc. Existing GNNs fall into two cate-
gories, spectral methods [3] and spatial ones [4], [5]. Graph
Convolutional Network (GCN) [6], which is a simple, well-
behaved and insightful GNN, bridges above two perspectives
by proving that the propagation can be motivated from a
first-order approximation of spectral graph convolutions. Many
efforts have been paid to enhance GCN from the perspective of
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Fig. 1. Illustration of the oversmoothing in GNNs. By comparing the semi-
supervised GCN and GCN without learnable parameter W , it can be observed
that supervision information (labelled nodes) plays the role of mitigating
the oversmoothing of graph convolution operation via the mapping function
parameterized by W . This issue tends to be more severe in unsupervised
GNNs, such as Deep Graph Infomax (DGI), where supervision information
is not available. Our proposed OT-GNN can significantly alleviate it.

propagation, such as learnable propagation weights in Graph
Attention Network (GAT) [7] and structural neighbourhood in
Geom-GCN [8].

Most GNNs are deliberately designed for (transductive and
inductive) semi-supervised learning tasks, where supervision
information (labelled nodes) plays the important role of en-
hancing the distinguishability. In fact, Laplacian smoothing
(spatial perspective) [9] and low-pass filtering (spectral per-
spective) [10], which have been accepted to be the reason for
the success of GCNs, also significantly reduce the expressive
power, i.e. data distinguishability, due to the over-smoothing
problem [11]–[13]. Thus, the supervision information is uti-
lized to mitigate this adverse effect. Fig. 1 illustrates this
observation by comparing the semi-supervised GCNs and
GCN without learnable parameter. Unfortunately, supervision



information cannot fundamentally solve this problem for the
following two reasons. First and foremost, supervision infor-
mation is not available in unsupervised tasks, such as network
embedding, node clustering and link prediction. Most existing
unsupervised GNNs either reconstruct the original information
(adjacency matrix and attribute matrix) [14]–[16] or maximize
mutual information [17], [18] to retain as much information
as possible. Fig. 1 visualizes the embeddings of Deep Graph
Infomax (DGI) [17], which is a state-of-the-art unsupervised
GNN. Thus, the oversmoothing problem tends to be more
severe for unsupervised GNNs than for semi-supervised ones.
Second, although learning the message aggregation from la-
belled nodes can alleviate smoothing problem, it also induces
serious overfitting problem [19], [20], which also seriously
effects the performance.

In this paper, a novel Optimal Transport based Graph
Neural Network (OT-GNN) is proposed to overcome the over-
smoothing problem in unsupervised GNNs, which constrains
all the node embeddings to be similar. Since community
structure/cluster is an essential characteristic of network [21],
a natural approach to reduce the oversmoothing problem is to
also constrain the node embeddings to maintain their own char-
acteristics to prevent all the node embeddings from becoming
too similar to be distinguished. According to this intuition, OT-
GNN elegantly trains the GNNs by imposing the clustering
constraints to the obtained node embeddings. Specifically, the
objective function of unsupervised GNNs is firstly derived
from the cross-entropy loss of the semi-supervised node classi-
fication. This objective function can be optimized with respect
to the model parameters and node labels. Unfortunately, it
leads to a degenerate solution which assigns all the nodes
into a single class due to the oversmoothing problem. Then,
to prevent this degenerate solution, clustering constraints are
added to ensure the nodes being uniformly classified into
classes of equal size. To solve the formulated combinatorial
optimization problem, the constrained objective function of
unsupervised GNN is relaxed to an Optimal Transport prob-
lem, which can be then solved via linear programming in a
polynomial time. To speedup this process on large networks, a
fast version of the Sinkhorm-Knopp algorithm, which employs
a regularization term to the loss function, is adopted, and
an iterative algorithm is proposed with additional complexity
proportional to the network size. Besides of being employed
to train the GNNs, such as Graph Convolutional Network
(GCN) [6] and Graph Attention Network (GAT) [7] for node
embedding and clustering in an unsupervised manner, OT-
GNN can also be utilized to regularize other unsupervised
GNNs, such as Graph AutoEncoder (GAE) [14], for the link
prediction task.

The main contributions of this paper are summarized as
follows:
• To overcome the oversmoothing problem in unsupervised

GNNs, we propose a novel Optimal Transport based
Graph Neural Network (OT-GNN) with interactive node
embedding and clustering.

• To efficiently train the unsupervised GNNs, we relax its

constrained objective function to an Optimal Transport
problem and solve it via a fast version of the Sinkhorm-
Knopp algorithm.

• We conduct extensive experiments on node clustering,
classification and link prediction to demonstrate the su-
perior performance of our proposed OT-GNN.

II. RELATED WORK

In this section, recent progresses in graph neural networks
are first reviewed. Then, oversmoothing problem in GNNs and
methods used to alleviate it are provided. Next, unsupervised
graph neural networks are elaborated. Finally, exiting methods,
which combine clustering and embedding, are introduced.

Graph Neural Networks: Graph Neural Networks (GNNs)
[1], [2] aim at applying the expressive representation power
of deep learning to irregular data, i.e, graphs. GNNs fall into
two categories, spectral methods [3] and spatial ones [4],
[5]. Spectral methods [3], which originate from the spectral
graph theory in graph signal processing, consider the node
attributes as the signals over the graph and operate them in
the spectral space of the graph. On the other hand, spatial
methods [4] propagate the node attributes along the edge
by leveraging the message passing mechanism [5]. Graph
Convolutional Network (GCN) [6], which is a simple, well-
behaved and insightful GNN, bridges above two perspectives
by proving that the propagation can be motivated from a first-
order approximation of spectral graph convolutions. Graph
Attention Network (GAT) [7] improves the fixed propagation
weights in GCN to learnable ones via attention mechanism.
Geom-GCN [8] enhances the local propagation in both GCN
and GAT to geometric aggregation in structural neighbourhood
by leveraging network embedding.

Oversmoothing in GNNs: Li et al [9] and Wu et al.
[10] interpret the success of GCN from Laplacian smooth-
ing (spatial perspective) and low-pass filtering (spectral per-
spective), respectively. PageRank-GCN [12] integrates per-
sonalized PageRank to GCN to constrain the propagation.
JKNet [11] employs dense connections for multi-hop message
passing, while DeepGCN [22] incorporates residual layers,
dense connections and dilated convolutions into GCNs to
facilitate the development of deep architectures. Recently, [13]
investigates the loss of expressive power of GNNs via their
asymptotic behaviors by generalizing the forward propagation
of a GCN as a specific dynamical system. PairNorm [23]
proposes a normalization layer to prevents all the node em-
beddings from becoming too similar. DropEdge [20] randomly
removes a certain number of edges from the input graph
at each training epoch to act like a data augmenter and
to reduce the adverse effect of message passing. However,
existing methods neither work without label information, such
as JKNet [11] and DeepGCN [22], nor exploit the property
of the attributed graph, such as PairNorm [23] and DropEdge
[20].

Unsupervised Graph Neural Networks: To extend GNNs
for unsupervised tasks, there are few work on unsupervised



GNN [14], [15], [17], [18]. These methods fall in two cate-
gories, mutual information based methods and reconstruction
based ones. Mutual information based methods train GNNs
by maximizing the mutual information. Deep Graph Info-
max (DGI) [17] maximizes mutual information between local
embedding and global graph representation. Graph Mutual
Information (GMI) [18] reconstruction based methods and
maximizes mutual information between node embeddings
before and after GNNs, and mutual information between
reconstructed topology and original topology. Reconstruction
based methods train GNNs by reconstructing original data.
Graph AutoEncoder (GAE) and its variational version (VGAE)
[6] take GCN [6] as encoder and reconstruct the adjacency
matrix for link prediction. ARGAE [15] enhances GAE to
seek robust embedding by adding an adversarial module on
the obtained embedding. Co-embedding methods [16], [24]
encode both node and attribute (co-embedding) from GCN
and reconstruct topology and attribute matrix. According to
Denoising AutoEncoders (DAE) [25], AutoEncoders can also
be considered as maximizing a lower bound of mutual in-
formation to retain as much information as possible. Without
supervision information (labelled nodes), the oversmoothing
problem tends to be more severe for unsupervised GNNs than
for semi-supervised ones.

Clustering based Network Embeddings: There are few
work, which combines network embedding with clustering
(community detection) [26]–[31]. Some of them use the mod-
ularity [21], which is widely adopted in community detection,
to regularize the embedding learning [26], [27], while others
employ the clustering error in K-means, i.e., summarization
of distance between node and assigned cluster center, to
regularize the embedding learning [29], [30]. ComE [31] and
vGraph [28] assume that the node embeddings are drawn from
a mixture distribution, and iteratively update node embedding
and community assignment. Note that, oversmoothing problem
often doesn’t exit in most of the embedding methods adopted
by them. For, example, the negative sampling has prevents
DeepWalk, which employed by [29], [31], from oversmooth-
ing. Thus, clustering strategy used in these methods play of
role of enhancing cluster structure. However, our proposed
OT-GNN constrains embeddings being uniformly partitioned
into subsets of equal size to overcome oversmoothing, which
makes the lose of cluster structure. Thus, the problem tackled
by OT-GNN is too difficult to be handled by existing clustering
strategy, such as (Gaussian) mixture model in [28], [31] and
K-means in [29], [30], which can’t prevent the degenerate
solution where all the node embedding are classified into one
clusters.

III. PRELIMINARIES

In this section, the notations are first given. Then, the basic
concepts in Graph Neural Networks are provided.

A. Notations

A network can be represented by an attributed graph G =
(V,E,X). V = {vi|i = 1, ..., N} is a set of |V | = N vertices,

where vi is associated with a feature xi ∈ RK . X ∈ RK×N
represents the collection of the features. Each column of X
corresponds to a node. E stands for a set of edges. Each of
the edges connects two vertices in V . The adjacency matrix
A = [aij ] ∈ RN×N is obtained according to the network
topology. If an edge connects the vertices vi and vj , aij = 1,
and vice versa. If self-edges are allowed in the network, then
ann = 1. Otherwise ann = 0. dn =

∑
j anj stands for the

degree of vn while D = diag(d1, d2, ..., dN ) is the degree
matrix of A. The graph Laplacian and its normalized form are
defined as L = D −A and L̃ = D−

1
2LD−

1
2 , respectively.

For semi-supervised node classification task, a set of ver-
tices Vl ⊂ V are labelled. yi ∈ {1, 2, 3..., F} is utilized to
represent the label of vertex vi ∈ Vl, where F is the num-
ber of classes. A typical semi-supervised node classification
algorithm classifies other nodes in V − Vl. For simplicity,
the first |Vl| nodes {vi}|Vl|

i=1 are assumed to be labelled, i.e.,
{y1, y2, ..., y|Vl|} are known.

B. Graph Neural Networks (GNNs)

Graph Neural Networks (GNNs) are designed from either
the spatial or spectral perspective. Spectral ones originate from
spectral graph convolution, while spatial ones are designed
along attribution propagation pipeline. By simplifying the
time-consuming spectral graph convolution operation of ex-
isting spectral methods, Graph Convolutional Network (GCN)
[6] defines the graph convolution operation as

TGCN = σ(HGCN ) = σ(WXD̃−
1
2 ÃD̃−

1
2 ), (1)

where Ã = A+ IN and D̃nn =
∑
j Ãnj = dn + 1. W stands

for the trainable weight matrix of a fully-connected layer. σ(.)
represents the nonlinear activation function, such as ReLU and
softmax. HGCN ∈ RK×N and TGCN denotes the node repre-
sentations (embeddings) before and after nonlinear activation
function σ(.), respectively. For clarity, HGCN and TGCN are
called node feature and node representation, respectively. Eq.
(1) can be formulated in a node-wise form as

tGCNi = σ(hGCNi )

= σ

W ∑
j∈N(i)∪{i}

1√
(di + 1)(dj + 1)

xj

 ,(2)

where hGCNi and tGCNi , the ith columns of HGCN and
TGCN , are the feature and representation of node vi, respec-
tively. N(i) represents the neighbourhood of vertex vi. Some
recent work interprets GCN from smoothing and low-pass
filtering. Li et al. [9] concludes the mechanism and success
of GCN as performing a symmetric Laplacian smoothing
operation before the actual predictions. The performance based
on the smoothed attribute obviously outperforms that based on
the original attributes. Wu et al. [10] reduce the unnecessary
complexity and redundant computation of GCN to Simplified
Graph Convolution (SGC) by successively removing nonlin-
earities and collapsing weight matrices between consecutive
layers, and show that it corresponds to a fixed low-pass filter



followed by a linear classifier. Although GCN and SGC sig-
nificantly improve the performance, its main drawback is the
fixed propagation weight 1√

(di+1)(dj+1)
, which is completely

determined by the degrees of the two connected nodes.
To overcome that drawback, Graph Attention Network

(GAT) [7] attempts to learn the propagation weight by lever-
aging the self-attention mechanism as

αij = softmax (a(Wxi,Wxj)) (3)

=
exp

(
LeakyReLU(bT [Wxi||Wxj ])

)∑
k∈N(i) exp (LeakyReLU(bT [Wxi||Wxk]))

,

where a(., .) stands for a neural network, || denotes the
concatenate operator and b ∈ R2F is the learnable vector for
propagation weights. Then the node representation in Eq. (2)
can be enhanced to

tGATi = σ(hGATi ) = σ

W ∑
j∈N(i)

αijxj

 , (4)

where both b and W are the trainable parameters. hi and ti
are adopted to represent the node feature and embedding by
ignoring the superscript, if we don’t emphasize the methods
used to obtain them.

1) Semi-supervised GCNs: To obtain the learnable param-
eters for (transductive and inductive) semi-supervised node
classification task, GNNs can be trained by minimizing the
cross-entropy between the predictions and given labels of the
labelled vertices vi ∈ Vl as

Lsup = −
∑
vi∈Vl

F∑
y=1

δ(yi − y) log(tiy), (5)

where tiy is the yth element of node embedding ti. δ(.) is
Dirac delta function and δ(yi − y) = 1 if and only if y =
yi, otherwise δ(yi − y) = 0. By setting the dimensionality
of ti to the number of classes F and adopting softmax as
the nonlinearity function σ(.), tiy can be considered as the
predicted probability of node vi being classified to class y as

tiy = p(y|hi) = softmaxy(hi) =
exp(hiy)∑
k exp(hik)

. (6)

2) Unsupervised GCNs: To utilize the GCNs without any
supervision, unsupervised GNNs is often trained by recon-
structing the given information, such as topology and node
attribute. Graph AutoEncoder (GAE) [14] takes GCN as
encoder and reconstructs the adjacency matrix from

āij = sigmoid(tTi tj). (7)

By minimizing the cross-entropy between the observed ad-
jacency matrix A and the reconstructed adjacency matrix
Ā = [āij ] ∈ RN×N

Ltopo(p) = −
N∑

i,j=1

(aij log(āij) + (1− aij) log(1− āij)) ,

(8)

the parameters W in GCN can be trained. GAE achieves
superior performance in link prediction [14].

IV. PROPOSED MODELS

In this section, a novel unsupervised graph neural network
(GNN), Optimal Transport based GNN (OT-GNN) is pro-
posed. First, unsupervised GNN is derived from the semi-
supervised one by adding clustering constraint to prevent
oversmoothing, i.e., embedding collapsed. Then, the objective
function of unsupervised GNN is interpreted from Optimal
Transport perspective for efficient solution, and a fast version
of Sinkhorn-Knopp algorithm is adopted to efficiently solve
it. Finally, the proposed OT-GNN is utilized to enhance the
existing unsupervised Graph AutoEncoder (GAE).

A. Unsupervised Graph Neural Networks

In this subsection, we derive unsupervised graph neural
network from the semi-supervised one in Section III-B1. By
integrating the probability interpretation of tiy (Eq. (6)) into
the loss function of semi-supervised node classification (Eq.
(5)), the objective function can be reformulated as

L
(
p|{y1, y2, ..., y|Vl|}

)
= −

∑
vi∈Vl

log (p(yi|hi)) , (9)

where L
(
p|{y1, y2, ..., y|Vl|}

)
denotes that node labels

{y1, y2, ..., y|Vl|} are required to train the GNN ti = p(.|hi)
parameterized by W and b in Eq. (6). After training, parame-
ters W and b in Eqs (2) and (4) are obtained. Thus the labels
of unlabelled nodes vj ∈ V −Vl can be obtained from p(y|hj),
and the objective function in Eq. (9) can be extended to

L
(
p, {yj}|V |j=|Vl|+1|{yi}

|Vl|
i=1

)
=−

∑
vi∈Vl

log (p(yi|hi))−
∑

vj∈V−Vl

log (p(yj |hj))

=−
∑
vi∈V

log (p(yi|hi))

=−
∑
vi∈V

F∑
y=1

δ(yi − y) log (p(y|hi)) , (10)

where the term corresponding to the unlabelled nodes, i.e.∑
vj∈V−Vl

log (p(yj |hj)), equals to 0 and achieves its mini-
mum, since yj is obtained from p(y|hj) for unlabelled nodes.
Therefore, semi-supervised node classification is achieved by
interactively optimizing the objective function in Eq. (10) with
respect to the model p(y|h) parameterized by W and b and
node labels {yi}|V |i=1. This process works if and only if part of
node labels {yi}|Vl|

i=1 are known and utilized to constrain the
optimization.

Unfortunately, optimizing this objective function leads to a
degenerate solution if all the nodes are unlabelled. Eq. (10)
can be trivially minimized by training the model to assign
all the nodes into a single class. To prevent this degenerate
solution, constraints must be added to the objective function.
To facilitate it, we first represent the labels as a posterior



distribution q(y|hi) instead of a deterministic Dirac delta
function δ(yi − y), and reformulate Eq. (10) as

L (p, q) = −
∑
vi∈V

F∑
y=1

q(y|hi) log (p(y|hi)) , (11)

where q(y|hi) ∈ {0, 1} and
∑
y q(y|hi) = 1. Note that q(y|hi)

is utilized to denote the posterior distribution of node vi’s label
instead of indicating label y is learned from hi as p(y|hi).
Then, we aim to add some constraints to ensure nodes being
classified into F classes. Since the distribution of cluster size
is unknown, we simply assume that all nodes are uniformly
classified into F clusters of equal size to prevent the degraded
situation where most nodes are classified into one big cluster.
Note that although the equal-sized clustering doesn’t perfectly
meet the ground-truth, it is an effective way to prevent all
the node embeddings from being too similar. In experiments,
the number of clusters, i.e., F , is set larger than the ground-
truth, and the obtained embeddings are adopted for clustering
instead of the assigned clusters. Thus, the objective function
for unsupervised graph neural network can be written as

arg min
q,p

−
∑
vi∈V

F∑
y=1

q(y|hi) log (p(y|hi)) (12)

s.t. ∀y : q(y|hi) ∈ {0, 1} and
∑
vi∈V

q(y|hi) = N/F,

where the constraint
∑
vi∈V q(y|hi) = N/F makes sure that

there are N/F nodes are assigned to class y, thus all the nodes
are equally partitioned. Unfortunately, this objective function
is difficult to minimize, since it is a combinatorial optimization
problem with respect to q.

B. Unsupervised GNNs as Optimal Transport

In this subsection, to address the difficulty in optimization,
we interpret the objective function of unsupervised graph
neural network, i.e., Eq. (12), with respective to the assignment
q from the perspective of Optimal Transport. Let P = [pyi] ∈
RK×N+ and Q = [qyi] ∈ RK×N+ be the joint probability
matrix estimated from the GNN and the joint probability of
assignment, respectively, where

pyi = p(y, hi) = p(y|hi)p(hi) = p(y|hi)
1

N
, (13)

qyi = q(y, hi) = q(y|hi)p(hi) = q(y|hi)
1

N
. (14)

The loss function in Eq. (12) can be rewritten as

−
∑
vi∈V

F∑
y=1

q(y|hi) log (p(y|hi)) =< Q,− logP > (15)

where log is an element-wise operation. < A,B >=∑
i

∑
j aijbij is the Frobenius inner product of two matri-

ces. To alleviate the difficulty of combinatorial optimization
problem with respect to q, matrix Q is relaxed to belonging
to transportation polytope [32] as

U(r, c) := {Q ∈ RF×N+ |Q1 = r, QT1 = c} (16)

Algorithm 1: Optimal Transport based GNNs

Input: Adjacency matrix A ∈ RN×N , feature matrix
X ∈ RN×K , the number of classes F and
hyper-parameter λ.

Output: Node representation matrix H .
1 Initialize H via Eq. (1) where W is set as identity

matrix I , β = c = 1
N 1, γ = r = 1

F 1 ;
2 while not convergence do
3 %—– Updating q with fixed p —–
4 while not convergence do
5 Update γ via Eq. (21);
6 Update β via Eq. (22);
7 Update Q via Eq. (20);
8 end
9 %—– Updating p with fixed q —–

10 Update p in Eq. (6), which is parameterized by W
and b, via batch gradient decent;

11 end
12 Obtain H from Eqs (2) or (4) with learned W and b;
13 return H .

where 1 stands for the vector of all ones with appropriate
dimensionality. r and c are the fixed vectors used to constrain
the summarizations of Q along row and column, respectively.
Since Q = [qyi] denotes the joint distribution of label y and
node vi, where each column corresponds to a vertex, c ∈ RN
is set as 1

N 1. According to the equal-size cluster constraints∑
vi∈V q(y|hi) = N/F in Eq. (12) and qyi = q(y|hi) 1

N in
Eq. (14), r ∈ RK is set as 1

F 1, i.e.,

c =
1

N
1, r =

1

F
1. (17)

Thus, optimizing unsupervised GNNs in Eq. (12) with re-
spective to the assignment Q can be relaxed to the following
optimal transport problem [32]

arg min
Q∈U(r,c)

< Q,− logP >, (18)

whose solution can be obtained via linear program problem in
polynomial time.

C. Optimization
In this section, an algorithm, which iteratively updates q and

p with another fixed, is proposed to minimize the objective
function of unsupervised GNNs shown in Eq. (12). If GCN
is adopted as the basic GNN, i.e., hi is obtained from Eq.
(2), the obtained unsupervised GNN is OT-GCN, while OT-
GAT denotes that GAT is adopted as the basic GNN, i.e., hi
is obtained from Eq. (4). The overall algorithm is shown in
Algorithm 1.

1) Updating p with fixed q: If q is fixed, optimizing Eq.
(12) with respective to p, which is parameterized by W and
b, is equivalent to optimizing Eq. (5) or (9), where labels of
all the nodes {yi}|V |i=1 are assumed to have been obtained from
q. It can be achieved via gradient descent as existing semi-
supervised GNNs, such as GCN [6] and GAT [7].



2) Updating q with fixed p: If p is fixed, optimizing Eq. (12)
with respective to q can be achieved via Optimal Transport.
By connecting the unsupervised GNNs optimization in Eq.
(12) with respective to the assignment q with the optimal
transport problem in Eq. (18) in Section IV-B, assignment can
be obtained via linear programming in polynomial time. To
further speedup this process on large networks, a fast version
of the Sinkhorm-Knopp algorithm [33] is adopted. It employs
a regularization term to the loss function of Eq. (18) as

arg min
Q∈U(r,c)

< Q,− logP > +
1

λ
KL(Q||rcT ), (19)

where KL(.||.) stands for the Kullback-Leibler divergence.
rcT ∈ RK×N , each element of which is 1/(NK), can be
considered as the non-informative uniform prior distribution
of Q. λ balances the convergence speed and the closeness of
Eq. (19) to the optimal transport in Eq. (18). According to
[33], optimizing Eq. (19) is equivalent to optimizing Eq. (18)
with moderate value of λ. By introducing this regularization,
the optimal Q can be analytically obtained as

Q = diag(γ)Pλdiag(β), (20)

where the exponentiation Pλ is element-wise operation. γ and
β are the two vectors used to ensure that the obtained Q
is a probability matrix. diag(.) creates diagonal matrix from
vector. According to [33], γ and β can be iteratively updated
as

γy = [Pλβ]−1y , (21)

βi = [γTPλ]−1i , (22)

each of which consists of a matrix-vector multiplication with
complexity O(NK). This complexity is linear with the size
of the network. At beginning, β and γ are initialized as c and
r, respectively. In experiments, just a few iterations, which
require only O(NK) operations, are needed to obtain Q.

D. Combination with Graph AutoEncoder

In the above sections, unsupervised OT-GNN is derived
from semi-supervised node classification by leveraging the
community (cluster) property of networks. Here, we show OT-
GNN can also be employed to enhance exiting unsupervised
GNNs, such as Graph AutoEncoder (GAE) [14]. Specifically,
the topology reconstruction error in Eq. (8) can be combined
with Eq. (12) as

arg min
q,p

Ltopo(p) + εL(p, q) (23)

s.t. ∀y : q(y|hi) ∈ {0, 1} and
∑
vi∈V

q(y|hi) = N/K,

where L(p, q) is shown in Eq. (11) and ε is the hyper-
parameter to balance the impact of two parts. If ε = 0, Eq.
(23) degenerates to the objective function of GAE in Eq. (8).
Note that although Ltopo(p) and L(p, q) are both unsupervised
term, they play different roles. Ltopo(p) trains encoder p in Eq.
(6) for link prediction by reconstructing the topology. L(p, q)
prevents the oversmoothing in GNNs, thus can be regarded

TABLE I
DATASETS.

Datasets Nodes Edges Categories Attributes

Texas 183 328 5 1,703
Cornell 195 304 5 1,703

Washington 217 446 5 1,703
Wisconsin 262 530 5 1,703

Cora 2,708 5,429 7 1,433
Citeseer 3,312 4,732 6 3,703
Pubmed 19,729 44,338 3 500

as the regularization to topology reconstruction in Ltopo(p).
The optimization of Eq. (23) is similar to that of Eq. (12), i.e.
iteratively updating q and p. Updating q with fixed p can be
achieved via Eq. (20). Updating p, which is parameterized by
W , with fixed q can be achieved via gradient descent. Thus,
OT-GAE can also be optimized via Algorithm 1.

V. EVALUATIONS

In this section, we validate the proposed OT-GNN by quan-
titatively evaluating the performances of its two instances, OT-
GCN and OT-GAT, in the node clustering and classification,
and the performance of OT-GAE in link prediction. Finally,
a visualization of obtained embedding is provided to qualita-
tively demonstrate how the proposed OT-GNN alleviates the
oversmoothing in unsupervised GNNs.

A. Datasets

The experiments are conducted on three commonly utilized
citation networks, Cora, CiteSeer and PubMed. In each net-
work, nodes and edges are research papers and undirected
citations, respectively. In addition to the network structure,
node content, which is represented by the bag-of-word rep-
resentation of the documents, is available. According to the
disciplines, papers are categorized into various classes. Be-
sides, four more networks, including Cornell, Texas, Wash-
ington and Wisconsin, are employed. Each network, which is
the collection of webpages from an American university, is
the sub-network of the WebKB network. Nodes and edges
are webpages and links between them, respectively. These
webpages are manually classified into one of the following
five classes: course, faculty, student, project and staff. Dataset
statistics are summarized in Table I.

B. Baselines

To demonstrate the superiority of our proposed OT-GNN
on representation learning, 11 state-of-the-art baselines are
employed. These methods fall in two categories, network
embedding methods and unsupervised graph neural networks.
Network embedding methods can also be further classified into
two sub-categories, methods based on topology and methods
based on both topology and node attribute. The first sub-
category includes DeepWalk [34], node2vec [35], LINE [36]
and GraRep [37]. The second sub-category includes Text
Augmented DeepWalk (TADW) [38], Tri-Party Deep Network
Representation (TriDNR) [39], Accelerated Attributed Net-
work Embedding (AANE) [40] and Attributed Social Network



TABLE II
COMPARISON ON NODE CLUSTERING IN TERMS OF AC AND NMI.

Metrics (%) Methods Cornell Texas Washington Wisconsin Cora Citeseer Pubmed

AC

DCSBM 37.95 48.09 31.80 32.82 38.48 26.57 53.64
EdMot-SC 30.77 48.09 48.39 32.06 27.07 25.60 39.29

LDA 44.62 56.28 44.62 44.62 37.19 31.34 46.30
Block-LDA 46.15 54.10 39.17 49.62 25.52 24.35 49.01

PCLDC 30.26 38.80 29.95 30.15 34.08 24.85 63.55
SCI 45.64 62.30 51.15 50.38 40.62 27.98 47.39

TLSC 47.69 65.02 51.61 49.23 47.62 35.74 61.38

DeepWalk 36.05 46.72 40.76 38.76 45.61 36.21 64.84
Node2Vec 33.85 47.54 37.33 49.62 56.30 40.76 65.56

LINE 39.49 53.38 52.68 45.43 30.72 25.01 43.11
GraRep 31.79 36.72 31.36 33.24 48.29 31.20 54.43
TADW 47.69 59.23 50.30 55.00 55.39 36.19 57.46
AANE 37.28 30.49 41.57 30.53 18.51 21.76 34.55

TriDNR 38.21 47.54 43.59 43.70 31.56 34.44 59.29
ASNE 41.08 41.53 48.80 55.30 39.44 31.17 65.13

VGAE 36.72 48.35 43.73 43.28 57.06 53.46 58.64
ARVGE 38.21 41.48 43.66 42.81 64.08 43.50 58.76

DGI 38.46 51.91 48.85 45.80 63.51 67.54 64.07
OT-GCN 51.40 63.76 55.27 54.41 64.62 68.92 66.36
OT-GAT 52.79 64.67 56.58 56.99 66.70 69.54 67.32

NMI

DCSBM 9.69 16.65 9.87 3.14 17.07 4.13 12.28
EdMot-SC 9.67 18.79 18.66 11.28 9.58 11.26 0.21

LDA 21.09 31.29 38.48 46.56 14.61 9.13 10.55
Block-LDA 6.81 4.21 3.69 10.09 2.42 1.41 6.58

PCLDC 7.23 10.37 5.66 5.01 17.54 2.99 26.84
SCI 11.44 17.84 12.37 17.03 19.26 4.87 5.59

TLSC 13.61 23.92 17.63 16.65 33.2 23.16 19.63

DeepWalk 7.06 6.16 5.66 7.65 31.51 10.58 25.55
Node2Vec 6.65 4.49 2.94 7.86 42.02 12.99 25.02

LINE 9.27 18.16 18.95 9.39 10.13 5.62 7.17
GraRep 8.80 12.43 5.18 8.02 35.46 9.61 17.76
TADW 11.13 10.90 11.63 17.52 31.60 37.92 20.11
AANE 9.55 3.52 13.19 2.86 0.40 1.19 0.01

TriDNR 7.20 4.32 8.10 6.60 12.19 9.59 19.28
ASNE 11.11 12.63 17.43 18.94 16.28 7.31 25.61

VGAE 7.77 8.52 9.03 9.31 42.92 27.93 17.83
ARVGE 10.26 7.28 12.6 11.92 44.95 22.72 18.40

DGI 12.52 13.98 15.64 13.69 49.76 42.74 26.64
OT-GCN 31.66 23.17 45.76 47.19 50.89 43.74 27.62
OT-GAT 24.16 34.57 46.97 47.63 52.15 55.61 30.92

Embedding (ASNE) [41]. The unsupervised graph neural
networks includes (Variational) Graph AutoEncoder (VGAE)
[14], Adversarially Regularized Graph Autoencoder (ARVGE)
[15] and Deep Graph Infomax (DGI) [17]. Note that, both [14]
and [15] include two version, i.e., one based on AutoEncoder
and one based on Variational AutoEncoder. The methods
based on Variational AutoEncoder, which often achieve better
perforamnce, are adopted.

Additionally, another 7 state-of-the-art methods, which di-
rectly obtain clustering results without embeddings, are com-
pared with our proposed OT-GNN in node clustering task.
These methods are all generative models. Degree Corrected
SBM (DCSBM) [42] and Edge enhanced Motif-aware com-
munity detection (EdMot-SC) [43] are only based on network
topology. Latent Dirichlet Allocation (LDA) [44] is a topic
model based on node content. The approaches based on both
topology and node attribute include Block-LDA [45], PCLDC
[46], Semantic Community Identification (SCI) [47] and Two-

Level Semantic Community (TLSC) [48].

C. Experimental Settings

1) Parameter Settings: To ensure fairness, embedding di-
mension is uniformly set to 64 for all the methods on all the
datasets. The parameters of the methods compared are set as
what were used by their authors. All the results of the baseline
methods are either from their original papers or produced by
running the codes from the authors with their default settings.
For DeepWalk, the walk length and window size are set as 40
and 5, respectively. For node2vec, walk length and window
size are set as 80 and 10, respectively. For LINE, we set the
number of negative samples as 5 and the starting value of
the learning rate as 0.025. For GraRep, we set the maximum
matrix transition step as 5. VGAE and ARVGE utilize two-
layer GCN with dimensions of hidden and output layers as
512 and 64, respectively. DGI adopts one-layer GCN with
dimension of output layer as 64.



TABLE III
COMPARISON ON NODE CLASSIFICATION IN TERMS OF AC (%).

Packages Methods Cornell Texas Washington Wisconsin Cora Citeseer Pubmed

LibSVM

DeepWalk 38.97 49.18 55.30 49.24 82.57 52.52 78.79
Node2Vec 35.90 50.27 47.47 46.56 79.98 61.63 80.30

LINE 43.59 68.85 59.91 54.58 30.20 41.07 75.47
GraRep 53.33 62.68 52.07 59.16 73.41 54.28 80.64
TADW 64.10 67.76 59.45 64.50 69.83 68.70 85.37
AANE 51.80 56.28 64.06 43.13 30.20 24.70 78.63

TriDNR 37.95 48.09 47.01 40.46 43.27 54.47 79.07
ASNE 48.21 57.92 54.38 59.54 49.00 44.74 78.37

VGAE 45.13 55.00 54.38 53.82 81.05 65.97 83.42
ARVGE 42.56 56.28 58.99 49.26 80.42 65.10 80.64

DGI 42.56 56.28 47.47 45.42 80.21 70.07 74.57
OT-GCN 63.02 69.07 65.66 67.43 82.73 70.65 86.77
OT-GAT 65.91 69.98 66.17 69.50 83.82 72.62 87.63

LibLINEAR

DeepWalk 38.46 48.09 53.92 49.62 82.04 48.42 78.36
Node2Vec 37.95 50.27 45.62 46.95 80.79 52.44 80.08

LINE 44.10 53.39 56.22 54.96 50.25 40.56 74.92
GraRep 53.33 59.40 51.15 60.31 79.83 53.61 80.37
TADW 61.03 67.76 64.98 67.56 72.53 68.50 86.80
AANE 41.54 53.01 61.75 38.93 27.03 22.24 77.99

TriDNR 34.87 42.08 43.32 41.60 53.39 52.91 78.40
ASNE 45.64 59.02 55.76 59.92 54.46 44.35 77.20

VGAE 45.64 51.91 54.84 54.49 79.13 69.25 83.81
ARVGE 41.54 59.02 60.37 56.11 81.24 66.71 80.59

DGI 43.08 56.28 55.31 48.86 84.71 70.85 78.11
OT-GCN 62.10 68.21 65.47 67.93 84.60 71.36 86.95
OT-GAT 63.62 69.71 66.55 69.96 85.52 72.55 88.56

In our proposed OT-GNN, Graph Convolutional Network
(GCN) [6], Graph Attention Network (GAT) [7]. and Graph
AutoEncoder (GAE) [14] are employed as basic graph neural
networks and the resulted instances are named as OT-GCN,
OT-GAT and OT-GAE, respectively. The number of clusters,
i.e., F , varies from 10 to 20. Similar to DGI, one-layer
GCN with dimension of output layer as 64 is adopted in OT-
GCN, while one-layer GAT with the number of heads and the
dimension of each head as 4 and 16, respectively, is adopted
in OT-GAT. Similar to GAE, two-layer GCN with dimensions
of hidden and output layers as 512 and 64 is adopted. The
hyper-parameter ε is set to 0.23 in OT-GAE.

2) Evaluation Metrics: For node classification task, accu-
racy (AC) is employed as the metric to evaluate the perfor-
mance of all methods. For the node clustering task, normalized
mutual information (NMI), which is more sensitive and fair
for unbalanced clusters situation, is also adopted as metric.
For link prediction task, two metrics, i.e., Area Under Curve
(AUC) and Average Precision (AP), are adopted to quantify
the performances.

D. Node Clustering

For node clustering, the state-of-the-art methods fall in two
categories, i.e., generative models and representation models.
For generative models, clustering results are directly obtained
by inferring the latent variables without clustering the node
embeddings. For representation models (both network embed-
ding methods and graph neural networks), k-means algorithm
is utilized to the obtained embedding of nodes to classify them
into clusters. The results are shown in Table II.

It can be observed that the two instances of OT-GNN,
i.e., OT-GCN and OT-GAT outperform all other unsuper-
vised GNNs on all the networks, especially on four webpage
networks. OT-GAT achieves the best performance on all 7
networks in terms of NMI and achieves the best performance
on 6 network in term of accuracy (AC). OT-GAT is slightly
lower than recently proposed TLSC [48], which is a gener-
ative model combing topology and node content, in term of
accuracy. This may attributes to its assumption of inconsis-
tency between topology and node attribute, which makes its
superiority on large cluster more remarkable. Factually, the
superiority in terms of NMI indicates our proposed OT-GNN
can obtain better performance on difficult small cluster, since
NMI is a fair metric, which is more sensitive on the small
cluster.

E. Node Classification

For node classification, both LibSVM and LibLINEAR are
employed to classify these nodes according to the obtained
embedding. On citation network, i.e., Cora, Citeseer and
Pubmed, we adopt the experimental settings in [49], where 20
nodes per class, 500 nodes and 1,000 nodes are employed for
training, validation and performance evaluation, respectively.
For the four medium webpage networks, including Cornell,
Texas, Washington and Wsicsonsin, we adopt 20% labelled
nodes for training, 10% labelled nodes for validation, and the
other nodes for testing. For each network, we used 10-fold
cross-validation, and the average performances are reported in
Table III.
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Fig. 2. Visualization of the embeddings on Cora and Citeseer. node2vec, DGI and our proposed OT-GNN are unsupervised approaches, while GCN and GAT
are semi-supervised ones. GCN without learnable parameter W can also be considered as unsupervised method, since labelled nodes don’t affect its results.

Both OT-GCN and OT-GAT, which are two instances of our
proposed OT-GNN, outperform the state-of-the-art baselines
on all the 7 networks. These gains are more significant on
four webpages networks, i.e., Cornell, Texas, Washington
and Wisconsin, since the community structures on them are
more clear than network homophily property, which is the
theory basis of GNNs. Besides, the performances of OT-
GAT are better than those of OT-GCN, since OT-GAT takes
expressive GAT [7], which jointly learns mapping function
with parameter W and propagation weights with parameter b,
as basic component. Note that, to the best of our knowledge,
OT-GAT is the first successful unsupervised GNN, which takes
GAT as basic component. The failure of adoption GAT in
previous unsupervised GNN may attribute to that it is more
likely to lead to overfitting from the learnable propagation
weights in GAT than from the fixed propagation weights in
GCN. Therefore, our proposed OT-GNN makes it possible to
adopt more powerful basic GNNs without oversmoothing.

F. Link Prediction

For the link prediction task, the proposed OT-GAE is
compared to 6 state-of-the-art baselines on citation networks.
For each citation network, the edges are randomly divided into
three groups. 85%, 5% and 10% of the edges are utilized in
training, validation (hyper-parameters tuning) and performance
testing, respectively. Experiments are repeated 10 times on 10
different random edge partitions, and the average performances
are reported in Table IV.

As can be observed, the performance improvement of
ARGA over GAE is limited, only about 1%, because adoption
of the adversarial mechanism can’t alleviate the oversmoothing

TABLE IV
LINK PREDICTION RESULTS IN TERM OF AUC AND AP.

Methods Cora Citeseer PubMed

AUC AP AUC AP AUC AP

DeepWalk 83.11 85.00 80.52 83.61 84.40 84.10
GAE 91.02 92.03 89.54 89.95 96.40 96.50

VGAE 91.41 92.61 90.82 92.02 94.42 94.72
ARGA 92.43 93.23 91.93 93.03 96.81 97.11

ARVGA 92.44 92.64 92.43 93.03 96.51 96.81
DGI 91.24 90.44 88.90 89.99 94.77 93.70

OT-GAE 96.68 96.52 95.91 95.52 97.51 97.17

problem although it aims at seeking robust representations.
The proposed OT-GAE consistently and significantly outper-
forms the state-of-the-arts. It achieves about 2.5% performance
gains (both in AUC and AP) in average, compared to its basis
GAE, which just reconstructs topology without considering
the oversmoothing issue. These gains are attributed to that our
proposed OT-GNN can correctly and effectively regularize the
GAE by reducing the oversmoothing.

G. Visualization

To provide an intuitive illustration, embedding visualiza-
tions via t-SNE [50] on Cora and Citeseer are given in
Fig. 2. In additional to our proposed OT-GNN, another two
unsupervised methods, node2vec [35] and DGI [17], and two
semi-supervised ones, GCN [6] and GAT [7], are employed for
comparison. To demonstrate the role of the learnable mapping
function parameterized by W in GCN, GCN without W , is
also adopted as an unsupervised approach. It can be observed
that both semi-supervised approaches obtain clear cluster



structure, which effectively prevents all the node embeddings
from becoming too similar to be distinguished induced by the
oversmoothing.

This is achieved by the mapping function parameterized by
W trained from supervised information. This effect can also
be verified by comparing semi-supervised GCN with GCN
without W . However, existing unsupervised methods except
our proposed OT-GNN lose this important structure due to
the lack of supervision information. The cluster structure of
our proposed OT-GNN is much clear, which indicates its
effectiveness in preventing oversmoothing.

VI. CONCLUSIONS

To alleviate the oversmoothing issue in unsupervised graph
neural networks (GNNs), a novel Optimal Transport based
unsupervised GNN (OT-GNN) is proposed. It constrains the
node embeddings to keep their community/cluster structures to
prevent all the node embeddings from becoming too similar to
be distinguished. By imposing the obtained node embeddings
to be classified into clusters of equal size, OT-GCN performs
interactive node embeddings and clustering. The constrained
objective function of the unsupervised GNN is relaxed to an
optimal transport problem, and a fast version of the Sinkhorm-
Knopp algorithm is adopted to handle large networks. Besides
of being utilized to train the GNNs for node clustering and
embedding in an unsupervised manner, OT-GNN possesses
the potential to be exploited to regularize other unsupervised
GNNs, such as Graph AutoEncoder, for the link prediction
task. Extensive experiments on node clustering, classification
and link prediction demonstrate the effectiveness of our pro-
posed OT-GNN in preventing from oversmoothing.
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