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ABSTRACT
Real-world graphs exhibit diverse structures, including homophilic
and heterophilic patterns, necessitating the development of a uni-
versal Graph Contrastive Learning (GCL) framework. Nonetheless,
the existing GCLs, especially those with a local focus, lack univer-
sality due to the mismatch between the input graph structure and
the homophily assumption for two primary components of GCLs.
Firstly, the encoder, commonlyGraphConvolutionNetwork (GCN),
operates as a low-pass filter, which assumes the input graph to be
homophilic. This makes it challenging to aggregate features from
neighbor nodes of the same class on heterophilic graphs. Secondly,
the local positive sampling regards neighbor nodes as positive sam-
ples, which is inspired by the homophily assumption. This results
in feature similarity amplification for the samples from the dif-
ferent classes (i.e., FALSE positive samples). Therefore, it is cru-
cial to feed the encoder and positive sampling of GCLs with ho-
mophilic graph structures. This paper presents a novel GCL frame-
work, named gRaph cOntraStive Exploring uNiversality (ROSEN),
designed to achieve this objective. Specifically, ROSEN equips a
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local graph structure inference module, utilizing the Block Diago-
nal Property (BDP) of the affinity matrix extracted from node ego
networks. This module can generate the homophilic graph struc-
ture by selectively removing disassortative edges. Extensive evalu-
ations validate the effectiveness and universality of ROSEN across
node classification and node clustering tasks.
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1 INTRODUCTION
Graph self-supervised learning (GSSL) stands out as a prominent
technique in unsupervised learning on graphs [36, 39], focusing on
training models by extracting implicit self-supervised signals from
graphs. As a representative GSSL, graph contrastive learning (GCL)
devises a basic architecture, which learns invariant node represen-
tations via maximizing the agreement between embedding vectors
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Figure 1: Comparison of existing local GCLwith pairwise re-
lationships and the proposed ROSEN with higher-order re-
lationships. The thickness of the line indicates the weight.

from different perturbations of the same graph [17, 29, 42, 43]. In-
heriting the success design and of contrastive learning in compute
vision (CV) [4], most GCLs not only employ GNN encoders but
mainly regard the same instance (node) in two augmented views
(graphs) as the positive samples of each other (i.e., Pairwise GCL),
and achieves outstanding performances on downstream tasks [29,
42]. Recently, GCLs have developed a graph-specific design based
on homophily assumption, namely that the connected nodes tend
to be the same class [1, 20]. To be specific, they propose to treat the
neighbor nodes as the positive samples of target nodes (i.e., Local
GCL), as shown in Figure 1 (a).This design has been verified empir-
ically to boost the performance of baseline models on homophilic
graphs [10, 17, 40].

Real-world graphs display diversity. They not only contain the
mentioned homophilic graphs but also include heterophilic graphs
such as the marriage network, where the connected nodes tend to
be the different classes [38]. Therefore, such a diversity of graphs
necessitates the development of universal GCLs. Unfortunately, the
majority of GCLs, particularly local ones, fall short of meeting the
above requirements for universality 1. This shortfall could be at-
tributed to a mismatch between the properties of graph structures
and the homophily requirements for two key components of GCLs,
namely the encoder and the positive term in contrastive loss.

On the one hand, the GNN encoder of GCLs, usually GCN [16],
operates under the homophily assumption [1, 20]. This assump-
tion implies that connected nodes are more likely to have similar
features or belong to the same class. Therefore, these encoders pre-
suppose that the input graph is homophilic. However, as topology
augmentation is typically implemented through random strategies,
such as random edge dropping [17, 42], the augmented graph struc-
ture hardly satisfies the above requirements. This discrepancy can
lead to incorrect feature propagation during the encoding process.
In addressing this challenge, several supervised GNNs with label-
guided feature propagation have been introduced, such as CPGNN
[41] and BM-GCN [9]. CPGNN propagates soft labels under the

1Universality means that models are applied to both homophilic and heterophilic
graphs.

guidance of a compatibility matrix, while BM-GCN propagates fea-
tures over a block matrix constructed using soft labels. However,
the challenge remains in self-supervised settings. On the other hand,
the optimization of the positive term in the contrastive loss (e.g., In-
foNCE loss [30]), which involves maximizing the feature similarity
of positive samples [35], also adheres to the homophily assumption.
The local positive sampling regards all neighbor nodes of a given
node as the positive samples for that node, which does not apply to
heterophilic graphs. Consequently, node representations may lose
their discriminative capacity.

To remedy the two drawbacks, this paper aims to devise a graph
structure inference module to provide the homophilic graph struc-
ture for encoding and positive sampling. The intuitive idea is to
selectively remove edges that connect the nodes from different
classes in the input graph (i.e., disassortative edges). The primary
challenge is to determine the criteria for selection without node
labels. To address this challenge, an analysis is conducted on the
properties of the affinity matrix extracted from the node ego net-
work, which contains the node and its one-hop neighborhoods. Ide-
ally, within the ego network of each node, the affinity matrix de-
scribing the relationships among these nodes is expected to adhere
to the Block Diagonal Property (BDP). This implies that diagonal
blocks, representing relationships between nodes from the same
class, should exhibit non-zero values, while off-diagonal elements,
denoting relationships between nodes fromdifferent classes, should
be zero. The local BDP serves as a basis for selectively removing
disassortative edges.

In light of the analysis, a universal GCL framework with a local
inference module of graph structures, named gRaph cOntraStive
Exploring uNiversality (ROSEN), is proposed. To be specific, in-
spired by the Block Diagonal Representation (BDR) [18], the local
inference module is designed to calculate the local affinity matri-
ces on the ego networks by optimizing a self-expressive learning
objective with soft diagonal block regularization. Furthermore, to
facilitate the low-noise node features for graph structure inference
and the robust graph structures for local contrasting learning, the
local self-expressive learning objective and contrastive learning ob-
jective are optimized via the alternative optimization strategy.The-
oretically, it is proven that ROSEN can be formulated as an Expec-
tation Maximization (EM) based algorithm. The iterative steps of
structure inferencing and contrastive learning can be elucidated as
approximating and maximizing the log-likelihood function.

The main contributions of this study are summarized as follows.

• We investigate the local block diagonal properties of the
affinity matrix on node ego networks.
• We introduce a universal GCL frameworkwith a local graph

structure inference module, named gRaph cOntraStive Ex-
ploring uNiversality (ROSEN).
• We theoretically prove that the proposed ROSEN follows the

EM algorithm.
• We extensively evaluate the effectiveness and universality

of ROSEN on node classification and node clustering tasks.

2 PRELIMINARIES
This section first introduces the notations used in this paper. Next,
it elucidates the basic concept of graph contrastive learning (GCL).
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2.1 Notations
Let G(V, E,X) represents an undirected attribute graph, whereV
denotes the node set and E terms the edge set. X ∈ R𝑁×𝐹 stands
for the node attribute matrix, where 𝑁 and 𝐹 are the numbers of
nodes and attributes, respectively.The adjacencymatrix is denoted
by A ∈ R𝑁×𝑁 . The normalization form of the adjacency matrix is
commonly utilized [16, 37], namely Ã = (D + I)− 1

2 (A + I) (D + I)− 1
2 ,

whereD denotes the diagonal degreematrix. According to the edge
set V , the neighbor node set of each node can be obtained (e.g.,
𝑁 (𝑣) of node 𝑣). The node labels are denoted by Y ∈ R𝑁×𝐶 , which
are exclusively employed in fine-tuning the classifier parameters
on downstream tasks, such as node classification.

2.2 Graph Contrastive Learning
GNN Encoder. To produce informative node representations, the
raw attribute is projected by a GNN encoder (typically Graph Con-
volution Network (GCN) [16]). For graph G(V, E,X), the encod-
ing process can be formulated as

GCN(Ã,H(𝑙 ) ) : H(𝑙+1) = 𝜎 (ÃH(𝑙 )W(𝑙 ) ), (1)

where H(0) = X denotes the initial node representation, and 𝜎 (·)
terms the nonlinear activation function (e.g., ReLU(·) = max(0, ·)),
and W(𝑙 ) represents the parameter matrix at layer 𝑙 . As a result,
by encoding nodes via GNNs, node representations would capture
the structural relationships and local patterns on graphs.
Pairwise and Local Contrastive Losses. Based on the defined
positive and negative sample sets, contrastive loss is implemented
as the distance minimization between the positive pairs alongside
the distance maximization between the negative pairs. As exempli-
fied by a node-level GCL scheme, a widely used InfoNCE [30] loss
L𝑖𝑛𝑓 𝑜 can be expressed as

L𝑖𝑛𝑓 𝑜 = − 1
|𝑉 |

∑
𝑣∈𝑉

𝑙𝑜𝑔
pos(𝑣)

pos(𝑣) + neg(𝑣) ,

pos(𝑣) =
∑

𝑣+∈P𝑣
𝑒𝜃 (h𝑣 ,h𝑣+ )/𝜏 , neg(𝑣) =

∑
𝑣−∈N𝑣

𝑒𝜃 (h𝑣 ,h𝑣− )/𝜏 ,
(2)

where 𝜃 represents the cosine similarity. 𝜏 is a temperature coeffi-
cient, and a smaller one helps form a more uniform representation
space. P𝑣 and N𝑣 denote the positive and negative sample set of
node 𝑣 , respectively. Generally, the positive sampling strategies of
GCLs are two categories: pairwise and local positive sampling.The
former strategy leverages the same node in another graph (view)
[42], while the latter involves appending nodes with similar seman-
tics from node neighborhoods [10, 17]. These strategies can be for-
mulated as

𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒 P𝑣 = {𝑢 |𝑢 = 𝑣}, (3)
𝐿𝑜𝑐𝑎𝑙 P𝑣 = {𝑢 |𝑢 ∈ 𝑁 (𝑣) 𝑎𝑛𝑑 𝑢 ∈ {𝑁 (𝑣) ∪ 𝑣}}, (4)

where 𝑣 represents the corresponding node of 𝑣 in another graph.
Typically, the negative sample set consists of all remaining nodes,
i.e., N𝑣 = {{𝑉 ∪ �̃� } \ {P𝑣 ∪ 𝑣}}. Compared to the pairwise GCLs,
which relies on pariwise positive sampling, the local GCLs enhance
the depiction of homophily [1, 20]. Homophily can be viewed a reli-
able indicator of encoding and positive sampling in self-supervised
scenarios [10].

3 METHODOLOGY
This section starts by elucidating themotivation behind graph struc-
ture inference on node neighborhoods. Subsequently, a novel Graph
Contrastive Learning (GCL) frameworkwith a local inferencemod-
ule of graph structures, named ROSEN, is introduced. Finally, an
analysis of the efficiency of ROSEN is presented.

3.1 Analysis and Motivation
Existing GCLs, particularly local ones, tend to be not universal for
homophilic and heterophilic graphs [17, 40]. This failure could re-
sult from the mismatch between the properties of graph structures
and the requirement for two key components of local GCLs, i.e., en-
coder and positive term in contrastive loss.

On the one hand, most GNN encoders of GCLs, especially the
widely used GCN [16], follow homophily assumption [1, 20]. Thus,
they require the input graph to be homophilic. However, since the
topology augmentation is often implemented according to random
strategies, such as random edge dropping [17, 42], the augmented
graph structure hardly satisfies the above requirements. On the
other hand, the positive term in contrastive loss, which is formu-
lated in Equation 2, also follows the homophily assumption, as an-
alyzed in the introduction. Based on the input graph, the local pos-
itive sampling regards all neighbor nodes of a node as the positive
samples of this node, as described in Equation 4, which again does
not meet the above requirement. Therefore, node representations
will lose themself discrimination.

A solution to this problem of local GCLs is to provide the model
with a fully homophilic graph structure by dropping edges that
connect the nodes of different classes (i.e., disassortative edges). So
that GCLs can perform feature propagation and positive sampling
among nodes of the same class in node neighborhoods. However,
this presents a challenging issue, as the node labels are unknown
in self-supervised learning scenarios. To address this challenge, the
paper explores the characteristics of affinity matrices within node
neighborhoods to selectively drop the disassortative edges.

Definition 3.1. Block Diagonal Property (BDP) [11]. Given a
square matrix, if it can be decomposed into small block matrices,
where each block is denoted by non-zero elements on the principal
diagonal while non-diagonal elements are zero, it obeys the BDP.

On the ego network of each node, which comprises the node
and its one-hop neighbors, the affinity matrix describing the rela-
tionships among these nodes should obey the BDP. That is, diago-
nal blocks that denote the relationship between nodes of the same
class is nonzero while the off-diagonal elements that represent the
relationship between nodes from different classes is zero. There-
fore, the homophilic graph structure can be obtained by pursuing
the block diagonal affinity matrix on node neighborhoods.

3.2 ROSEN Framework
According to the analysis presented previously, this paper proposes
a novel universal GCL framework with a local inference module of
graph structures, called gRaph cOntraStive Exploring uNiversality
(ROSEN). The idea of the local inference module is to generate ho-
mophilic graphs for GCLs by removing edges connecting nodes
of different classes in the input graphs, as depicted in Figure 2.
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This local inference module consists of three primary components:
ego network extraction, affinity matrix calculation, and graph re-
construction. Once reconstructed graphs are obtained, they are ap-
plied to the GNN encoder and localized contrastive loss to facilitate
learning discriminative node representations.

3.2.1 Local Graph Structure InferenceModule. Inspired by the clas-
sic Block Diagonal Representation (BDR) [18], which is widely em-
ployed in subspace clustering, this module first calculates the local
affinity matrices by optimizing a self-expressive learning objective
with soft diagonal block regularization on local feature space. This
can be formulated as

min
B𝑣

1
2
∥H𝑣 − B𝑣H𝑣 ∥2 + 𝛾 ∥B𝑣 ∥𝑘 ,

s.t. diag(B𝑣) = 0, B𝑣 ≥ 0, B𝑣 = B𝑇𝑣 ,
(5)

where H𝑣 ∈ R( |𝑁 (𝑣) |+1)×𝐷 represents features for the ego net-
work of node 𝑣 and 𝑁 (𝑣) denotes the number of one-hop neighbor
nodes and 𝐷 terms the dimension of features. B𝑣 stands for the lo-
cal affinity matrix, and ∥B𝑣 ∥𝑘 =

∑𝑘−1
𝑖=0 𝜆𝑖

(
LB𝑣

)
terms the sum of

the smallest 𝑘 eigenvalue of LB𝑣 , where LB𝑣 denotes the laplacian
matrix of B𝑣 and the eigenvalues are listed in ascending order. 𝛾 is
a hyperparameter for a tradeoff between two terms. Based on spec-
tral graph theory [5], the two terms of Equation 5 guarantee that
matrix B𝑣 is self-expressive and has 𝑘 connected subgraphs (i.e.,
blocks). In addition, three constraints of the matrix are considered:
no self-loop, nonnegative and symmetric.

However, directly applying the three constraints on B𝑣 limits its
expressive power. To alleviate this issue, the module seeks to intro-
duce an approximation term. Thus, Equation 5 can be rewritten as

min
Z𝑣 ,B𝑣

1
2
∥H𝑣 − Z𝑣H𝑣 ∥2 +

𝜆

2
∥Z𝑣 − B𝑣 ∥2 + 𝛾 ∥B𝑣 ∥𝑘 ,

s.t. diag(B𝑣) = 0, B𝑣 ≥ 0, B𝑣 = B𝑇𝑣 ,
(6)

where Z𝑣 stands for the affinity matrix that approximates B𝑣 and
𝜆 denotes a hyperparameter.
Solution.The above objective function can be optimized via alter-
natingminimization solver [34], namely, updating onewhile fixing
the other. After the solver converges, the generated affinity matri-
ces are applied to the GNN encoder for feature propagation and to
the localized contrastive loss for positive sampling. For ease of pre-
sentation, Z𝑣 and B𝑣 are abbreviated as Z and B. Note that due to
∥B∥𝑘 is nonconvex for which the optimization is NP-hard, it needs
to be converted into a convex program [2] according to

∥B∥𝑘 = min
W
⟨LB,W⟩ , s.t. 0 ⪯ W ⪯ I,Tr(W) = 𝑘, (7)

whereW ∈ R( |𝑁 (𝑣) |+1)×( |𝑁 (𝑣) |+1) denotes a newly added variable
block. Therefore, the overall objective of the proposed local graph
structure inference module can be expressed as

min
Z,B,W

1
2
∥H𝑣 − ZH𝑣 ∥2 +

𝜆

2
∥Z − B∥2 + 𝛾 ⟨LB,W⟩,

s.t. diag(B) = 0,B ≥ 0,B = B⊤, 0 ⪯ W ⪯ I,Tr(W) = 𝑘,

(8)

The objective function is split into three problems and solved inde-
pendently. Please refer to the appendix for the solving process.

After the affinity matrix of each node is obtained, the row vector
corresponding to this node is selected as the edge weights between
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Figure 2: Workflow of the proposed local graph structure in-
ference module. Nodes are sorted by classes. Edges that con-
nect the nodes of the same class tend to be kept.

the node and its neighbor nodes, as shown in Figure 2. Based on it,
the weights of all edges in the input graph can be obtained. In this
process, some edges that connects nodes from different subspaces
could be removed since the affinity values being 0.

Moreover, to ensure that the relationship between the node pairs
are reciprocal, it is necessary to make the adjacency matrix of the
graph nonnegative and symmetric.The operations on the adjacency
matrix S can be formulated as

S =
(
|AB | + |AB

⊤ |
)
/2 or S =

(
|AZ | + |AZ

⊤ |
)
/2, (9)

where AB and AZ denote the adjacency matrices corresponding to
B and Z, respectively. Furthermore, to ease the computational bur-
den and preserve the confident relationship, sparsification opera-
tion is applied on S, i.e., zeroing out values less than the threshold
𝛽 . This can be expressed as

S𝑖 𝑗 =

{
0, if S𝑖, 𝑗 < 𝛽,

S𝑖, 𝑗 , otherwise.
(10)

Benefits. The proposed local structure inference module provides
several advantages to GCLs. (1)Robust topology augmentation.
Firstly, the structure inference is equivalent to edge deletion, which
is widely utilized as topology augmentation. As described in Figure
2, some edges in the initial graph may be removed through affinity
matrix estimation and matrix sparsification. Secondly, compared
to random edge deletion, the edge deletion resulting from the struc-
ture inference can improve the robustness of GCLs. Note that the
inference process, which is based on feature self-expressive assump-
tion, always keeps edges that connect two nodes of the same class.
(2)Higher-order information. Given that the inferred edgeweights
actually characterize higher-order relationships between local neigh-
bors, GCLs can benefit from exploringmacro community structure
rather than fragile pairwise relationships. Besides, this module per-
forms parallel training on nodes, which guarantees its scalability.

3.2.2 Contrastive Learning. After the graph structure is modified,
the discussion follows on how to improve the universality of GCLs
using this graph structure. Based on the previous analysis, the qual-
ity of node representation can be enhanced by performing the en-
coding and local positive sampling using this graph structure. Note
that, the primary module of ROSEN is orthogonal to GCL work on
graph augmentation and encoder designs, thus ROSEN is extensi-
ble to most GCLs. For convenience, the implementation of ROSEN
refers to the configuration of GRACE [42] in this paper.

Firstly, the modified graph structure is employed in a two-layer
GCN encoder to guide the feature propagation, namely

H = 𝜎
(
(S ⊙ Ã) · 𝜎

(
(S ⊙ Ã) · X ·W(0)

)
·W(1)

)
, (11)
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Table 1: Accuracy in percentage (mean ± std) of node classification for six homophilic graphs. The Best and Runner-up of
unsupervised models are bolded and underlined, respectively. The second column presents the data considered in training.

Model Training Data Cora CiteSeer PubMed Wiki-CS Computers Photo
GCN A,X, Y 85.77 ± 0.25 73.68 ± 0.31 88.13 ± 0.28 76.89 ± 0.37 86.34 ± 0.48 92.35 ± 0.25
GAT A, X, Y 86.37 ± 0.30 74.32 ± 0.27 87.62 ± 0.26 77.42 ± 0.19 87.06 ± 0.35 92.64 ± 0.42
JKNet A, X, Y 85.93 ± 1.35 74.37 ± 1.53 87.68 ± 0.30 79.52 ± 0.21 85.28 ± 0.72 92.68 ± 0.13
DeepWalk A 73.96 ± 0.12 61.91 ± 0.42 74.79 ± 0.98 74.35 ± 0.06 85.68 ± 0.06 89.44 ± 0.11
Node2Vec A 75.87 ± 0.22 62.54 ± 0.13 76.49 ± 0.32 71.79 ± 0.05 84.39 ± 0.08 89.67 ± 0.12
GAE A, X 76.83 ± 1.22 65.43 ± 1.13 76.52 ± 0.33 70.15 ± 0.01 85.27 ± 0.19 91.62 ± 0.13
VGAE A, X 79.36 ± 0.83 69.18 ± 0.27 79.17 ± 0.44 76.63 ± 0.19 86.37 ± 0.21 92.20 ± 0.11
GraphMAE A, X 87.31 ± 1.01 73.47 ± 0.32 84.83 ± 0.53 79.49 ± 0.11 88.83 ± 0.25 93.07 ± 0.55
DGI A, X 85.90 ± 0.57 72.57 ± 0.23 83.52 ± 1.24 75.73 ± 0.13 84.09 ± 0.39 91.49 ± 0.25
MVGRL A, X 86.77 ± 0.33 73.71 ± 0.48 84.63 ± 0.73 77.97 ± 0.18 87.09 ± 0.27 92.01 ± 0.13
GRACE A, X 84.79 ± 0.64 72.94 ± 0.72 84.51 ± 0.68 79.16 ± 0.36 87.21 ± 0.44 92.65 ± 0.32
GCA A,X 85.16 ± 0.51 72.73 ± 0.45 85.22 ± 0.73 79.35 ± 0.12 87.84 ± 0.27 92.78 ± 0.17
BGRL A, X 85.37 ± 0.74 73.45 ± 0.83 84.61 ± 0.32 78.74 ± 0.22 88.92 ± 0.33 93.24 ± 0.29
LOCAL-GCL A, X 86.27 ± 0.91 73.27 ± 0.18 85.01 ± 0.48 79.18 ± 0.53 88.72 ± 0.42 93.15 ± 0.47
HGRL A, X 85.85 ± 0.73 72.06 ± 0.75 84.44 ± 0.63 78.97 ± 0.83 87.59 ± 0.47 92.33 ± 0.82
SP-GCL A, X 86.07 ± 0.83 73.39 ± 0.64 84.17 ± 0.81 79.21 ± 0.94 88.25 ± 0.33 92.57 ± 0.93
HomoGCL A, X 85.02 ± 0.68 73.67 ± 0.78 82.33 ± 0.49 77.47 ± 0.45 87.84 ± 0.28 93.59 ± 0.27
ROSEN A, X 87.72 ± 1.00 74.13 ± 0.68 85.30 ± 0.72 80.17 ± 1.28 89.03 ± 0.41 93.90 ± 1.10

where ⊙ stands for Hadamard product.
Next, ROSEN proposes to leverage the modified graph structure

to guide the positive sampling on node neighborhoods. To be spe-
cific, given the node features H and graph structure S, ROSEN de-
vises the objective function for node 𝑣 as

L𝑟𝑜𝑠𝑒𝑛 = − 1
|𝑉 |

∑
𝑣∈𝑉

𝑙𝑜𝑔
pos(𝑣)

pos(𝑣) + neg(𝑣) ,

pos(𝑣) =
∑

𝑣+∈𝑁𝑆 (𝑣)
S𝑣,𝑣+ ∗ 𝑒𝜃 (h𝑣 ,h𝑣+ )/𝜏 ,

neg(𝑣) =
∑

𝑣−∈𝑉 \𝑁𝑆 (𝑣)
𝑒𝜃 (h𝑣 ,h𝑣− )/𝜏 ,

(12)

where 𝑁𝑆 (𝑣) denotes the neighbor node set of node 𝑣 on matrix S.
In contrast to existing local GCLs which blindly regard all neigh-
bor nodes as positive samples [40], ROSEN elaborately selects the
reliable neighbor nodes as positive samples through the local struc-
ture inference module.

Considering that GCN essentially can serve as a denoising en-
coder [19], which satisfies the needs of low-noise features for the
proposed local inference module, performing on the feature space
is a logical solution. To provide expressive encoded features, ROSEN
presents the alternating optimization strategy of encoder parame-
ters and graph structure, as described in Algorithm 1.

TheoRem 3.2. LetΘ, 𝑘 and 1G denote the parameters of the GNN
encoder, the number of subspaces (blocks), and the subspace indicator,
respectively, the proposed ROSEN follows Expectation-Maximization
(EM) algorithm, where the structure inference and the maximization
of the lower bound on the mutual information of representations for
the contrastive pairs are equivalent to E-step and M-step, respectively.

Please refer to the appendix for the proof.

3.3 Complexity Analysis
This section analyzes the time complexity of the proposed ROSEN,
which is based on the baseline GRACE. It is worth noting that
ROSEN introduces light computational overhead over GRACE.

The overall complexity of ROSEN is𝑂 ( |E |(𝐹+𝐷)+𝑁 2𝐷+𝑁 (𝑃𝐹+
𝑃3)), which comes from three components: encoding, loss calcula-
tion, and graph structure inference. 𝑃 terms the average size of ego
networks. The complexity of the first two components is the same
as that of GRACE. Specifically, since the backbone for encoding is
a two-layer GCN, the complexities of the two-layer calculations is
𝑂 (𝐸𝐹 +𝐸𝐷). Moreover, before calculating loss, node features are di-
mensionally reduced through the projection head, which is a two-
layer MLP. The complexity of the two-step projection is 𝑂 (𝑁𝐷2).
Besides, the calculation of contrastive loss takes𝑂 (𝑁 2𝐷) time due
to a quadratic all-pairs contrast at each update step. Thus, the com-
plexity of GRACE is 𝑂 ( |E |(𝐹 + 𝐷) + 𝑁 2𝐷).

The additional complexity of ROSEN arises from the proposed
local inference of graph structures. Specifically, for each given node,
ROSEN extracts an ego network, optimizes the objective function
outlined in Equation 8, and constructs a new edge set for the entire
graph. For each node, the complexities of ego network extraction,
optimization, and edge set construction are 𝑂 (𝑃𝐹 ), 𝑂 (𝑃3), 𝑂 (𝑃3),
and 𝑂 (𝑃3), and 𝑂 (𝑃), respectively. Thus, the complexity for each
ego network is 𝑂 (𝑃𝐹 + 𝑃3). As a result, the overall complexity
across all nodes is𝑂 (𝑁 (𝑃𝐹 +𝑃3)). It is noteworthy that the number
of iterations is ignored since the maximum value is set. As the ad-
ditional complexity is linear with the network size, ROSEN incurs
light computational overhead over GRACE.

4 EXPERIMENTS
This section begins by introducing the fundamental setup of the ex-
periment, including datasets, baseline models, and configurations.



WWW ’24, May 13–17, 2024, Singapore, Singapore Jiaming Zhuo et al.

Table 2: Accuracy in percentage (mean ± std) of node classification for six heterophilic graphs. The Best and Runner-up of
unsupervised models are bolded and underlined, respectively. The second column presents the data considered in training.

Model Training Data Cornell Texas Wisconsin Chameleon Squirrel Actor
GCN A, X, Y 55.14 ± 7.57 55.68 ± 9.61 58.42 ± 5.10 59.82 ± 2.58 36.89 ± 1.34 30.64 ± 1.49
GAT A, X, Y 58.92 ± 3.32 58.38 ± 4.45 55.29 ± 8.71 60.26 ± 2.50 40.72 ± 1.55 27.44 ± 0.89
JKNet A, X, Y 56.49 ± 3.22 65.35 ± 4.86 51.37 ± 3.21 60.31 ± 2.76 44.24 ± 2.11 36.47 ± 0.51
DeepWalk A 39.18 ± 5.57 46.49 ± 6.49 33.53 ± 4.92 47.74 ± 2.05 32.93 ± 1.58 22.78 ± 0.64
Node2Vec A 42.94 ± 7.46 41.92 ± 7.76 37.45 ± 7.09 41.93 ± 3.29 22.84 ± 0.72 28.28 ± 1.27
GAE A, X 58.85 ± 3.21 58.64 ± 4.53 52.55 ± 3.80 33.84 ± 2.77 28.03 ± 1.61 28.03 ± 1.18
VGAE A, X 59.19 ± 4.09 59.20 ± 4.26 56.67 ± 5.51 35.22 ± 2.71 29.48 ± 1.48 26.99 ± 1.56
GraphMAE A, X 59.32 ± 4.15 60.17 ± 5.32 56.45 ± 5.33 50.13 ± 2.11 38.03 ± 1.23 29.88 ± 1.05
DGI A, X 63.35 ± 4.61 60.59 ± 7.56 55.41 ± 5.96 39.95 ± 1.75 31.80 ± 0.77 29.82 ± 0.69
MVGRL A, X 64.30 ± 5.43 62.38 ± 5.61 62.37 ± 4.32 51.07 ± 2.68 35.47 ± 1.29 30.02 ± 0.70
GRACE A, X 54.86 ± 6.95 57.57 ± 5.68 50.00 ± 5.83 48.05 ± 1.81 31.33 ± 1.22 29.01 ± 0.78
GCA A,X 55.41 ± 4.56 59.46 ± 6.16 50.78 ± 4.06 49.80 ± 1.81 35.50 ± 0.91 29.65 ± 1.47
BGRL A, X 57.30 ± 5.51 59.19 ± 5.85 52.35 ± 4.12 47.46 ± 2.74 32.64 ± 0.78 29.86 ± 0.75
LOCAL-GCL A, X 53.31 ± 1.87 62.19 ± 2.38 64.98 ± 1.32 59.27 ± 3.37 49.31 ± 2.81 32.39 ± 1.48
HGRL A, X 74.34 ± 5.13 73.66 ± 6.92 77.16 ± 4.62 48.58 ± 2.46 37.81 ± 1.54 32.87 ± 0.98
SP-GCL A, X 74.96 ± 5.19 73.07 ± 5.28 76.87 ± 5.47 51.17 ± 1.97 38.79 ± 1.57 31.87 ± 0.92
HomoGCL A, X 48.64 ± 2.59 54.05 ± 2.32 39.21 ± 5.75 48.68 ± 1.16 38.71 ± 0.85 28.81 ± 0.78
ROSEN A, X 76.49 ± 6.84 74.86 ± 6.29 78.63 ± 4.68 49.25 ± 2.33 39.13 ± 1.36 33.19 ± 0.81

Table 3: Overall performance of node clustering measured
by ACC, NMI, and ARI scores in percentage.The best results
are in bold, and the second-best results are underlined.

Cora CiteSeer
ACC NMI ARI ACC NMI ARI

K-Means 35.78 16.88 8.30 44.47 21.35 17.43
GRACE 64.02 36.17 22.69 53.65 27.62 25.14
BGRL 61.84 40.39 24.29 52.52 15.4 14.17
MVGRL 72.45 55.05 41.55 64.14 39.12 38.93
ROSEN 76.08 58.53 46.50 66.22 40.34 40.17

Then, it comprehensively assesses the effectiveness of the proposed
ROSENby experimentally validating the performances on two down-
stream tasks, i.e., node classification and clustering. Finally, it per-
forms several additional experiments to provide an intuitive un-
derstanding of the performance improvements, including the effec-
tiveness study, ablation study, hyperparameter study, robustness
study, and scalability study.

4.1 Experimental Setup
4.1.1 Datasets. In the experiments, fifteen publicly available graph
datasets are employed in the experiment, which consists of twelve
small graphs and three large graphs. Firstly, according to whether
the Edge Homophily [22] is more significant than 0.5, the samll
graph datasets can be divided into two categories: homophilic graphs
(i.e., Cora, CiteSeer, PubMed, Wiki-CS, Computers, and Photo) and
heterophilic graphs (i.e., Cornell, Texas, Wisconsin, Chameleon,
Squirrel, and Actor). Secondly, three large graphs are Ogbn-Arxiv,
Ogbn-Products, MAG-Scholar-F.The statistics of these datasets are
shown in Table 5 and Table 6 in the Appendix.

For a fair comparison, the graph datasets are split according to
broadly adopted schemes. Specifically, for three homophilic graphs
(Cora, CiteSeer, and Pubmed) and all six heterophilic graphs, the
partition provided by Geom-GCN [22] is used, where the nodes for
training, validation, and testing are 48%, 32%, and 20% of all nodes,
respectively. In addition, for the remaining three homophilic graphs
(Wiki-CS, Computers, and Photo), we randomly split the training,
validation, and test sets into 10%, 10%, and 80% of all nodes [29].
Moreover, we employ the official splits in [13] for Ogbn-Arxiv
andOgbn-Products. And, as forMAG-Scholar-F, we randomly split
5%/5%/40% nodes for training/validation/testing, respectively.

4.1.2 Baseline Models. The baseline models include the following
four categories: three semi-supervised GNN (including GCN [16],
GAT [31], and JKNet [37]), three unsupervised models (including
K-Means [7], DeepWalk [23], and Node2Vec [6]), three graph gen-
erative models (GAE [15], VGAE [15], and GraphMAE [12]), and
nine graph contrastive models (including DGI [32], MVGRL [8],
GRACE [42], GCA [43], BGRL [29], LOCAL-GCL [40], HGRL [3],
SP-GCL [33], and HomoGCL [17]). Please refer to appendix for the
introduction of these models.

4.1.3 Configurations. Theexperiment is performed on a Linuxma-
chine with GeForce RTX4090 24GBGPU and a Linuxmachine with
four NVIDIA A800 80GB GPUs.The results are reported as an aver-
age of ten random runs. Tomake a fair comparison, the experiment
works with the configuration reported in the original paper for all
baseline models except for the embedding dimension is set to 64.
Note that thanks to the open PyTorch libraries: PyG1 and PyGCL2,
the reproduction of all baseline models is facilitated. The proposed
ROSEN follows the baseline model GRACE [42], where the GNN

1https://www.pyg.org/
2https://github.com/PyGCL
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Figure 3: Visualization of the adjacency matrix and inferred
structure matrices. The block value denotes the normalized
edge weights. The inferred structure matrix is more similar
to the block diagonal matrix.

encoder is a two-layer GCN [16] with the dimension is 64. More-
over, the graph augmentations involve attribute masking and edge
dropping, which have the ratio {0.2, 0.4, 0.6, 0.8}. The temperature
coefficient of the contrastive loss is taken from {0.1, 0.3, 0.5, 0.7, 1, 2}.
In addition, the network optimizer used in network training is
Adam optimizer [14], the learning rate is taken out of {0.001, 0.01}
and the weight decay rate is chosen in {0, 1 × 10−3, 1 × 10−4, 1 ×
10−5}. For the hyperparameters introduced by ROSEN, 𝜆, 𝛾 , and 𝜖
are chosen among {40, 50, 60},{0.5, 1, 2}, and {1 × 10−3, 1 × 10−4},
respectively, and the number of subspaces (blocks) is picked from
a range no more significant than the number of classes, and its
impact on the performance is shown in Section 4.5.

4.2 Results and Analysis
Homophilic Graphs. Table 1 presents the node classification per-
formance of all models on the homophilous graph. First, the pro-
posed ROSEN framework achieves the best classification perfor-
mance on all datasets compared to all unsupervised baselines. For
example, ROSEN outperforms the second-ranked GraphMAE on
Cora by 0.41%, which demonstrates the superiority of ROSEN in ex-
ploiting self-supervised information. Second, even in comparison
to the supervised baseline methods, the proposed ROSEN frame-
work obtains the highest classification accuracy on five datasets
except CiteSeer and PubMed. In particular, ROSEN outperforms its
backbone GCN by 3.28% on Wiki-CS and by 2.69% on Computers.
This illustrates the potential of ROSEN as an unsupervised learn-
ing scheme for the base model. Third, compared to the baseline
GRACE, which employs the same configurations (i.e., encoder and
augmentation), ROSEN achieves 2.93% and 1.82% performance im-
provement on Cora and Computers, respectively.This can be attrib-
uted to the proposed graph structure inference module, through
whichmore TRUE positive samples can be obtained.Heterophilic
Graphs. It is observed from Figure 2 that as compared to all un-
supervised baselines, ROSEN achieves the best performance on
four heterophilous graphs. Specifically, ROSEN outperforms the
second-place SP-GCL by 1.53% on Cornell and the second-place

Table 4: Impact of the inferenced graph structure used in
different components: the encoder and contrastive loss.𝑤/𝑜
stands for without.

Cora CiteSeer Texas Actor
ROSEN 87.72±1.00 74.13±0.68 74.68±6.29 33.19±0.81
w/o in encoder 85.77±1.49 73.94±0.55 63.24±4.67 29.93±0.69
w/o in contrastive loss 85.63±1.57 73.79±0.47 61.72±4.97 29.61±0.52
local GCL 84.65±1.18 73.68±0.63 59.27±5.91 29.02±0.70
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Figure 4: Impact of the number of subspaces (blocks) on the
node classification performance.The number is set to be less
than or equal to the number of classes.

HGRL by 1.47% on Wisconsin, respectively, which demonstrates
its superiority on heterophilous graphs. Moreover, ROSEN has con-
sistent performance gains over the baseline GARCE on all datasets,
which illustrates the effectiveness of the proposed structure in-
ference module to extract TRUE positive samples. Furthermore,
the proposed ROSEN remarkably achieves performance improve-
ment over the backboneGCN.The only exception is on Chameleon,
where ROSEN slightly underperformsGCNyet still achieves a com-
parable result. It should be noted that unsupervised models gener-
ally fail to perform well on Chameleon and Squirrel datasets. One
possible reason is that the uniform representations induced from
the optimization for the negative sample pairs do not match the
neighborhood overlap property of the two graphs [24].

Node Clustering. To assess the discrimination of the obtained
node embeddings, this section performs the node clustering using
these embeddings on Cora and CiteSeer datasets. The node clus-
tering task is conducted with the help of K-Means. It can be ob-
served from Table 3 that, compared to the unsupervised models K-
Means, which does not employ graph structure, the unsupervised
models with graph structure show performance advantages on all
datasets.This demonstrates that considering graph structure in the
model design enables GCL methods to generate more discrimina-
tive representations.What’s more, compared to baseline GCLmod-
els, ROSEN generates clustering-friendly embeddings. For exam-
ple, ROSEN outperforms the runner-up MVGRL by at least 1% on
all datasets, which highlights the representation ability of ROSEN.

4.3 Effectiveness Analysis
As discussed in the previous section, this paper aims to create ho-
mophilic graphs by constraining the correspondingmatrices to sat-
isfy the BDP. To intuitive explain the effectiveness of the proposed
local graph structure inference module, the edge distributions of
the input adjacency matrices and the inferred graph structure ma-
trices of Squirrel and Actor datasets are visualized, as depicted in
Figure 3. The inferred graph structures are selected from AZ and
AB according to the reported results in Table 2.
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Figure 5: Performance variation of GCL models on graph
data with topology noise.
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Figure 6: Performance variation of GCL models on graph
data with attribute noise.

Observing Figure 3we can notice the inferred structurematrices
are more similar to the block diagonal matrices than the input adja-
cencymatrices. In particular, as exemplified on the Squirrel dataset,
many elements of the non-diagonal (stand for the edges that con-
nect the nodes of different classes) are deleted or the weights are
reduced, which illustrates the outstanding ability of the proposed
graph structure inference module. Besides that, this phenomenon
is more obvious on the Actor dataset, which underlines the validity
of the proposed inference module.

4.4 Ablation Study
To verify the contributions of the inferred graph structure in differ-
ent components (i.e., encoder and contrastive loss) of the proposed
ROSEN, this section conducts several ablation experiments, as ex-
hibited in Table 4. The ”local GCL” stands for the GCL variants
which employ the adjacency matrix for both encoding and con-
trasting. First, ROSEN presents the best classification performance
across all datasets compared to the variants, which underlines the
rationality of its design. Second, it is observed that compared to Lo-
calized GCL, other variants harvest performance gains by employ-
ing the inferred graph structures, especially on heterophilic Texas.
This demonstrates the effectiveness and feasibility of the proposed
graph structure inference module. Third, note that utilizing the in-
ferred graph structure in the contrasting brings more benefits than
in the encoding as the accuracy is enhanced more. This may be be-
cause the contrast in the outer layer can better control parameter
update than the encoding. Overall, the results confirm that the su-
perior performance of ROSEN comes from the design rather than
any individual contribution.

4.5 Hyperparameter Study
To provide valuable insights on selecting the number of subspaces
(diagonal blocks), this section experimentally analyzes the impact
of this hyperparameter on node classification performance. To pre-
serve sufficient neighbor nodes for each node, this hyperparameter
is chosen from the range of less than the number of classes.

As can be observed from Figure 4, ROSEN shows steady perfor-
mance improvements over a range of parameters, which are {2, 3},
{2, 3, 4, 5} and {4, 5} for the Cora, Cornell, and Actor, respectively.
This illustrates the insensitivity to the number of blocks 𝑘 . Further-
more, combined with the results in Table 1 and Table 2, it is appar-
ent that ROSEN with a small hyperparameter value (e.g., 𝑘 = 2)
still outperforms most baseline models. Compared to the baseline
GCLs which treat the neighbor nodes as positive samples, even if
ROSEN may incorrectly preserve FALSE positive samples during
structure inference, it benefits from excluding part of FALSE posi-
tive samples. The results highlight the effectiveness of ROSEN.

4.6 Robustness Analysis
Figure 5 and Figure 6 show the performance variation of GCLmod-
els under the topology attack (adding noisy edges) and the attribute
attack (flipping attributes), respectively. First, while the baselines
manifest the adaptability to minor topology noise, their perfor-
mance degrades incrementally as the perturbation increases. For
example, the accuracy of the baseline GRACE, which employs the
same configurations, drops to approximately 67% on Cora when
the perturbation rate is 60%. By contrast, ROSEN exhibits stability
in preserving its predictive performance under topology perturba-
tion. Under the perturbation rate is 60%, ROSEN achieves an ac-
curacy of approximately 80%. This outstanding performance is at-
tributed to the fact that the inferred graph structure always keeps
a high proportion of intra-class edges and thus is insensitive to
the local feature distribution. Second, ROSEN is also superior to
the baselines under attribute perturbation, which illustrates its ro-
bustness to attribute noise. This can be attributed to the utilization
of matrix constraints to capture higher-order relationships. The
graph structure inference module is stable against attribute attacks
and thereby promotes the denoising ability of the models.

5 CONCLUSIONS
Thiswork explores challenges in applyingGraphContrastive Learn-
ing (GCL) to both homophilic and heterophilic graphs, presenting a
solution named ROSEN.The framework focuses on reconstructing
the homophilic graph structure for encoding and positive sampling.
It involves selectively removing the disassortative edges through a
local inference module, which optimizes a self-expressive learning
objective with soft diagonal block regularization on ego networks.
The proposed local graph structure inference module significantly
enhances the performance of baseline models on several graph-
specific tasks. The potential future research directions include de-
signing the beyond local positive sampling and self-supervised cri-
teria for multimodal data.
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A APPENDIX
A.1 Datasets
The statistics of twelve graph datasets used in this experiment are
shown in Table 5.
Table 5: Statistics of twelve graph datasets. The abbreviation
#𝐸𝑑𝑔𝑒𝐻𝑜𝑚 denotes the edge homophily elucidated in [22].

Dataset Nodes Edges Features Classes #𝐸𝑑𝑔𝑒𝐻𝑜𝑚

Cora [26] 2,708 5,278 1,433 7 0.81
CiteSeer [26] 3,327 4,552 3,703 6 0.74
PubMed [26] 19,717 44,324 500 3 0.80
Wiki-CS [21] 11,701 216,123 300 10 0.65
Computers [27] 13,752 245,861 767 10 0.78
Photo [27] 7,650 238,163 745 8 0.83
Cornell [22] 183 295 1,703 5 0.13
Texas [22] 183 309 1,703 5 0.11
Wisconsin [22] 251 499 1,703 5 0.20
Chameleon [25] 2,277 36,101 2,325 5 0.23
Squirrel [25] 5,201 217,073 2,089 5 0.22
Actor [28] 7,600 33,544 931 5 0.22

A.2 Introduction of Baseline Models
A.2.1 Semi-supervised Graph Neural Networks (GNNs). GCN [16],
GAT [31], and JKNet [37] are three representative semi-supervised
Graph Neural Network (GNN).
(1) GCN: a deep graph learningmodel, which leverages graph struc-
ture to learn node representations via convolution operations.
(2) GAT: a GCN variant model that incorporates attention mecha-
nisms to selectively emphasize node interactions.
(3) JKNet: a multiscale GCN model that enhances feature learning
by hierarchically stacking multiple layers of graph convolution.

A.2.2 Network Embedding (NE) Models. Both DeepWalk [23] and
Node2Vec [6] are classic NEmodels, which utilize the randomwalk
to simulate node sequences for generating embeddings.
(1) DeepWalk [23]: a simple NE model, which uses the skip-gram
algorithm to learn graph embeddings bymaximizing the likelihood
of neighbor nodes given the target node.
(2) Node2Vec [6]: a DeepWalk variant, which flexibly balances the
global and local graph structures through breadth-first (BFS) and
depth-first sampling (DFS) strategies.

A.2.3 GraphGenerativeModels. GAE [15], VGAE [15], andGraph-
MAE [12] are three graph generative models that learn the low di-
mensional representations via reconstruction error minimizations.
(1) GAE: a simple graph generative model, which attempts to min-
imize reconstruction errors between the original graph and its de-
coded counterpart.
(2) VGAE: it introduces variational inference for probabilistic node
embeddings, capturing inherent uncertainties in the latent space.
(3) GraphMAE: its main idea is to reconstruct the input node fea-
tures that were randomly masked before encoding.

A.2.4 Graph Contrastive Learning Models. DGI [32], MVGRL [8],
GRACE [42], GCA [43], BGRL [29], LOCAL-GCL [40], HGRL [3],
SP-GCL [33], and HomoGCL [17] are nine graph contrastive learn-
ing (GCL) models.
(1) DGI: a local-global GCL model, which updates network param-
eters by maximizing the mutual information between node-level

and graph-level representations.
(2) MVGRL: a DGI variant model with the graph diffusion tech-
nique and multi-view mechanism.
(3) GRACE: a two-branch GCL architecture with strategic graph
augmentations, such as edge dropping and attribute masking.
(4) GCA: a GRACE variant model, which incorporates adaptive
augmentation strategies based on various priors for topological
and semantic aspects of the graph.
(5) BGRL: a GCL model without negative sampes, which combines
the bootstrapping strategy.
(6) LOCAL-GCL: a local GCLmodel without augmentations, which
regards the one-hop neighbor nodes as positive samples and uti-
lizes kernelized negative loss to facilitate the training process.
(7) HGRL: a GCLmodel with heterophily, which leverages the node
original features and the high-order information.
(8) SP-GCL: a single-pass GCL model, which samples the positive
and negative samples based on the concentration property.
(9) HomoGCL: a local GCL model with homophily, which incorpo-
rates k-means to guide positive sampling within neighborhoods.

A.3 Algorithm Description
To jointly modify the graph structure S and train the GCL param-
eters Θ, we alternately update one while fixing the other, and the
details are shown in Algorithm 1. Andwe show in Algorithm 2 that
the graph structure is inferred based on local node representations.

Algorithm 1 ROSEN
Data: Graph G(V, E,X).
Input: GNN encoder 𝑓Θ, the number of subspaces (blocks) 𝑘 , the

gap update time 𝑔, and MaxEpoch.
Output: Trained GNN encoder 𝑓Θ, and embeddings H1 and H2.
Initialize encoder 𝑓Θ and initialize S1 = S2 ← LGSI (G,X, 𝑘).
while not MaxEpoch do
Ĝ1 (V̂1, Ê1, X̂1) ← AUG1 (G(V, ES1 ,X))
Ĝ2 (V̂2, Ê2, X̂2) ← AUG2 (G(V, ES2 ,X)) // augmentations
H1 ← 𝑓Θ (S1,H1), H2 ← 𝑓Θ (S2,H2) // encoding
/* E-step */
while 𝑒𝑝𝑜𝑐ℎ%𝑔 == 0 do

S1 ← LGSI (Ĝ1,X1, 𝑘)
S2 ← LGSI (Ĝ2,X2, 𝑘) // local graph structure inferencing

end
/* M-step */
L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (H1,H2, S1, S2) // calculating contrastive loss
Θ← Adam(L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 ,Θ) // updating parameters

end
return 𝑓Θ and H1,H2

A.4 Proof of Theorem 3.2
PRoof. In local GCLs with variable positive samples, the param-

eters of the encoder are updated by maximizing the log-likelihood
function L (Θ,Ω) , namely

Θ∗ = argmax
Θ

∑
𝑣∈𝑉

log
∑

𝑢∈𝑁 (𝑣,Ω)
𝑝 (h𝑣, h𝑢 |Θ) (13)
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Algorithm 2 Local Graph Structure Inference (LGSI)
Input: Graph G(V, E,X), the node features H, the number of

blocks 𝑘 , MaxIteration 𝑡 , the parameters 𝜆, 𝛾 , and 𝜖 .
Output: The modified graph structure S.
for 𝑣 inV do

Initialize Z(0)𝑣 = B(0)𝑣 = W(0)𝑣 = 0.
H𝐸𝑔𝑜
𝑣 ← CAT{H𝑢 |𝑢 ∈ 𝑁 (𝑣)} // extracting ego networks

while not MaxIteration 𝑡 do
Update Z(𝑡+1)𝑣 by
Z(𝑡+1) = argmin

Z

1
2 ∥H

𝐸𝑔𝑜
𝑣 − Z(𝑡 )𝑣 H𝐸𝑔𝑜

𝑣 ∥2 + 𝜆
2 ∥Z

(𝑡 )
𝑣 − B

(𝑡 )
𝑣 ∥2 .

Update B(𝑡+1) by
B(𝑡+1)𝑣 = argmin

B

𝜆
2 ∥Z

(𝑡 )
𝑣 − B

(𝑡 )
𝑣 ∥2 + 𝛾 ⟨LB(𝑡 )𝑣

,W(𝑡 )𝑣 ⟩,

s.t. diag(B(𝑡 )𝑣 ) = 0,B(𝑡 )𝑣 ≥ 0,B(𝑡 )𝑣 = (B(𝑡 )𝑣 )⊤ .
Update W(𝑡+1) by
W(𝑡+1)𝑣 = argmin

W
⟨L

B(𝑡 )𝑣
,W(𝑡 )𝑣 ⟩,

s.t. 0 ⪯ W(𝑡 )𝑣 ⪯ I,Tr(W(𝑡 )𝑣 ) = 𝑘.
Check the convergence conditions:
∥Z(𝑡+1)𝑣 − Z(𝑡 )𝑣 ∥∞ ≤ 𝜖, ∥B(𝑡+1)𝑣 − B(𝑡 )𝑣 ∥∞ ≤ 𝜖.

end
Z𝑣,B𝑣 ← [Z(𝑡 )𝑣 ]𝑣, [B

(𝑡 )
𝑣 ]𝑣 // extracting affinity vectors

end
Generate S via Eq.9 and Eq.10.
returnThe adjacency matrix S

However, since the latent variables, the direct computation of Equa-
tion 13 is difficult. With the help of Amortized Variational Infer-
ence [34], this problem can be alleviated by introducing the approx-
imated posterior 𝑝 (h𝑢 |h𝑣,Θ). Thus, the function L (Θ,Ω) in Equa-
tion 13 can be reformulated as

L (Θ,Ω) =
∑
𝑣∈𝑉

log
∑

𝑢∈𝑁 (𝑣,Ω)
𝑝 (h𝑢 |h𝑣,Θ)

𝑝 (h𝑣, h𝑢 |Θ)
𝑝 (h𝑢 |h𝑣,Θ)

≥
∑
𝑣∈𝑉

∑
𝑢∈𝑁 (𝑣,Ω)

𝑝 (h𝑢 |h𝑣,Θ) log 𝑝 (h𝑣, h𝑢 |Θ)

−𝑝 (h𝑢 |h𝑣,Θ) log 𝑝 (h𝑢 |h𝑣,Θ)

(14)

where the inequality holds due to Jensen’s inequality. It is worth
noting that the term −𝑝 (h𝑢 |h𝑣,Θ)𝑙𝑜𝑔𝑝 (h𝑢 |h𝑣,Θ) is an entropy op-
erator, which does not affect the update of the parameter Θ. There-
fore, the log-likelihood function can be formulated as

ℓ =
∑
𝑣∈𝑉

∑
𝑢∈𝑁 (𝑣,Ω)

log𝑝 (h𝑢 |h𝑣,Θ)𝑝 (h𝑣, h𝑢 |Θ) (15)

The Expectation Maximization (EM) algorithm for this function
can be described as structure inferencing in the E step and maxi-
mizating the lower bound on the mutual information in theM step.
E step.To infer the approximated posterior probability𝑝 (h𝑢 |h𝑣,Θ),
the proposed structure inference module introduces the block di-
agonal constraint. Thus, the posterior probability can be expressed
as

𝑝 (h𝑣 |h𝑢 ,Θ) =
𝑘∑
𝑡=1

𝑝 (h𝑢 |h𝑣, 𝑡,Θ)𝑝 (𝑡 |h𝑣,Θ)

It can be obtained from the local graph structure inference in Sec-
tion 3.2.1, namely 𝑝 (h𝑣 |h𝑢 ,Θ) = 1G𝑣,𝑢 , which assumes that the
neighbor nodes which belong to the same subspace are of the same
class (1G𝑣,𝑢 = 1), i.e., TRUE positive samples.
M step. Based on the E step, the M step focuses on maximizing the
lower bound of Equation 15. In particular, there are

𝑙 =
∑
𝑣∈𝑉

∑
𝑢∈𝑁 (𝑣,Ω)

𝑝 (h𝑢 |h𝑣,Θ) log𝑝 (h𝑣, h𝑢 |Θ) (16)

=
∑
𝑣∈𝑉

∑
𝑢∈𝑁 (𝑣,Ω)

1G𝑣,𝑢 log 𝑝 (h𝑣, h𝑢 |Θ) (17)

and 𝑝 (h𝑣, h𝑢 |Θ) = 1
|𝑁 (𝑣,Ω) | 𝑝 (h𝑢 |h𝑢 ,Θ). Since we consider that the

prior obeys a uniform distribution, and describes the distribution
of each sample in the feature space with isotropic Gaussian, thus
there is

𝑝 (h𝑣 |h𝑢 ,Θ) =
1

2𝜎2𝑖
exp

(
− 1

2𝜎21
(h𝑣 − h𝑢 )𝑇 · (h𝑣 − h𝑢 )

)
(18)

=
1

2𝜎2𝑖
exp

©«−
(
h𝑇𝑣 · h𝑢 − 1

)
2𝜎21

ª®®¬ (19)

where the last equivalence due to the L2 normalization for the fea-
tures H. Setting 𝜏 = 𝜎2 as the hyperparameter for all terms, ignor-
ing the constant term, and taking Equation 19 into Equation 17, it
can be obtained as

∑
𝑣∈𝑉

𝑙𝑜𝑔

∑
𝑣+∈𝑁𝑆

𝑣

1G𝑣,𝑣+ ∗ 𝑒𝜃 (h𝑣 ,h𝑣+ )/𝜏∑
𝑣+∈𝑁𝑆

𝑣

1G𝑣,𝑣+ ∗ 𝑒𝜃 (h𝑣 ,h𝑣+ )/𝜏 +
∑

𝑣−∈{𝑉 \N𝑆
𝑣 }

𝑒𝜃 (h𝑣 ,h𝑣− )/𝜏

It can be discovered that when considering weights that reflect lo-
cal higher-order relationships, the objective is equivalent to ROSEN.

□

A.5 Scalability Study

Table 6: Statistics of three large graph datasets and the per-
formance comparison of GCLmodels on these large graphs.

Datasets Ogbn-Arxiv Ogbn-Products MAG-Scholar-F
#Nodes 169,343 2,449,029 1,939,743
#Edges 1,166,243 61,859,140 358,010,024
#Features 128 100 128
DGI 68.49 ± 0.02 78.36 ± 0.04 55.38 ± 0.03
MVGRL 70.47 ± 0.14 78.32 ± 0.04 56.82 ± 0.02
GRACE 69.75 ± 0.01 79.89 ± 0.22 55.47 ± 0.04
BGRL 70.27 ± 0.03 79.02 ± 0.01 56.59 ± 0.02
HomoGCL 71.23 ± 0.02 80.79 ± 0.09 57.89 ± 0.01
ROSEN 72.97 ± 0.22 82.34 ± 0.13 59.12 ± 0.03

The results in Table 6 show the performance advantage of the
proposed ROSEN, which demonstrates the effectiveness and scala-
bility of ROSEN.
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