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Abstract

As an essential technique for Graph Contrastive Learning
(GCL), Graph Augmentation (GA) improves the generaliza-
tion capability of the GCLs by introducing different forms of
the same graph. To ensure information integrity, existing GA
strategies have been designed to simultaneously process the
two types of information available in graphs: node attributes
and graph topology. Nonetheless, these strategies tend to aug-
ment the two types of graph information separately, ignoring
their correlation, resulting in limited representation ability. To
overcome this drawback, this paper proposes a novel GCL
framework with a Joint spectrAl augMentation, named GCL-
JAM. Motivated the equivalence between the graph learning
objective on an attribute graph and the spectral clustering ob-
jective on the attribute-interpolated graph, the node attributes
are first abstracted as another type of node to harmonize the
node attributes and graph topology. The newly constructed
graph is then utilized to perform spectral augmentation to
capture the correlation during augmentation. Theoretically,
the proposed joint spectral augmentation is proved to perturb
more inter-class edges and noise attributes compared to sep-
arate augmentation methods. Extensive experiments on ho-
mophily and heterophily graphs validate the effectiveness and
universality of GCL-JAM.

Introduction
Graphs are ubiquitous data structures in the real world and
have a wide range of applications in fields such as social net-
works (Kipf and Welling 2017) and citation networks (Sen
et al. 2008). To effectively extract useful information in the
graphs, Graph Neural Networks (GNNs), including GCN
(Kipf and Welling 2017) and GAT (Veličković et al. 2018),
have been proposed and trained in semi-supervised learn-
ing scenarios. The reliance on label information limits the
usability of these models to many tasks where collecting la-
bels is expensive. To solve this drawback, Graph Contrastive
Learning (GCL) (Hassani and Khasahmadi 2020; Zhuo et al.
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2024a,c), a representative self-supervised learning architec-
ture, has been developed. Vanilla GCLs includes three key
components: graph augmentation that increases the num-
ber of training samples, graph encoder that represents these
nodes, and contrastive loss that guides the update direction.

According to how the information is processed, existing
graph augmentation strategies in GCLs are mainly classified
into two categories: random augmentation and prior-based
augmentation. The former performs random perturbations
on both graph topology (e.g., adding and removing edges)
(Zhu et al. 2020; Thakoor et al. 2021) and node attributes
(e.g., masking attributes and adding noise) (Mo et al. 2022;
Zhu et al. 2020). Although simple and somewhat success-
ful, this strategy inevitably incurs the corruption of seman-
tic information, resulting in sub-optimal model performance
(Chang et al. 2021). The latter, hence, focuses on the in-
tegrity of the semantic information by incorporating a priori
knowledge to guide the augmentation process (Zhuo et al.
2024b). The representative works include: graph diffusion-
based (Hassani and Khasahmadi 2020), graph sample-based
(You et al. 2020; Qiu et al. 2020) and spectrum perturbation-
based topology augmentation (Lin, Chen, and Wang 2023).
Unfortunately, most graph augmentations neglect to con-
sider the correlation of the two types of available infor-
mation in GCLs: node attributes and graph topology. Intu-
itively, there are correlations between them. The attributes
of a node can determine its connectivity pattern in the graph,
thereby affecting the entire graph topology (Li, Huang, and
Zitnik 2021; Sen et al. 2008). In turn, the topology of the
graph shapes or changes node attributes by impacting in-
formation flow and interactions between nodes (Kipf and
Welling 2017). Therefore, it is essential to model such cor-
relations in graph augmentation improve the model perfor-
mance.

To address the aforementioned issue, this paper seeks to
propose a joint augmentation of node attributes and graph
topology for GCL. The major challenges are, on one hand,
to identify a unified view to align the node attributes and
graph topology, on the other hand, to devise an effective
augmentation strategy based on this view. As a solution to



these hurdles, a novel GCL framework, named Joint spec-
trAl augMentation (GCL-JAM), is introduced. The idea is
to transform the original graph into an attribute-interpolated
graph (as defined in Definition 1) and subsequently perform
spectral augmentation on this newly constructed graph.

The creation of attribute-interpolated graphs offers a
manner to harmonize node attributes with graph topology.
Firstly, the attribute-interpolated graph derived from the in-
put graph is a heterogeneous graph with graph topology but
without node attributes. In such a graph, node attributes are
regarded as another type of node (i.e., attribute node) be-
sides the original node; the node-to-attribute inclusion rela-
tionships are represented by another type of edge beside the
original edge (as illustrated in Figure 1). Theoretically, the
objective function of spectral clustering (Von Luxburg 2007)
on the attribute-interpolated graph is equivalent to the ob-
jective function of graph learning on the input graph, which
has been proven to unify many GNNs (graph encoders) (Zhu
et al. 2021a; Yang et al. 2021), as demonstrated in Theorem
1. This spectral interpretation not only underscores the ca-
pacity of the attribute-interpolated graph to uniformly rep-
resent both attributes and topology but also motivates the
joint augmentation of these two types of graph information
via spectral augmentation. Thus, the second phase of GCL-
JAM involves selectively perturbing the edges that cause the
largest change in the Laplacian matrix’s eigenvalues (i.e.,
graph spectrum) for the attribute-interpolated graph, that is,
inter-cluster edges.

The introduction of attribute nodes notably enhances the
topological connectivity between nodes of the same class in
the graph (especially for heterophily graphs), as depicted in
Figure 1. As a result, the proposed GCL-JAM is adept at pre-
serving edges that link nodes from the cluster while strate-
gically perturbing those that connect nodes across different
clusters within the attribute-interpolated graphs. From the
input graph perspective, the proposed joint spectral augmen-
tation achieves a more effective perturbation of both node
attributes and graph topology over the existing augmenta-
tion, capitalizing on the implicit correlation between them,
as detailed in Theorem 2.

In summary, this paper has the following contributions:
• We justify the equivalence relation between GNNs and

spectral clustering on an attribute-interpolated graph con-
taining attribute nodes and original nodes, providing the
theoretical basis for unifying attributes and topology.
• We propose a novel GCL framework GCL-JAM, which

can jointly augment attributes and topology on the
attribute-interpolated graph. And we further provide the-
oretical analysis to justify the effectiveness of GCL-JAM.
• We conduct extensive experiments on twelve well-known

benchmark datasets with various homophily degrees to
demonstrate the superior performance of GCL-JAM.

Related Work
Graph contrastive learning (GCL) aims to build effective
representations by comparing sample pairs (Zhuo et al.
2024a). To increase the diversity of samples and thus im-
prove the robustness of the model, GCL generally utilizes

various augmentation strategies to perturb topology or at-
tributes. Specifically, GRACE (Zhu et al. 2020) generates
augmented graphs by randomly dropping edges or nodes and
maximizes the consistency of the node representations from
the two views; GCA (Zhu et al. 2021b) uses an adaptive aug-
mentation method to perturb the unimportant information;
MVGRL (Hassani and Khasahmadi 2020) employs graph
diffusion to generate graph views and learns both node-level
and graph-level representations; GREET (Liu et al. 2023)
introduces a discriminator to assess the homophily of edges
and employs random augmentation.

All of the above augmentation methods are designed from
the spatial domain. And there are also some models designed
from the spectral domain. SPAN-GCL (Lin, Chen, and Wang
2023) selects the edges which have the greatest change on
the spectral change for perturbation; GASSER (Yang et al.
2023) proposes tailored perturbation on the specific frequen-
cies of graph structure; SpCo (Liu et al. 2022) proposes
to preserve the low-frequency components and perturb the
high-frequency components.

Preliminaries
Notations
Let G(A,X) denotes an attribute graph, where X ∈
RN×F represents the node attributes with the number of
nodes N and attribute dimension F . A describes the ad-
jacency matrix, typically reflecting the graph topology. If
there is an edge between node i and node j, Aij = 1. D

denotes the dignal degree matrix with Dii =
∑N

j=1 Aij .
L = D − A terms the Laplacian matrix of the graph.
And its normalized Laplacian matrix is further defined as
L̃ = I − ˆ̃A = I − D̃−1/2ÃD̃−1/2, where Ã = A + I and
D̃ = D + I denote the adjacency matrix and degree ma-
trix with added self-loop, respectively. Eigenvalue decom-
position can be performed: L̃ = UΛUT. From the spectral
perspective, the eigenvalues Λ correspond to the notions of
frequency and the eigenvectors U as the spectral bases (Shu-
man et al. 2013).

Graph Learning Objective
Graph representation learning aims to train an encoder
which can produce node representations or graph represen-
tations for downstream tasks. The node representation learn-
ing generally follows two objectives: the node representa-
tions are similar with their original attributes; connected
nodes have similar representations (Zhu et al. 2021a; Yang
et al. 2021). One of the most commonly utilized objective
functions can be formulated as:

O = min
H
{‖H−X‖2F + λtr(HTLH)}, (1)

where H denotes node representations. Graph convolutional
network (GCN) as a method for node representation learning
can be derived by optimizing Eq. 1. Specifically, with λ = 1

and L̃, the convolution operation in GCN can be induced by
setting derivative of Eq. 1 with respect to H to zero:

H = (I + L̃)−1X ≈ (I− L̃)X = ˆ̃AX. (2)
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Figure 1: The overview of the proposed GCL-JAM. Firstly, the original graph G is transformed into an attribute-interpolated
graph G′ (defined in Definition 1) by treating attributes as nodes. Secondly, the attributes and topology of the original graph are
jointly augmented via spectral augmentation on the attribute-interpolated graph. Finally, the augmented graphs are utilized in
the subsequent modules, i.e., encoder and contrastive loss.

Besides, several graph neural networks (including SGC (Wu
et al. 2019), JKNet (Xu et al. 2018) and APPNP (Gasteiger,
Bojchevski, and Günnemann 2019)) can be derived from
corresponding variants of this framework.

Graph Contrastive Learning
Inspired by the design of contrastive learning in CV (Chen
et al. 2020) and NLP (Gao, Yao, and Chen 2021), Graph
Contrastive Learning (GCL) typically includes three com-
ponents: (1) Graph augmentation. Graph augmentation is
introduced to perturb the original graph, thus effectively
expanding the diversity of samples. Given the input graph
G(A,X), two augmented views can be generated through
attribute perturbation or edge perturbation, formulated as
Gi(Ai,Xi) = ti(G(A,X)). (2) Graph Encoder. Graph
neural networks are generally employed to encode the aug-
mented views. By mapping the augmented views into a low-
dimensional vector space, the latent graph information can
be captured. (3) Contrastive Loss. Various contrastive losses
are designed to guide the training of graph encoder, such
as local-local (Zhu et al. 2020), local-global (Hassani and
Khasahmadi 2020) and global-global contrastive loss (You
et al. 2020). Take the local-local loss adopted by GCL-JAM
as an example, the same nodes from two views are positive
pairs, and all other nodes are negative samples. Discrimina-
tive node representations can be learned by pulling positive
samples closer in the embedding space while pushing nega-
tive samples apart.

Methodology
This section proposes a novel graph contrastive learning
model with joint spectral augmentation (GCL-JAM), as il-
lustrated in Figure 1. It begins by providing an attribute-
interpolated graph. Next, building upon the attribute-
interpolated graph, a spectral augmentation is employed

for graph perturbation. Finally, the validity of the proposed
GCL-JAM is proved theoretically.

Attribute as Node
To align node attributes and graph topology, an attribute-
interpolated graph is first introduced by abstracting at-
tributes as nodes. The definition of the attribute-interpolated
graph is as follows.

Definition 1. Given the attribute graph G(A,X), its node
attributes can be regarded as a special class of nodes, i.e.,
attribute nodes. The attribute values of G determine the ex-
istence of edges between the attribute node and the original
node. Then we have an attribute-interpolated graph G′ with
the adjacency matrix:

A′ =

[
A X
XT 0

]
, (3)

where 0 is an all-zero matrix denoting that edges between
attribute nodes are not considered.

The attribute-interpolated graph is a heterogeneous graph
with two types of edges, representing: 1) the connection re-
lationship between the original nodes; 2) the inclusion rela-
tionship between the attribute node and the original node.

To illustrate the significance of constructing the attribute-
interpolated graph, the relationship between G′ and graph
neural network (GNN) is derived from the Theorem 1. The
unnormalized Laplacian matrix of G′ is first given as:

L′ =

[
D + E−A −X
−XT F

]
, (4)

where F and E are diagonal matrices, denoting the degree of
the attribute nodes and the increased degree of the original
nodes, respectively.



Theorem 1. The optimization objective of spectral cluster-
ing on the attribute-interpolated graph G′ is equal to the
optimization objective of GNN:

min
H
{tr(H′TL′H′)} = min

H
{‖H−X‖2F + tr(HTLH)},

where H (H′) denotes the node representations.
Theorem 1 emphasizes the significance of the attribute-

interpolated graph in unifying the attributes and topology of
the original graph. In the attribute-interpolated graph, nodes
within the same class that share similar attributes are more
closely connected due to edges that establish an inclusion
relation. This leads to distinguishable cluster structures of
intra-class nodes. Besides, Theorem 1 stimulates the realiza-
tion of joint augmentation from a spectral perspective, effec-
tively preserving the cluster properties.

Joint Spectral Augmentation
After the attribute-interpolated graph is obtained, the spec-
tral augmentation on its topology is utilized in GCL-JAM.
Specifically, the edges resulting in greatest spectral effect
will be selected for perturbation (Lin, Chen, and Wang
2023), which is measured by the difference of the eigenval-
ues of normalized Laplacian matrix.

An edge perturbation matrix E ∈ {0, 1}(N+F )×(N+F )

can be obtained from the probability matrix P by Bernoulli
sampling, Eij ∼ B(Pij). If Eij = 1, the edge between node
i to node j will be flipped. To make the operations of adding
and removing edges effective, a matrix C is introduced:

Cij =

{
1, if A′ij = 0,

−1, Otherwise
. (5)

The perturbed A′ can be denoted as A′+E�C, where� de-
notes Hadamard product. Next, the objective function with
the largest eigenvalue change is defined to guide the spec-
tral augmentation process. Concretely, with the adjacency
matrix A′, its normalized Laplacian matrix L̃ can be ob-
tained. And the Laplacian eigenvalues can be computed by
matrix decomposition, Λ = {λi}N+F

i=1 with λ1 ≤ λ2 . . . ≤
λN+F . To make the objective function derivable, the model
is trained with P instead of E. The augmentation objective
function is given as follows:

max
P
‖Λs −Λt‖22, s.t. ‖P‖1 ≤ ε, (6)

where Λs corresponds to the original attribute-interpolated
graph G′ and Λt corresponds to the perturbed attribute-
interpolated graph. ε is used to control the perturbation
strength. There are two optimal cases for Eq.6: the maxi-
mum positive value and the minimum negative value, which
generate two probability matrices P1 and P2. Correspond-
ing augmented attribute-interpolated graph G′1 and G′2 can
be obtained with the perturbed adjacency matrix:

A′1 =

[
A1 X1

XT
1 0

]
A′2 =

[
A2 X2

XT
2 0

]
. (7)

Thus the augmented attribute graphs are denoted as G1 =
(A1,X1) and G2 = (A2,X2). Finally, node representa-
tions of G1 and G2 are learned by a graph encoder. Since

GCL-JAM focuses on node-level tasks, a widely-used local-
local contrastive objective is adopted, which is consistent
with GRACE (Zhu et al. 2020).

Theoretical Analysis
This section aims to provide the theoretical analysis of GCL-
JAM. Firstly, the changes of topology after treating attributes
as nodes are analyzed using modularity measure (Newman
and Girvan 2004). Next, combined with the fact that the
edges causing the largest difference in eigenvalues are inter-
cluster edges, it can be concluded that GCL-JAM can per-
turb more inter-class edges and noise attributes.
Definition 2. Consider a graph G with k classes of nodes.
Let us define a k × k symmetric matrix e whose element eij
is the fraction of all edges that link nodes in class i to nodes
in class j. The row (or column) sums ai =

∑
j eij . Then the

modularity measure can be defined by:

Q =
∑
i

(eii − a2i ). (8)

Theorem 2. Consider a heterophilic graph with the edge
homophily h. There areN nodes with degree d and attribute
dimension F . Treating attributes as nodes can make intra-
class nodes more tightly connected:

Q′ = Q+
NF (p− h)
Nd+NF

, (9)

where Q′ and Q correspond to the attribute-interpolated
graph and the original graph, respectively. p > 0.5 denotes
the average probability that the attribute belongs to the cor-
responding class.

For homophilic graphs, the modularity measure will in-
crease when p > h. The interplay of spectral change used
in GCL-JAM and spatial change has been derived in (Bo-
jchevski and Günnemann 2019) as follows:

4λm =

N+F∑
i=1

N+F∑
j=1

4wij((umi−umj)
2−λm(u2mi+u

2
mj)),

(10)
where4wij denotes an edge flip between node i and node j.
um is the m-th eigenvector corresponding to the eigenvalue
λm. When the distance between umi and umj is large, these
two nodes should belong to different clusters (Ng, Jordan,
and Weiss 2001). Combined with Theorem 2, intra-class
nodes in the attribute-interpolated graph are more likely to
form clusters. Thus it can be demonstrated that GCL-JAM
will perturb inter-class edges and noise attributes, which
benefits the retention of semantic information.

Time Complexity Analysis
The complexity of augmentation in GCL-JAM is O(T (N +
F )3), where T denotes the time of iterations. Specifically,
eigenvalue decomposition is required to compute the aug-
mentation probability matrix, which incurs a complexity of
O(T (N +F )3). For large-scale graphs, the time complexity
can be reduced toO(TK(N+F )2) by appealing to selective
eigen-decomposition on K lowest- and highest-eigenvalues
via the Lanczos Algorithm (Parlett and Scott 1979).



Methods Cora CiteSeer PubMed Wiki-CS Computers Photo

GCN 82.17±0.59 71.46±0.97 84.16±0.23 76.89±0.37 86.34±0.48 92.35±0.25
GAT 83.46±0.78 72.59±0.82 84.95±0.48 77.42±0.19 87.06±0.35 92.64±0.42

DeepWalk 76.43±0.57 59.73±0.25 79.36±0.57 74.35±0.06 85.68±0.06 89.44±0.11
Node2Vec 79.13±0.88 60.64±0.59 80.19±0.84 71.79±0.05 84.39±0.08 89.67±0.12

DGI 82.46±0.30 71.60±0.21 85.61±0.14 75.73±0.13 84.09±0.39 91.49±0.25
GMI 82.36±0.97 71.64±0.49 84.29±0.90 75.06±0.13 81.76±0.52 90.72±0.33
MVGRL 83.01±0.42 72.76±0.53 85.13±0.38 77.97±0.18 87.09±0.27 92.01±0.13
GRACE 83.44±0.39 71.52±0.36 86.02±0.34 79.16±0.36 87.21±0.44 92.65±0.32
GCA 82.79±0.53 71.19±0.22 85.64±0.75 79.35±0.12 87.84±0.27 92.78±0.17
BGRL 82.67±0.78 71.68±0.52 84.13±0.17 78.74±0.22 88.92±0.33 93.24±0.29
GraphMAE 84.01±0.37 72.75±0.41 84.55±0.23 78.82±0.24 89.68±0.35 93.37±0.20
SpCo 84.08±0.76 72.78±0.45 84.98±0.31 79.43±0.36 89.15±0.57 93.46±0.18
GCL-SPAN 85.01±0.89 72.79±0.61 85.23±0.20 81.36±0.13 90.07±0.39 93.31±0.24

GCL-JAM 85.54±0.53 73.29±0.39 85.46±0.46 82.09±0.42 90.69±0.28 94.35±0.21

Table 1: Node classification performance on homophilic graphs. The metric is mean accuracy (%) and standard deviation. The
best and the second best results are highlighted with bold and underline, respectively.

Experiments
In this section, the effectiveness and universality of the pro-
posed GCL-JAM are evaluated by comparing it with several
graph learning methods. The experiments include node clas-
sification tasks, effectiveness study, and ablation study.

Experiment Setup
Datasets. To conduct an extensive evaluation, twelve well-
known benchmark datasets with various homophily degrees
are used in experiments. These datasets can be broadly di-
vided into two categories: six homophilic graphs and six het-
erophilic graphs. Cora, Citeseer, and PubMed (Sen et al.
2008) are citation networks. Wiki-CS (Mernyei and Cangea
2020) is a hyperlink network. Computers and Photo
(Shchur et al. 2018) are co-purchase networks. Chameleon
and Squirrel (Pei et al. 2020) are page-page networks. Ac-
tor (Pei et al. 2020) is an actor co-occurrence network. Cor-
nell, Texas and Wisconsin (Pei et al. 2020) are webpage
datasets. For homophilic graphs, 1:1:8 train/validation/test
random splits are employed. For heterophilic graphs, the
proportion of nodes utilized for training, validation, and test-
ing is 48%, 32%, and 20%.

Baselines. To verify the effectiveness and superiority of
our proposed model, we compare GCL-JAM with several
graph learning methods. These methods fall into three cat-
egories: (1) semi-supervised GNN models for node classifi-
cation task, including vanilla GCN (Kipf and Welling 2017)
and GAT (Veličković et al. 2018); (2) unsupervised graph
learning methods, including DeepWalk (Perozzi, Al-Rfou,
and Skiena 2014) and Node2Vec (Grover and Leskovec
2016); (3) self-supervised graph learning methods, includ-
ing GRACE (Zhu et al. 2020), BGRL (Thakoor et al. 2022),
MVGRL (Hassani and Khasahmadi 2020), GCA (Zhu et al.
2021b), GMI (Peng et al. 2020), DGI (Veličković et al.
2019), GraphMAE (Hou et al. 2022), SpCo (Liu et al. 2022)
and GCL-SPAN (Lin, Chen, and Wang 2023).

Experimental Details. For reproducibility, the detailed
settings of the experiments are described below. The experi-
ments are performed on Nvidia GeForce RTX 3090 (24GB)
GPU cards. We use a 2-layer GCN with a hidden size of
512 as the graph encoder. For datasets with large initial
attribute dimensions, such as Chameleon and Squirrel, the
hidden size is set to 1024. The training epoch is 500 with
full batch training, and the augmentation training epoch is
50. For hyperparameter settings, we tune the learning rate
of learning the probability matrix P from {0.1, 0.05, 0.01,
0.005, 0.001}. Besides, we tune the perturbation rate from
{0.1, 0.2, ... , 0.9}. Based on the representations learned by
the encoder, we train a Logistic classifier to perform down-
stream tasks. In all the experiments, we use the Adam op-
timizer. The learning rate is tuned from {0.1, 0.05, 0.01,
0.005, 0.001} and weight decay is tuned from {0.0, 0.001,
0.005, 0.01, 0.1}. We run all models ten times on each
dataset, and the mean and standard deviation of accuracy are
used as the evaluation metric.

Experiment Results
Homophilic Graphs. The comparison of accuracy be-
tween GCL-JAM and the baselines on six homophilic graphs
is shown in Table 1. First, it can be observed that GCL-
JAM achieves the optimal performance on five of the six
datasets, which illustrates the superiority of GCL-JAM for
processing homophilic graphs. In particular, compared to
the graph contrastive learning (GCL) baselines that have
the same network architecture and contrastive loss, GCL-
JAM and the baselines with spectral augmentations (i.e.,
GCL-SPAN and SpCo) achieve consistent performance ad-
vantages across five homophilic benchmark datasets, which
demonstrates the superior ability of spectral augmentation
compared to spatial augmentation (especially random spa-
tial augmentation) in capturing self-supervision information.
Furthermore, compared to GCL-SPAN, which only consid-
ers spectral augmentations on graph topology, GCL-JAM



Methods Chameleon Squirrel Actor Cornell Texas Wisconsin

GCN 59.63±2.32 36.28±1.52 30.83±0.77 57.03±3.30 60.00±4.80 56.47±6.55
GAT 56.38±2.19 32.09±3.27 28.06±1.48 59.46±3.63 61.62±3.78 54.71±6.87

DeepWalk 47.74±2.05 32.93±1.58 22.78±0.64 39.18±5.57 46.49±6.49 33.53±4.92
Node2Vec 41.93±3.29 22.84±0.72 28.28±1.27 42.94±7.46 41.92±7.76 37.45±7.09

DGI 39.95±1.75 31.80±0.77 29.82±0.69 63.35±4.61 60.59±7.56 55.41±5.96
GMI 46.97±3.43 30.11±1.92 27.82±0.90 54.76±5.06 50.49±2.21 45.98±2.76
MVGRL 51.07±2.68 35.47±1.29 30.02±0.70 64.30±5.43 62.38±5.61 62.37±4.32
GRACE 48.05±1.81 31.33±1.22 29.01±0.78 54.86±6.95 57.57±5.68 50.00±5.83
GCA 49.80±1.81 35.50±0.91 29.65±1.47 55.41±4.56 59.46±6.16 50.78±4.06
BGRL 47.46±2.74 32.64±0.78 29.86±0.75 57.30±5.51 59.19±5.85 52.35±4.12
GraphMAE 59.02±1.93 37.08±1.01 29.61±0.60 51.08±4.78 52.33±5.06 52.11±6.48
SpCo 43.23±2.03 31.66±0.99 28.96±1.03 51.67±2.67 54.67±4.53 49.68±5.67
GCL-SPAN 46.36±1.40 35.16±1.04 28.63±0.93 52.37±4.48 58.95±6.05 55.10±4.31

GCL-JAM 66.37±2.37 49.84±0.93 31.01±0.46 61.08±2.43 65.83±3.61 64.71±4.08

Table 2: Node classification performance on heterophilic graphs. The metric is mean accuracy (%) and standard deviation. The
best and the second best results are highlighted with bold and underline, respectively.
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Figure 2: Cross-class attribute similarity. The left and right sides correspond to the original and the perturbed graphs.

achieves great performance improvement. This is mainly
due to the coupling between the topology and attribute infor-
mation, thus benefiting each other in spectral augmentation.

Heterophilic Graphs. Table 2 shows the experimental
results on heterophilic graphs. It can be observed that
GCL-JAM outperforms the baselines on five of the six
datasets. Specifically, GCL-JAM outperforms the second-
highest model (i.e., GCN and GraphMAE) by 6.74% and
12.76% on the Chameleon and Squirrel datasets, respec-
tively. This is because that they contain many groups of
nodes with the same neighborhoods and labels, making
intra-class nodes more tightly connected in the attribute-
interpolated graph. For Cornell, it has a higher homophily
than other heterophilic graphs. Thus, the role of attribute
nodes to enhance the homophilic edge density may be re-
duced. Nonetheless, it is evident that the superiority of GCL-
JAM in processing heterophilic graphs. More importantly, it
can be seen that the improvement of GCL-JAM over GCL-
SPAN is more significant than that on homophilic graphs. It
is because intra-class nodes have largely formed clusters on
homophilic graphs. But on heterophilic graphs, GCL-SPAN
perturbs inter-cluster edges solely upon topology making it
more likely to connect intra-class nodes. In contrast, GCL-
JAM reduces the proportion of inter-cluster edges between
intra-class nodes by introducing attribute nodes which im-
proves model performance significantly.

Effectiveness Study
Change of Attribute. To show the effect of GCL-JAM on
attributes, we evaluate the changes about the similarity of
the node attributes. To be more intuitive, the attribute simi-
larity is normalized. And the results are shown in Figure 2.
Firstly, it can be observed that attribute similarity between
intra-class nodes is higher than it between inter-class nodes.
This is consistent with the assumptions of our previous the-
oretical analysis. Then we can observe that GCL-JAM can
significantly increase the attribute similarity gap between
intra-class nodes and inter-class nodes. It demonstrates that
GCL-JAM can perturb noise attributes. Thus more impor-
tant information of attribute can be retained after contrastive
learning compared to the random attribute perturbation.

Change of Topology. To intuitively understand the perfor-
mance improvement due to GCL-JAM, a comparison about
the change of topology is provided. For spatial domain, since
the encoder used in GCL-JAM is GCN, the propagation be-
tween inter-class nodes should be reduced. We count the
proportion of inter-class edges among the perturbed edges,
as shown in Table 3. It can be observed that compared to
GCL-SPAN, GCL-JAM can reach a higher proportion. For
spectral domain, we compare the impact between GCL-
JAM and uniformly random edge augmentation as shown
in Figure 3. We divide the Laplacian decomposed compo-
nents into 10 groups and measure the distance of Lapla-



Figure 3: Frobenius distance of components of normalized
Laplacian matrixes between original and augmented graph.

Dataset Cora CiteSeer Cornell Wisconsin

GCL-SPAN 0.80 0.81 0.64 0.76
GCL-JAM 0.82 0.84 0.72 0.85

Table 3: The proportion of inter-class edges among all per-
turbed edges.

cians caused by graph augmentations in different frequency
bands. The normalized m-th component Laplacian is de-
fined as L̃m = (

∑
i∈[ (m−1)N

10 ,mN
10 )

uiλiu
T
i )/max(λi). The

smaller m is, the lower the band frequency L̃m indicates.
We employ the Frobenius norm to measure their distance,
‖L̃m − L̃′m‖F (Wang et al. 2022). As shown in the Figure
3, GCL-JAM is more impactful in the high frequency bands
of the homophilic graphs and in the low frequency bands of
the heterophilic graphs. Comparatively, uniform augmenta-
tion has a more even impact across the frequency bands or
is the opposite of GCL-JAM. Thus it can also be concluded
that GCL-JAM is more effective from spectral domain.

Ablation Study
An ablation study is conducted to delve into the impact on
the performance of introducing two types of information,
i.e., topology (A) and attribute (X). The comparison results
are shown in Table 4, where X means the corresponding in-
formation is considered during spectral augmentation. First,
it can be observed that compared to random spatial augmen-
tation (in the first row), which has been proven to improve
robustness, spectral ones (in the last three rows) achieve per-
formance advantages in most cases, which illustrates their
effectiveness and adaptability. This is mainly due to the fact
that topology and attribute induced by spectral augmentation
can fulfill the requirements of the employed GCN encoder,
thus the discriminative node representations are obtained af-
ter the encoding. In addition, an important observation is
that the proposed augmentation strategy, which spectral aug-
menting topology and attribute simultaneously, outperforms
all spectral variants, which emphasizes the necessity of the

A X CiteSeer Wiki-CS Chameleon Squirrel

71.06±0.45 78.61±0.23 49.65±1.79 32.46±1.18
X 72.79±0.61 81.36±0.13 51.26±1.40 35.23±1.09

X 71.80±0.75 78.84±0.29 55.80±2.15 34.96±1.27
X X 73.29±0.39 82.09±0.42 66.37±2.37 49.84±0.93

Table 4: Consideration of different components when per-
forming spectral augmentation.

Dataset Cora Photo Chameleon Squirrel

GRACE 83.44±0.39 92.65±0.32 48.05±1.71 31.33±1.22
+JAM 85.54±0.53 94.35±0.21 66.37±2.37 49.84±0.93

MVGRL 83.01±0.42 92.01±0.13 51.07±2.68 35.47±1.29
+JAM 84.26±0.55 94.26±0.19 64.04±1.90 47.18±0.68

BGRL 82.67±0.78 93.24±0.29 47.46±2.74 32.64±0.78
+JAM 84.19±0.47 93.81±0.10 69.05±1.18 48.09±0.89

Table 5: Plug the JAM augmentation to different GCL
frameworks, denoted by +JAM.

co-augmentation and the validity of the proposed scheme.
Since the work focuses on the augmentation method, we

evaluate the effectiveness of GCL-JAM with different GCL
frameworks by an ablation study. We choose three well-
used contrastive learning models, including GRACE (local-
local), MVGRL (local-global) and BGRL (bootstrapping).
Specifically, the augmentation of these models is replaced
with joint spectral augmentation. The results are shown in
Table 5. We can observe that the proposed augmentation
strategy makes all three contrastive learning frameworks im-
proved significantly on four datasets with various homophily
degrees. It is shown that GCL-JAM combining topology and
attribute retains more important information than random
uniform augmentation, and therefore more discriminative
representations can be learned by GCL-JAM. In addition,
these results illustrate that the superiority of GCL-JAM does
not depend on the choice of contrastive learning framework,
but rather because of the effectiveness of the method itself.

Conclusions
Both node attributes and graph topology are important in-
formation in graph and there are correlations between them.
Unfortunately, existing Graph Contrastive Learning (GCL)
models augment attributes and topology separately, ignoring
their correlations and resulting in information loss. To ad-
dress the above issue, we propose a novel GCL model with
joint spectral augmentation of attributes and topology (GCL-
JAM). The main idea is to generate an attribute-interpolated
graph by regarding node attributes as attribute nodes and
then perform spectral augmentation. We have shown experi-
mentally and theoretically that GCL-JAM can perturb inter-
class edges and noise attributes. Therefore, more distin-
guishable node representations can be obtained. Extensive
experiments on both homophilic graphs and heterophilic
graphs demonstrate the superior performance of GCL-JAM.
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