
GAUSS: GrAph-customized Universal Self-Supervised Learning
Liang Yang

Weixiao Hu

yangliang@vip.qq.com

1272400024@qq.com

School of Artificial Intelligence

Hebei University of Technology

Tianjin, China

Jizhong Xu

Runjie Shi

1845706088@qq.com

shirunjie2020@163.com

School of Artificial Intelligence

Hebei University of Technology

Tianjin, China

Dongxiao He
∗

hedongxiao@tju.edu.cn

College of Intelligence and

Computing

Tianjin University

Tianjin, China

Chuan Wang

wangchuan@iie.ac.cn

State Key Laboratory of Information

Security

Institute of Information Engineering,

Chinese Academy of Sciences

Beijing, China

Xiaochun Cao

caoxiaochun@mail.sysu.edu.cn

School of Cyber Science and

Technology, Shenzhen Campus

Sun Yat-sen University

Shenzhen, China

Zhen Wang

w-zhen@nwpu.edu.cn

OPtics and ElectroNics (iOPEN),

School of Cybersecurity

Northwestern Polytechnical

University

Xi’an, China

Bingxin Niu

niubingxin666@163.com

School of Artificial Intelligence

Hebei University of Technology

Tianjin, China

Yuanfang Guo

andyguo@buaa.edu.cn

School of Computer Science and

Engineering

Beihang University

Beijing, China

ABSTRACT
To make Graph Neural Networks (GNNs) meet the requirements of

the Web, the universality and the generalization become two impor-

tant research directions. On one hand, many universal GNNs are

presented for semi-supervised tasks on both homophilic and non-

homophilic graphs by distinguishing homophilic and heterophilic

edges with the help of labels. On the other hand, self-supervised

learning (SSL) algorithms on graphs are presented by leveraging

the self-supervised learning schemes from computer vision and

natural language processing. Unfortunately, graph universal self-

supervised learning remains resolved. Most existing SSL methods

on graphs, which often employ two-layer GCN as the encoder and

train the mapping functions, can’t alter the low-passing filtering

characteristic of GCN. Therefore, to be universal, SSL must be cus-
tomized for the graph, i.e., learning the graph. However, learning

the graph via universal GNNs is disabled in SSL, since their distin-

guishability on homophilic and heterophilic edges disappears with-

out the labels. To overcome this difficulty, this paper proposes novel

GrAph-customized Universal Self-Supervised Learning (GAUSS) by

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0171-9/24/05. . . $15.00

https://doi.org/10.1145/3589334.3645453

exploiting local attribute distribution. The main idea is to replace

the global parameters with locally learnable propagation. To make

the propagation matrix demonstrate the affinity between the nodes,

the self-representative learning framework is employed with k-
block diagonal regularization. Extensive experiments on synthetic

and real-world datasets demonstrate its effectiveness, universality

and robustness to noises.

CCS CONCEPTS
• Computing methodologies → Unsupervised learning; • Net-
works → Network algorithms;

KEYWORDS
Graph Neural Networks, Self-supervised learning on graphs, uni-

versal representation learning, self-representative learning

ACM Reference Format:
Liang Yang, Weixiao Hu, Jizhong Xu, Runjie Shi, Dongxiao He, ChuanWang,

Xiaochun Cao, Zhen Wang, Bingxin Niu, and Yuanfang Guo. 2024. GAUSS:
GrAph-customized Universal Self-Supervised Learning. In Proceedings of
the ACM Web Conference 2024 (WWW ’24), May 13–17, 2024, Singapore,
Singapore. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3589334.3645453

1 INTRODUCTION
The graph is a general language to model non-Euclidean data. The

research on graph algorithms and modeling plays a critical role in

the Web, such as the PageRank algorithm and small-world model.

Most problems in graph analysis correspond to specific tasks in the

Web. For example, link prediction is widely used in user/product

https://doi.org/10.1145/3589334.3645453
https://doi.org/10.1145/3589334.3645453
https://doi.org/10.1145/3589334.3645453

WWW ’24, May 13–17, 2024, Singapore, Singapore Liang Yang et al.

recommendations, while community detection is employed for

social mining. Recently, graph representation learning (graph em-

bedding) has become versatile in graph analysis and has attracted

much attention. Methods for graph embedding range from random

walk-based models to matrix factorization-based ones and neural

network-based ones.

By combining the expressive power of neural networks and

the spatial [24] and spectral [32] characteristics of graphs, Graph

Neural Networks (GNNs) boost performance in many fields [44].

Vanilla GNNs, such as GCN [13], GAT [34] and GraphSAGE [9]

are designed for semi-supervised tasks, such as node classification.

To make GNN meet the requirements of the Web, the universality

and the generalization become two important research directions.

On one hand, Web analysis requires models to be universal to

both homophilic and non-homophilic graphs. For example, the

citation network is homophilic, while the online dating network

is heterophilic. To this end, many universal GNNs are presented

for semi-supervised tasks, such as GPRGNN [4], H2GCN [46] and

FAGCN [1] et al. On the other hand, training the GNNs without

supervision, i.e., self-supervised on graphs, is critical, since it is

difficult to obtain accurate node labels on theWeb. By leveraging the

self-supervised learning schemes from computer vision and natural

language processing, many algorithms are introduced including

DGI [35], MVGRL [10] and GCA [48].

Unfortunately, graph universal self-supervised learning remains

resolved. Most existing self-supervised learning methods on graphs

employ two-layer GCN as the encoder, whose essence is the low-

passing filtering, and only the parameters of the mapping functions

are trained. This self-supervised learning scheme is the same as

in computer vision and natural language processing, and can’t

alter the low-passing filtering characteristic of GCN. Therefore, to

be universal, self-supervised learning must be customized for the

graph, i.e., learning the graph instead of the mapping function.

A direct and simple implementation of learning the graph in a

self-supervised learning framework is the employment of universal

GNNs as the encoder. The success of these universal GNNs can

be ascribed to the distinguishability of the learned propagation

weights of homophilic and heterophilic edges in semi-supervised

learning. This is because the label information is directly or indi-

rectly employed to learn propagation weights [11, 45]. However,

this distinguishability disappears in self-supervised learning due

to the lack of labels as shown in Section 3. This indicates that the

existing self-supervised frameworks can’t provide enough infor-

mation to supervise the flexible GNN for universal representation

learning.

To overcome this difficulty, this paper proposes novel GrAph-

customized Universal Self-Supervised Learning (GAUSS) by ex-

ploiting local attribute distribution. The main idea is to replace the

global parameters, whose reliability is significantly weakened with-

out the supervision of labels, with locally learnable propagation.

Without the labels, a natural compromise is to make the propaga-

tion between similar nodes, which have a very high probability of

belonging to the same class, and prevent the propagation between

quite different nodes. That is the propagation matrix should demon-

strate the affinity between the nodes. To this end, the framework

of self-representative learning, which seeks the affinity matrix to

represent the data itself, is employed. Furthermore, to make the

learned affinity matrix possess good structure and properties, k-
block diagonal regularization is utilized, which is defined as the

sum of the k smallest eigenvalues of the corresponding Laplacian

matrix. To stabilize the optimization, an intermediate-term is intro-

duced and the Alternating Direction Multiplier Method (ADMM) is

used to make the subproblems strongly convex.

The main contributions of this paper are summarized as follows:

• Weestablish the necessity of graph-customized self-supervised

learning for universal graph representation.

• We analyze the issues of employing universal GNNs as the

encoder of graph self-supervised learning.

• Wepropose the GrAph-customizedUniversal Self-Supervised

Learning (GAUSS) by exploiting local attribute distribution.

• We conduct extensive experiments to demonstrate its super-

iMorities in high performance and robustness to noises.

2 NOTATIONS AND PRELIMINARIES
2.1 Notations
LetG = (V, E) denote a graphwith node setV = {v1,v2, · · · ,vN }

and edge set E, where N is the number of nodes. The topology of

graph G can be represented by its adjacency matrix A = [ai j] ∈

{0, 1}N×N
, where ai j = 1 if and only if there exists an edge ei j =

(vi ,vj) between nodesvi andvj . The degree matrix D is a diagonal

matrix with diagonal element di =
∑N
i=1

ai j as the degree of node
vi . N(vi) = {vj |(vi ,vj) ∈ E} stands for the neighbourhoods of

node vi . Let Gi = (Vi , Ei) represents the ego-network around

node vi , where Vi = N(vi) ∪ vi and Ei denotes edges between

nodes inVi . X ∈ RN×F
and H ∈ RN×F ′

denote the collections of

node attributes and representations with the ith rows, i.e., xi ∈ RF

and hi ∈ RF
′

, corresponding to node vi , where F and F ′ stand for

the dimensions of attribute and representation. For convenience,

Xi ∈ R
(di+1)×F

and Hi ∈ R
(di+1)×F ′

denote the collections of node

attributes and representations of ego-network around node vi .

2.2 Graph Neural Networks
Most of the Graph Neural Networks (GNNs) follow an aggregation-

combination strategy [7], where each node representation is iter-

atively updated by aggregating node representations in the local

neighbourhoods and combining the aggregated representations

with the node representation itself as

¯hkv = AGGREGATE
k

({
hk−1

u |u ∈ N(v)
})
, (1)

hkv = COMBINATE
k

(
hk−1

v , ¯hkv
)
, (2)

where
¯hkv stands for the aggregated representation from local neigh-

bourhoods. Besides the concatenation-based implementation, such

as GraphSAGE [9] and H2GCN [46], averaging (or summation)

has been widely adopted to implement COMBINATE
k (·, ·), such as

GCN [13], GAT [34], GIN [41], etc. Except for the MAX and LSTM

implementations in GraphSAGE [9], most of the GNNs utilize the

averaging function to implement AGGREGATE
k
. Therefore, they

can be unified as

hkv = σ

((
ckvvh

k−1

v +
∑

u ∈N(v)

ckuvh
k−1

u

)
Wk

)
, (3)

GAUSS: GrAph-customized Universal Self-Supervised Learning WWW ’24, May 13–17, 2024, Singapore, Singapore

25

35

45

55

65

75

85

Chameleon Squirrel Actor Cornell Texas Wisconsin

GRACE-GCN GRACE-FAGCN DGI-GCN DGI-FAGCN GCN FAGCN

Figure 1: Node classification performance of graph self-
supervised learning with different encoders. The solid and
hollow bars stand for the FAGCN and GCN as encoders,
respectively. DGI [35] (blue) and GRACE [47] (green) are
employed as the graph self-supervised learning framework.
The red bars represent the case of semi-supervised learning.

whereWk
represents the learnable parameters and σ (·) denotes the

nonlinear mapping function. Note that the scalar cuv is the averag-

ing weight. For example, GCN [13] sets ckuv = 1/(
√
(du + 1)(dv + 1),

GIN [41] sets ckuv = 1 for u , v and ckvv = 1 + ϵk , and GAT [34]

learns non-negative ckuv based on the attention mechanism.

Heterophilic networks:To handle the networkswith heterophily,
recent attempts make the propagation flexible by learning the prop-

agation weights. GPRGNN [4] sets ckuv = γk/(
√
(du + 1)(dv + 1)

with γk being a learnable real value, while FAGCN [1] directly re-

laxes the learnable cuv in GAT to real value. CPGNN [45] introduces

a compatibility matrix to guide the propagation by estimating the

labels of all nodes with given labels, while BM-GCN [11] incorpo-

rates the block model into the GNN and learns the block structure

via the given labels. Unfortunately, all these methods heavily rely

on the supervision information, i.e., node labels.

2.3 Self-supervised Learning on Graph
Self-supervised Learning (SSL) [3] has achieved superior perfor-

mance in computer vision (CV) and natural language processing

(NLP). SSL on graphs [40] attempts to leverage existing SSL strate-

gies to train the graph neural networks. SSL methods can be cate-

gorized into contrastive and predictive models [39, 40]. Predictive

models train the GNNs using self-generated labels, such as topol-

ogy reconstruction [12, 19, 20, 36] and property prediction [22, 26].

Unfortunately, it is difficult to determine what labels should be

generated to obtain universal representations. Contrastive models

conduct data augmentation/view generation and train the GNN

by performing discrimination between positive pairs and negative

pairs. Due to their effectiveness, universality, and simplicity, SSL

on graphs pays much attention to contrastive models. Formally,

contrastive models train the GNN to maximize the mutual infor-

mation I(hi , hj) between a positive pair of node representation hi
and hj . To efficiently estimate and maximize the mutual informa-

tion, two lower-bounds to the mutual information are commonly

employed. InfoGraph [29], DGI [35], MVGRL [10], GMI [23] utilize

the Jensen-Shannon (JS) estimator [18] and its variants as

Î(J S)(hi ,hj) = E(A,X)∼B

[
log(D(hi ,hj))

]
+ (4)

E[(A,X),(A′,X ′)]∼B×B

[
log(1 − D(hi ,h

′
j))

]
,

while GCC [25], GraphCL [43], GRACE [47] and GCA [48] use the

noise-contrastive estimator (NCE) [33] as

Î(NCE)(hi ,hj) = E[(A,X),K]∼B×BN

log

eD(hi ,hj)∑
(A′,X ′)∈K eD(hi ,h′

j)

 ,
where D : RF

′

× RF
′

→ R is a discriminator, which is often

implemented via neural networks, to determine the agreement of

the two representations. hi and hj are the positive pair sampled

from (A,X) ∼ B, while hi and h′j are the negative pair where h
′
j

are randomly sampled from whole graph or other graphs.

3 ANALYSIS
To implement universal self-supervised learning on graphs, this

section analyzes the necessity of customizing SSL for graphs and

the issue of employing flexible GNNs as encoders in SSL.

3.1 Necessity of Customizing SSL for Graph
Self-supervised learning on graphs achieves comparable perfor-

mance as the semi-supervised methods on homophilic networks.

Unfortunately, their performances significantly degrade on net-

works with heterophily. Recent research reveals that the learned

representations by graph contrastive learning (GCL) essentially

encode low-frequency information [15, 37]. Actually, the graph

augmentations employed by GCL preserve the low-frequency in-

formation and perturb the middle- and high-frequency ones of the

graph, and thus the contrastive objective tends to seek the common

low-frequency information by maximizing the mutual information.

This characteristic reduces the universality of the SSL on graphs.

Most graph self-supervised learning methods, especially graph

contrastive learning, utilize the two-layer GCN [13] as the encoder.

Thus, the propagation scheme, i.e., ckuv in Eq. (3), is fixed, and only

the parameters of the mapping functions, i.e., Wk
in Eq. (3), are

trained. This is the same as self-supervised learning in computer

vision and natural language processing. Actually, the essence of

the GCN with a fixed propagation scheme is Laplacian smoothing

[30] and low-passing filtering [38] from spatial and spectral per-

spectives. The training of the mapping function can’t change this

characteristic of GCN. Therefore, the employment of GCN leads in

part to the universality limit of self-supervised learning on graphs.

3.2 Issue of Employing Flexible GNNs in SSL
A direct conjecture is "Can the universality of self-supervised learn-
ing on graph be improved by the employment of universal GNNs as
the encoder?". To answer this question, the two-layer GCN encoder

in the self-supervised learning methods is replaced with FAGCN

[1], which is a representative GNN to handle heterophilic networks.

DGI [35] and GRACE [47], which are very different from both the

objective function and data augmentation as discussed in Section

2.3, are employed as the graph self-supervised learning framework.

WWW ’24, May 13–17, 2024, Singapore, Singapore Liang Yang et al.

(a) Chameleon (b) Squirrel

FAGCN (semi-supervised) FAGCN+GRACE (self-supervised)FAGCN (semi-supervised)FAGCN+GRACE (self-supervised)

Figure 2: Distributions of learned propagation weights/edge coefficients on heterophilic networks (Chameleon and Squirrel).
The vanilla FAGCN and GRACE with FAGCN as encoder are representative semi-supervised and self-supervised learning
methods. The blue and orange bars represent the learned weights on inter-class and intra-class edges, respectively. Note the
distinguishability exits in semi-supervised learning but disappears in self-supervised one.

The performances on node classification on 6 non-homophilic net-

works are shown in Figure 1, where the solid and hollow bars stand

for the FAGCN and GCN, respectively. Experimental settings are

the same as Section 5.

The differences between the solid and hollow bars with the same

color stand for the performance gains by replacing the encoder.

By comparing with the semi-supervised case (red bars), the per-

formance gains in self-supervised learning (green bars for GRACE,

blue bars for DGI) are limited. This indicates that the expressive

power of flexible GNN encoders can’t be fully exploited by self-

supervised learning, and explains why most graph self-supervised

learning methods use the vanilla GCN as the encoder.

The flexibility of universal GNNs is the learnable propagation

scheme. Thus, to understand the behavior of flexible GNN encoder

in self-supervised learning, the propagation weights learning in

semi-supervised and self-supervised learning tasks are investigated

and compared. To this end, the vanilla FAGCN and GRACE with

FAGCN as encoder as the semi-supervised and self-supervisedmeth-

ods. The distributions of the learned propagation weights/edge co-

efficients on Chameleon and Squirrel are shown in Figure 2, where

blue and orange bars represent the learned weights on inter-class

and intra-class edges, respectively.

It can be observed that the learned propagation weights of

homophilic and heterophilic edges are distinguishable in semi-

supervised learning. This is because the label information is in-

directly employed to train the parameters in propagation weights.

CPGNN [45] and BM-GCN [11] are examples of direct exploitation

of label information in learning propagation weights. However, this

distinguishability disappears in self-supervised learning due to the

lack of labels. This indicates that the existing self-supervised frame-

works can’t provide enough information to supervise the flexible

GNN for universal representation learning.

4 METHODOLOGY
This section begins by providing the motivation for graph learning

in self-supervised learning. Then, a novel graph-customized uni-

versal self-supervised (GAUSS) algorithm is proposed as long as

the efficient optimization. Instead of exploiting the existing flexible

GNNwith SSL, we integrate the SSL into the design of novel flexible

GNNs and handle networks with heterophily by customizing SSL

for graphs.

4.1 Motivations
As discussed in the previous section, existing self-supervised frame-

works can’t provide enough information to supervise the flexible

GNNs for universal representation learning. Actually, these flexible

GNNs are often parameterized with global parameters, and the

flexibility for characterizing different local regions is guaranteed

by the supervision information. For example, the universality of

FAGCN comes from the learnable propagation weights, which are

parameterized by the global parameters. The flexibility of FAGCN

in capturing local homophily/heterophily characteristics is from

the indirect employment of the node labels. Therefore, the relia-

bility of global parameters is significantly weakened without the

supervision of labels.

Therefore, graph-customized self-supervised learning should

be locally parameterized and trained. The framework is shown in

Figure 3. The propagation in each ego-network can be formulated

as

Hi = XiBi , (5)

where Xi ∈ R
(di+1)×F

and Hi ∈ R
(di+1)×F

denote the collections

of node attributes and representations of ego-network around node

vi , i.e. Gi . Bi ∈ R(di+1)×(di+1)
is the propagation matrix. However,

it is difficult to estimate the propagation matrix Bi with the help

of labels as in CPGNN [45] and BM-GCN [11], since the labels of

nodes are unknown in self-supervised learning tasks.

4.2 GAUSS
This subsection presents how to locally learn the propagation ma-

trix. Note that the ideal propagation is between the nodes in the

same class. Since the labels are completely unknown, a compromise

is to make the propagation between similar nodes and prevent the

propagation between quite different nodes. In other words, the

propagation matrix should demonstrate the affinity between the

nodes. To this end, the framework of self-representative learning[6],

which is widely used in subspace clustering [5, 14], is employed.

Self-expressive learning seeks the affinity matrix, which can be

used to represent data itself, i.e.

Xi = XiBi , s .t . diag(Bi) = 0,Bi ≥ 0,Bi = BT

i
,

where diag(·) stands for the diagnonal elements of the matirx,

Bi ≥ 0 denotes that all elements are non-negtive, and Bi = BTi

GAUSS: GrAph-customized Universal Self-Supervised Learning WWW ’24, May 13–17, 2024, Singapore, Singapore

1
2

3

4

5
6

7 Node
Attribute

X

Intra-class
Propagation

Locally Learnable
Propagation Matrix

Clean Node
Attribute

Figure 3: The main idea of GAUSS is to replace the global
parameters with locally learnable propagation.

represents the affinity matrix is symmetric. Thus, the objective

function can be formulated as

arg min

Bi
| |Xi − XiBi | |2 (6)

s .t . diag(Bi) = 0,Bi ≥ 0,Bi = BT

i
.

To make the learned affinity matrix possess good structure and

properties, such as sparsity and low-rankness, some constraints

are used to regularize the above learning process. Note that if the

propagation is only between the nodes from the same classes, Bi
should be a block diagonal matrix. Thus, the learned affinity matrix

is excepted to be k-block, and Eq. (6) is enhanced to be

arg min

Bi
| |Xi − XiBi | |2 + γ | |Bi | |kb (7)

s .t . diag(Bi) = 0,Bi ≥ 0,Bi = BT

i
,

where | |Bi | |kb is the regularization to constrain Bi to be k-block
diagonal, and γ is the hyper-parameter to balance the impacts of

two terms. The learned affinity matrix Bi can be seen as the learned

new topology of the subgraph Gi . Thus, the k-block diagonal Bi is
equivalent to dividing subgraph Gi into k connected components.

The number of connected components of Bi is related to the spec-

tral property of its Laplacian matrix LBi . According to [16], the

following theorem holds.

Theorem 4.1. For any B ≥ 0, B = P⊤, the multiplicity k of the
eigenvalue 0 of the corresponding Laplacian matrix LP equals the
number of connected components (blocks) in B.

For any affinity matrix B ∈ Rn×n , let λi (LP), i = 1, · · · ,n − k ,
be the eigenvalues of LP in the decreasing order. It is known that

LP ⪰ 0 and thus λi (LP) ≥ 0 for all i . Then, by Theorem 4.1 , B has

k connected components if and only if

λi (LP)

{
> 0, i = 1, · · · ,n − k,

= 0, i = n − k + 1, · · · ,n.
(8)

Motivated by such a property, the k-block diagonal regularizer can

be defined as the sum of the k smallest eigenvalues of LP, i.e,

∥B∥kb =
n∑

i=n−k+1

λi (LP). (9)

It can be seen that ∥B∥kb = 0 is equivalent to the fact that the

affinity matrix B is k-block diagonal. So ∥B∥kb can be regarded as

the block diagonal matrix structure induced regularizer.

Note that the constraints in Eq (7) may limit its representation

capability and make the optimization difficult and unstable. To

alleviate this issue, an intermediate term Zi is introduced as follows.

arg min

Zi ,Bi

1

2

∥Xi − XiZi ∥2 +
λ

2

∥Zi − Bi ∥2 + γ ∥Bi ∥kb , (10)

s .t . diag(Bi) = 0,Bi ≥ 0,Bi = B⊤i . (11)

The optimization of Eq. (10) will be presented in the Appendix A

due to the limited space. Eqs (7) and (10) are equivalent when λ > 0

is sufficiently large. As will be seen in Appendix, another benefit of

the term
λ
2
∥Zi − Bi ∥2

is that it makes the subproblems involved

in updating Zi and Bi strongly convex and thus the solutions are

unique and stable.

Remark: The proposed GAUSS is essentially a graph SSL frame-

work. However, there are two significant differences betweenGAUSS

and most existing graph SSL. Firstly, GAUSS does NOT need ex-

plicit augmentation. Thus, GAUSS is an SSL framework without

augmentation. Secondly, GAUSS does NOT rely on a global ob-

jective function, which possesses unavoidable drawbacks. Instead,

GAUSS employs a local one as shown in Eqs. (10)-(11), whose opti-

mization is given in Appendix A and Algorithm 1.

5 EVALUATIONS
In this section, the performance of our proposed GAUSS is ex-

perimentally evaluated on the node classification task. We have

conducted a range of experiments to analyse and exhibit the supe-

riority of our method in terms of its effectiveness, robustness, and

visualisation.

5.1 Dataset
Our experiments are conducted on 12 commonly used benchmark

datasets, including 6 homophilic graph datasets (i.e., Cora, CiteSeer,

PubMed, Wiki-CS, Amazon Computers , and Amazon Photo [17,

27, 28]) and 6 heterophilic graph datasets (i.e., Chameleon, Squirrel,

Actor, Cornell, Texas, andWisconsin [21]). The statistics of datasets

are summarized in Table 1.

5.1.1 Datasets and splitting. Cora, CiteSeer and PubMed [27]

are three citation network datasets, where nodes indicate a paper

and each edge indicates a citation relationship between two pa-

pers. The labels are the research topic of papers.Wiki-CS [17] is
a reference network constructed based on Wikipedia. The nodes

correspond to articles about computer science and edges are hy-

perlinks between the articles. Nodes are labeled with ten classes

each representing a branch of the field. Amazon Computers and
Amazon Photo [28] are two co-purchase networks from Amazon.

In these networks, each node indicates a good, and each edge in-

dicates that two goods are frequently bought together. The labels

are the category of goods. Cornell, Texas and Wisconsin [21]

are three web page networks from computer science departments

of diverse universities, where nodes are web pages and edges are

hyperlinks between two web pages. The labels are types of web

pages.Chameleon and Squirrel [21] are twoWikipedia networks

where nodes denote web pages in Wikipedia and edges denote links

between two pages. The labels stand for the average traffic of the

web page. Actor [21] is an actor co-occurrence network , where

nodes are actors and edges indicate two actors have co-occurrence

in the same movie. The labels stand for the words of corresponding

actors.

For homophilic graph datasets, we randomly split all nodes into

three parts: 10% nodes for training, 10% nodes for validation and the

remaining 80% nodes for testing. The performance on heterophilic

graph datasets is evaluated on the commonly used 48%/32%/20%

training/validation/testing.

WWW ’24, May 13–17, 2024, Singapore, Singapore Liang Yang et al.

Table 1: Statistics of datasets

Dataset Cora CiteSeer PubMed Wiki-CS Computers Photo Chameleon Squirrel Actor Cornell Texas Wisconsin

#Nodes 2,708 3,327 19,717 11,701 13,752 7,650 2,277 5,201 7,600 183 183 251

#Edges 5,429 4,732 44,338 216,123 245,861 119,081 36,101 217,073 33,544 295 309 499

#Features 1,433 3,703 500 300 767 745 2,325 2,089 932 1,703 1,703 1,703

#Classes 7 6 3 10 10 8 5 5 5 5 5 5

Table 2: Results in terms of classification accuracies (in percent ± standard deviation) on homophilic benchmarks. The best
and runner-up results are highlighted with bold and underline, respectively.

Dataset Cora CiteSeer PubMed Wiki-CS Computers Photo

GCN 82.32±1.79 72.13±1.17 84.90±0.38 76.89±0.37 86.34±0.48 92.35±0.25

GAT 83.34±1.57 72.44±1.42 85.21±0.36 77.42±0.19 87.06±0.35 92.64±0.42

MLP 63.11±3.38 64.66±1.94 81.85±0.28 72.02±0.21 73.88±0.10 78.54±0.05

JKNet 79.78±1.52 69.80±1.76 85.14±0.41 79.52±0.21 85.28±0.72 92.68±0.13

H2GCN 83.41±1.44 72.19±1.18 85.79±0.49 79.73±0.13 84.32±0.52 91.86±0.27

FAGCN 82.94±3.54 72.38±0.80 86.10±0.62 74.34±0.53 83.51±1.04 92.72±0.22

GPR-GNN 83.89±1.66 72.60±1.76 86.79±0.56 79.82±0.35 86.71±1.82 92.93±0.26

DeepWalk 78.47±0.48 58.82±0.16 79.87±1.25 74.35±0.06 85.68±0.06 89.44±0.11

node2vec 79.24±0.90 59.64±0.68 80.47±0.86 71.79±0.05 84.39±0.08 89.67±0.12

GAE 76.90±0.42 60.22±0.43 82.90±0.52 70.15±0.01 85.27±0.19 91.62±0.13

VGAE 78.91±0.87 61.75±0.37 83.00±0.31 76.63±0.19 86.37±0.21 92.20±0.11

DGI 82.60±0.40 71.49±0.14 86.00±0.14 75.73±0.13 84.09±0.39 91.49±0.25

GMI 82.51±1.47 71.56±0.56 84.83±0.90 75.06±0.13 81.76±0.52 90.72±0.33

MVGRL 83.03±0.27 72.75±0.46 85.63±0.38 77.97±0.18 87.09±0.27 92.01±0.13

GRACE 83.30±0.40 71.41±0.38 86.70±0.34 79.16±0.36 87.21±0.44 92.65±0.32

GCA 82.90±0.41 71.21±0.24 86.01±0.75 79.35±0.12 87.84±0.27 92.78±0.17

BGRL 82.77±0.75 71.59±0.42 84.34±0.17 78.74±0.22 88.92±0.33 93.24±0.29

GAUSS 84.31±1.63 73.14±0.52 86.23±0.28 80.30±0.67 90.09±0.25 93.80±0.92

5.1.2 BaseLine. To verify the superiority of the proposedGAUSS
from multiple perspectives, We compare it with four groups of

baseline methods: (1) The multiple layer perception (MLP) and

classic GNN models for node classification task, including vanilla

GCN [13] and GAT [34]; (2) GNN models designed to alleviate

over-smoothing issues or networks with heterophily, including

JKNet [42], GPR-GNN [4], FAGCN [1] and H2GCN [46]; (3) Con-

ventional self-supervised graph representation learning methods,

including DeepWalk [24], node2vec [8], GAE and VGAE [12]; (4)

Contrastive self-supervised baselines, including DGI [35], GMI [23],

MVGRL [10], GRACE [47], GCA [48] and BGRL [31].

5.1.3 Experimental details. All methods were implemented in

Pytorch with Adam Optimizer. Some of them were implemented

by a graph deep learning toolkit CoGDL [2]. We ran ten times

and reported the averaged test accuracy with standard deviation.

All the parameters of baselines are tuned to get a preferable per-

formance in most situations or the same as the authors’ original

implementations.

5.1.4 The GAUSSmodel setup and hyperparameter tuning. There
are two main parts to implementing the whole model, first using

one or two layers of our module (a process that theoretically only

needs to be used once for each dataset), and then the training part,

which requires two or three layers of MLPs to be used for training.

In the homophily graph, we used first-order neighbours to con-

struct the ego-network, and most of the nodes within a one-section

neighbourhood belong to the same class as the central node, which

is in line with the common perception. In the heterophily graph, we

mainly use BFS breadth-first search to find nodes to construct ego-

network, which goes beyond the limitation of first-order neighbours

to findmore nodes of the same class, and also ensures that each node

does not have too many nodes or too few nodes in the ego-network,

which ensures the effectiveness of the iterative process. Regarding

the parameters of the GAUSS process: The number of blocks k to

be divided, and the parameters λ and γ in the iterative process, We

carried out more detailed experiments on them: The other hyper-

parameter search space is: learning rate ∈ {0.1, 0.05, 0.01, 0.001},

dropout ∈ {0.2, 0.3, 0.4, 0.5, 0.8}. In addition, early stopping with

a patience of 200 epochs and L2 regularization with coefficient ∈

{1e − 2, 5e − 3, 1e − 3, 5e − 4} are used to avoid overfitting.

5.2 Experimental Results
5.2.1 Results analysis on node classification. The mean classifi-

cation accuracy with a standard deviation of 6 homophilic datasets

and 6 heterophilic datasets are presented in Table 2 and Table 3,

respectively. We compare the proposed GAUSS with the baselines.

First of all, we observe that GAUSS outperforms all baseline meth-

ods in 11 out of 12 benchmarks.

GAUSS: GrAph-customized Universal Self-Supervised Learning WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 3: Results in terms of classification accuracies (in percent ± standard deviation) on heterophilic benchmarks. The best
and runner-up results are highlighted with bold and underline, respectively.

Dataset Chameleon Squirrel Actor Cornell Texas Wisconsin

GCN 59.63±2.32 36.28±1.52 30.83±0.77 57.03±3.30 60.00±4.80 56.47±6.55

GAT 56.38±2.19 32.09±3.27 28.06±1.48 59.46±3.63 61.62±3.78 54.71±6.87

MLP 46.91±2.15 29.28±1.33 35.66±0.94 81.08±7.93 81.62±5.51 84.31±3.40

JKNet 58.31±2.76 42.24±2.11 36.47±0.51 56.49±3.22 65.35±4.68 51.37±3.21

H2GCN 59.39±1.98 37.90±2.02 35.86±1.03 82.16±4.80 84.86±6.77 86.67±4.69

FAGCN 63.44±2.05 41.17±1.94 36.81±0.26 81.35±5.05 84.32±6.02 83.33±2.01

GPR-GNN 61.58±2.24 46.65±1.81 35.27±1.04 81.89±5.93 83.24±4.95 84.12±3.45

DeepWalk 47.74±2.05 32.93±1.58 22.78±0.64 39.18±5.57 46.49±6.49 33.53±4.92

node2vec 41.93±3.29 22.84±0.72 28.28±1.27 42.94±7.46 41.92±7.76 37.45±7.09

GAE 33.84±2.77 28.03±1.61 28.03±1.18 58.85±3.21 58.64±4.53 52.55±3.80

VGAE 35.22±2.71 29.48±1.48 26.99±1.56 59.19±4.09 59.20±4.26 56.67±5.51

DGI 39.95±1.75 31.80±0.77 29.82±0.69 63.35±4.61 60.59±7.56 55.41±5.96

GMI 46.97±3.43 30.11±1.92 27.82±0.90 54.76±5.06 50.49±2.21 45.98±2.76

MVGRL 51.07±2.68 35.47±1.29 30.02±0.70 64.30±5.43 62.38±5.61 62.37±4.32

GRACE 48.05±1.81 31.33±1.22 29.01±0.78 54.86±6.95 57.57±5.68 50.00±5.83

GRACE-FA 52.68±2.14 35.97±1.20 32.55±1.28 67.57±4.98 64.05±7.46 63.73±6.81

GCA 49.80±1.81 35.50±0.91 29.65±1.47 55.41±4.56 59.46±6.16 50.78±4.06

BGRL 47.46±2.74 32.64±0.78 29.86±0.75 57.30±5.51 59.19±5.85 52.35±4.12

GAUSS 76.89±1.87 67.93±1.40 37.37±0.76 82.69±3.39 85.38±2.28 87.82±3.28

10 20 50 80
Perturbation Rate (%)

30

40

50

60

70

80

A
cc

ur
ac

y(
%

)

GCN
GRACE
FAGCN
Ours

(a) Cora
10 20 50 80

Perturbation Rate (%)

35

40

45

50

55

60

A
cc

ur
ac

y(
%

)

GCN
GRACE
FAGCN
Ours

(b) Citeseer
10 20 50 80

Perturbation Rate (%)

30

40

50

60

70

A
cc

ur
ac

y(
%

)

GCN
GRACE
FAGCN
Ours

(c) chameleon

Figure 4: Performance with adding noisy attributes.

We constructed the ego-network based on the original topol-

ogy, re-learns the relationships between nodes through iteration,

which can effectively capture the connection of nodes with simi-

lar attributes. By adding the block diagonal representation to the

iteration process, we limit the propagation between blocks with

dissimilar attributes, thus achieving better performance.

We find that GAUSS significantly outperforms conventional and

contrastive methods. In particular, equipping contrastive methods

with heterophily-aware encoders (e.g., GRACE-FA) yields only a

minor performance gain, suggesting that heterophilic graphs need

crafted designs rather than simply modifying the encoder. Further-

more, when compared to supervised approaches such as GPR-GNN,

FAGNN and H2GCN, which are all GNNs designed to process het-

erophilic datasets, we observe that GAUSS achieves new state-of-

the-art results on all heterophilic datasets. These results suggest

that our proposed GAUSS is more effective and universal than the

previous models in processing datasets with both homophily and

heterophily for node classification.

5.2.2 Effectiveness analysis. To illustrate the effectiveness of

GAUSS, we plotted heatmaps on the synthetic and real world

datasets, from left to right: The propagation matrix obtained by our

proposed method GAUSS for each ego-network: matrix B, matrix

10 20 50 80
Perturbation Rate (%)

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

A
cc

ur
ac

y(
%

)

GCN
GRACE
FAGCN
Ours

(a) Cora
10 20 50 80

Perturbation Rate (%)

50

55

60

65

70

A
cc

ur
ac

y(
%

)

GCN
GRACE
FAGCN
Ours

(b) Citeseer
10 20 50 80

Perturbation Rate (%)

30

40

50

60

70

A
cc

ur
ac

y(
%

)

GCN
GRACE
FAGCN
Ours

(c) chameleon

Figure 5: Performance with adding noisy edges.

Z, adjacency matrix and attention matrix, adjacency matrix, and

attention matrix. Detailed information about the synthetic dataset

csbm can be found in Appendix B, where h stands for the degree of

congruence. For consistency and ease of presentation, we normalize

the B and Z matrices and add self-loops to the B and adjacency

matric, and the different classes are marked with red lines.

From Figure 7 and Figure 6, it can be seen that no matter it is the

synthetic dataset or the real world datasets, the matrices we get are

better than the adjacency matrix and attention matrix, Both matrix

B and matrix Z are classified into different blocks by node attribute

similarity, which ensures that the attributes of similar nodes only

propagate within blocks. At the same time, this approach overcomes

the limitations of the original topology, and information can be

exchanged between nodes of the same class that are otherwise

unconnected, while the propagation of information between nodes

of the different classes that are otherwise connected is greatly

reduced, which is the superiority of our approach compared to the

original topology-based approach.

5.2.3 Robustness Analysis. In this experiment, we investigate

the robustness of GAUSS on graph data. This involves randomly

adding noisy edges and attributes, respectively, followed by testing

the accuracy of node classification on the learned representations

WWW ’24, May 13–17, 2024, Singapore, Singapore Liang Yang et al.

Class 0

Class 1

Matrix B in GAUSS Matrix Z in GAUSS Adjacency Matrix Attention Matrix in GAT

(a) Cora dataset.

Class 0

Class 1

Matrix B in GAUSS Matrix Z in GAUSS Adjacency Matrix Attention Matrix in GAT

(b) Citeseer dataset.

Class 0

Class 1

Class 2

Matrix B in GAUSS Matrix Z in GAUSS Adjacency Matrix Attention Matrix in GAT

(c) Wisconsin dataset.

Figure 6: Heatmap on real world datasets

from the perturbed graphs. We compare the classical GCN, the

self-supervised method GRACE and the heterophilic graph method

FAGCN on the Cora, Citeseer and Chameleon datasets.

From Figure 5 and Figure 4, it is clear that GAUSS consistently

performs better than the baselines by a significant margin. Addi-

tionally, as the rate of perturbation increases, the superiority of

our method becomes more pronounced, the performance of GCN

and GRACE decreases significantly, FAGCN also showed some de-

creases, meaning that they are more sensitive to noise. While the

performance of GAUSS performance is relatively stable, which

shows the robustness of GAUSS, as shown in Figure 5. In the mean-

time, It also reports that GAUSS is also superior to other baselines

under attributes perturbation, which can be attributed to the block

diagonal representation in our method, which strictly limits the

propagation of information between similar nodes while having

some anti-noise effect. These experimental results demonstrate the

strong robustness of GAUSS against random attacks on graph topol-

ogy and node attributes. Figure 4 also reports that the performance

degradation of GAUSS is slight and outperforms GCN, GRACE

and FAGCN with different levels of noise interference, which can

be attributed to the denoising in GAUSS may take the high-order

relationships in the ego-nework. The experimental results demon-

strate the strong robustness of GAUSS against adversarial attacks

on graph struture.

5.3 Hyperparameter Analysis
In order to analyze the performance of our proposed module, we

have experimented with some parameters of the module. Our aim is

that for each ego network, wewould like to classify nodes belonging

to the same category into the same block and nodes of different

categories into different blocks.

Figure 8 shows, as an example, the local variations when different

values of k are taken, and we can see that from k = 2 to 3 there is a

slight decrease in the weight of the two nodes propagating to each

other inside class 0, with a tendency to split into two blocks. For

Class 0

Class 1

Matrix B in GAUSS Matrix Z in GAUSS Adjacency Matrix Attention Matrix in GAT

(a) cSBM dataset(h ≈ 0.2).

Class 0

Class 1

Matrix B in GAUSS Matrix Z in GAUSS Adjacency Matrix Attention Matrix in GAT

(b) cSBM dataset(h ≈ 0.5).

Class 0

Class 1

Matrix B in GAUSS Matrix Z in GAUSS Adjacency Matrix Attention Matrix in GAT

(c) cSBM dataset(h ≈ 0.8).

Figure 7: Heatmap on synthetic datasets

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0.0

0.05

0.10

0.15

0.20

Class 0

Class 1

Matrix B in GAUSS Matrix Z in GAUSS

(a) k = 2

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0.00

0.05

0.10

0.15

0.20

1

2

3

4

Class 0

Class 1

Matrix B in GAUSS Matrix Z in GAUSS

(b) k = 3

Figure 8: A local perspective on the number of blocks.
the number of blocks k and other parameters such as λ and γ , we
provide a detailed description in Appendix C.

6 CONCLUSIONS
The universality and the generalization are two requirements of

the Web. Existing Graph Neural Networks (GNNs) can separately

meet them. Unfortunately, graph universal self-supervised learning

(SSL) remains resolved. Most existing SSL can neither alter the

low-passing filtering characteristic of GCN nor learn the graph

via universal GNNs. To overcome this difficulty, this paper pro-

poses novel GrAph-customized Universal Self-Supervised Learning

(GAUSS) by exploiting local attribute distribution. The main idea is

to replace the global parameters with locally learnable propagation.

To make the propagation matrix demonstrate the affinity between

the nodes, the self-representative learning framework is employed

with k-block diagonal regularization. Extensive experiments on

synthetic and real-world datasets demonstrate its effectiveness,

universality, and robustness to noises.

7 ACKNOWLEDGMENTS
This work was supported in part by the National Natural Science

Foundation of China (No. 62376088, 61972442, 62272020, 62276187,

62102413, U22B2036, and U1936208), in part by the National Sci-

ence Fund for Distinguished Young Scholars (No. 62025602), in

part by the National Social Science Fund of China under Grant

22VMG037, in part by the Natural Science Foundation of Hebei

Province of China under Grant F2020202040, and in part by the

Tencent Foundation and XPLORER PRIZE.

GAUSS: GrAph-customized Universal Self-Supervised Learning WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES
[1] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. 2021. Beyond Low-frequency

Information in Graph Convolutional Networks. In AAAI. 3950–3957.
[2] Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Zhongming Yu,

Hengrui Zhang, and Jie Tang. 2023. CogDL: A Comprehensive Library for Graph

Deep Learning. In WWW. 747–758.

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020.

A Simple Framework for Contrastive Learning of Visual Representations. In ICML
2020. 1597–1607.

[4] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal

Generalized PageRank Graph Neural Network. In ICLR.
[5] Ehsan Elhamifar and René Vidal. 2013. Sparse Subspace Clustering: Algorithm,

Theory, and Applications. IEEE Trans. Pattern Anal. Mach. Intell. 35, 11 (2013),
2765–2781.

[6] Jiashi Feng, Zhouchen Lin, Huan Xu, and Shuicheng Yan. 2014. Robust subspace

segmentation with block-diagonal prior. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 3818–3825.

[7] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.

Dahl. 2017. NeuralMessage Passing for QuantumChemistry. In ICML. 1263–1272.
[8] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for

Networks. In SIGKDD. 855–864.
[9] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-

tation Learning on Large Graphs. In NIPS. 1024–1034.
[10] Kaveh Hassani and Amir Hosein Khas Ahmadi. 2020. Contrastive Multi-View

Representation Learning on Graphs. In ICML. 4116–4126.
[11] Dongxiao He, Chundong Liang, Huixin Liu, Mingxiang Wen, Pengfei Jiao, and

Zhiyong Feng. 2022. Block Modeling-Guided Graph Convolutional Neural Net-

works. In AAAI 2022. 4022–4029.
[12] Thomas N. Kipf and Max Welling. 2016. Variational Graph Auto-Encoders. CoRR

abs/1611.07308 (2016).

[13] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[14] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. 2013.

Robust Recovery of Subspace Structures by Low-Rank Representation. IEEE
Trans. Pattern Anal. Mach. Intell. 35, 1 (2013), 171–184.

[15] Nian Liu, Xiao Wang, Deyu Bo, Chuan Shi, and Jian Pei. 2022. Revisiting Graph

Contrastive Learning from the Perspective of Graph Spectrum. In NeurIPS.
[16] U.Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and Computing.

17, 4 (2007), 395–416.

[17] P Mernyei and CWiki-CS Cangea. 2007. A wikipedia-based benchmark for graph

neural networks. arXiv 2020. arXiv preprint arXiv:2007.02901 (2007).
[18] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. 2016. f-GAN: Train-

ing Generative Neural Samplers using Variational Divergence Minimization. In

NeurIPS. 271–279.
[19] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.

2018. Adversarially Regularized Graph Autoencoder for Graph Embedding. In

IJCAI. 2609–2615.
[20] Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, and Jin Young Choi.

2019. Symmetric Graph Convolutional Autoencoder for Unsupervised Graph

Representation Learning. In ICCV. IEEE, 6518–6527.
[21] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020.

Geom-GCN: Geometric Graph Convolutional Networks. In ICLR.
[22] Zhen Peng, Yixiang Dong, Minnan Luo, Xiao-Ming Wu, and Qinghua Zheng.

2020. Self-supervised graph representation learning via global context prediction.

arXiv preprint arXiv:2003.01604 (2020).
[23] Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang

Xu, and Junzhou Huang. 2020. Graph Representation Learning via Graphical

Mutual Information Maximization. In WWW. 259–270.

[24] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning

of social representations. In SIGKDD. 701–710.
[25] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,

Kuansan Wang, and Jie Tang. 2020. GCC: Graph Contrastive Coding for Graph

Neural Network Pre-Training. In KDD 2020. 1150–1160.
[26] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang,

and Junzhou Huang. 2020. Self-Supervised Graph Transformer on Large-Scale

Molecular Data. In NeurIPS 2020.
[27] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[28] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and

Stephan Günnemann. 2019. Pitfalls of Graph Neural Network Evaluation.

arXiv:cs.LG/1811.05868

[29] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2020. InfoGraph:

Unsupervised and Semi-supervised Graph-Level Representation Learning via

Mutual Information Maximization. In ICLR.
[30] Gabriel Taubin. 1995. A signal processing approach to fair surface design. In

SIGGRAPH 1995. 351–358.
[31] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos,

Petar Veličković, and Michal Valko. 2021. Bootstrapped representation learning

on graphs. In ICLR 2021.
[32] Anton Tsitsulin, DavideMottin, Panagiotis Karras, Alex Bronstein, and Emmanuel

Müller. 2018. SGR: Self-supervised spectral graph representation learning. arXiv
preprint arXiv:1811.06237 (2018).

[33] Aäron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning

with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).
[34] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.
[35] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,

and R. Devon Hjelm. 2019. Deep Graph Infomax. In ICLR. OpenReview.net.
[36] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. 2017.

MGAE: Marginalized Graph Autoencoder for Graph Clustering. In CIKM. 889–

898.

[37] Haonan Wang, Jieyu Zhang, Qi Zhu, and Wei Huang. 2022. Augmentation-

free graph contrastive learning with performance guarantee. arXiv preprint
arXiv:2204.04874 (2022).

[38] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and

Kilian Q. Weinberger. [n. d.]. Simplifying Graph Convolutional Networks. In

ICML 2019. 6861–6871.
[39] Yaochen Xie, Zhengyang Wang, and Shuiwang Ji. 2020. Noise2Same: Optimizing

A Self-Supervised Bound for Image Denoising. In NeurIPS.
[40] Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. 2023.

Self-Supervised Learning of Graph Neural Networks: A Unified Review. IEEE
Trans. Pattern Anal. Mach. Intell. 45, 2 (2023), 2412–2429.

[41] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks?. In ICLR.
[42] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs

with Jumping Knowledge Networks. In ICML. 5449–5458.
[43] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. 2020. Graph Contrastive Learning with Augmentations. In NeurIPS.
[44] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,

Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:

A review of methods and applications. AI Open 1 (2020), 57–81.

[45] Jiong Zhu, Ryan A. Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K. Ahmed,

and Danai Koutra. 2021. Graph Neural Networks with Heterophily. In AAAI.
11168–11176.

[46] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai

Koutra. 2020. Beyond Homophily in Graph Neural Networks: Current Limitations

and Effective Designs. In NeurIPS.
[47] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.

Deep Graph Contrastive Representation Learning. CoRR abs/2006.04131 (2020).

[48] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2021.

Graph Contrastive Learning with Adaptive Augmentation. In WWW.

http://arxiv.org/abs/cs.LG/1811.05868

WWW ’24, May 13–17, 2024, Singapore, Singapore Liang Yang et al.

Algorithm 1: Solve Eq. (10) by Alternating Minimization

Data: Initialize: k = 0,Wk = 0,Zk = 0,Bk = 0

1 while not converged do
2 ComputeWk+1

by solving Eq. (14);

3 Compute Zk+1
by solving Eq. (15);

4 Compute Bk+1
by solving Eq. (16);

5 k = k + 1;

6 end

A OPTIMIZATION OF GAUSS
We demonstrate a method for addressing the nonconvex problem

defined in Eq. (10). The primary obstacle in this endeavor pertains

to the nonconvex component ∥B∥kb . To tackle this issue, we lever-

age a noteworthy property related to the sum of eigenvalues, as

introduced by Ky Fan, to redefine our approach.

Theorem A.1. Let L ∈ Rn×n and L ⪰ 0. Then
∑n
i=n−k+1

λi (L) =
minW ⟨L,W⟩, s .t . 0 ⪯ W ⪯ I,Tr(W) = k . Then, we can reformulate
∥B∥kb as a convex program ∥B∥kb = minW⟨LB,W⟩, s.t. 0 ⪯ W ⪯

I, Tr(W) = k .

So (10) is equivalent to

min

Z,B,W

1

2

∥X − XZ∥2 +
λ

2

∥Z − B∥2 + γ ⟨Diag(B1) − B,W⟩

s.t. diag(B) = 0,B ≥ 0,B = B⊤,

0 ⪯ W ⪯ I,Tr(W) = k .

(12)

In Eq. (12), it is evident that the problem comprises three distinct

blocks of variables. We notice that the variable W exhibits indepen-

dence from Z, allowing us to consolidate them into a composite

block denoted as {W, Z}, while considering {B} as a distinct block.
Consequently, the Eq. (12) can be effectively addressed through

iterative updates applied alternately to {W, Z} and {B}.
First, fix B = Bk , and update {Wk+1,Zk+1

} by

{Wk+1,Zk+1} = arg min

W,Z

1

2

∥X − XZ∥2 +
λ

2

∥Z − B∥2

+ γ ⟨Diag(B1) − B,W⟩

s.t. 0 ⪯ W ⪯ I,Tr(W) = k .

(13)

This is equivalent to updatingWk+1
and Zk+1

separably by

Wk+1 = arg min

W
⟨Diag(B1) − B,W⟩ ,

s.t. 0 ⪯ W ⪯ I,Tr(W) = k,
(14)

and

Zk+1 = argmin

Z

1

2

∥X − XZ∥2 +
λ

2

∥Z − B∥2 . (15)

Second, fixW =Wk+1
and Z = Zk+1

, and update B by

Bk+1 = arg min

B

λ

2

∥Z − B∥2 + γ ⟨Diag(B1) − B,W⟩

s.t. diag(B) = 0,B ≥ 0,B = B⊤.

(16)

It is worth noting that the aforementioned three subproblems are

of convex nature and possess solutions in closed form. In the context

of Eq. (14), the update equation forWk+1
is expressed asWk+1 =

UU⊤
, where U ∈ Rn×k consists of k eigenvectors corresponding to

the k smallest eigenvalues of Diag(B1) − B. Concerning Eq. (15), it

is evident that

Zk+1 = (X⊤X + λI)−1(X⊤X + λB). (17)

For Eq. (16), it is equivalent to

Bk+1 = arg min

B

1

2

B − Z +
γ

λ

(
diag(W)1⊤ −W

)

2

s.t. diag(B) = 0,B ≥ 0,B = B⊤.
This problem has a closed form solution given as follows.

Proposition A.2. Let A ∈ Rn×n . Define Â = A −

Diag(diaд(A)). Then the solution to the following problem

min

B

1

2

∥B − A∥2, s.t. diag(B) = 0,B ≥ 0,B = B⊤, (18)

is given by B∗ =
[
(Â + Â⊤)/2

]
+
.

The entirety of the alternating minimization procedure to solve

Eq. (10) is elucidated in Algorithm 1. We denote the objective func-

tion of Eq. (10) as f (Z ,B,W). Define S1 = {B|diag(B) = 0,B ≥ B =
B⊤} and S2 = {W|0 ⪯ W ⪯ I,Tr(W) = k}. The indicator func-

tions of S1 and S2 are denoted as ιS1
(B) and ιS2

(W), respectively.

A convergence guarantee for Algorithm 1 is provided within the

framework of the nonconvex GAUSS problem.

Proposition A.3. The sequence {Wk+1,Zk+1,Bk+1} generated
by Algorithm 1 has the following properties:

(1) The objective f (Zk ,Bk ,Wk) + ιS1
(Bk) + ιS2

(Wk) is monoton-
ically decreasing. Indeed,

f (Zk+1,Bk+1,Wk+1) + ιS1
(Bk+1) + ιS2

(Wk+1)

≤ f (Zk ,Bk ,Wk) + ιS1
(Bk) + ιS2

(Wk)

−
λ

2

Zk+1 − Zk

2

−
λ

2

Bk+1 − Bk

2

;

(2) Zk+1 − Zk → 0,Bk+1 − Bk → 0 andWk+1 −Wk → 0;

(3) The sequences {Zk }, {Bk } and {Wk } are bounded.

Theorem A.4. The sequence {Wk ,Zk+,Bk+1} generated by Al-
gorithm 1 has at least one limit point and any limit point (Z∗,B∗,W∗)

of {Zk ,Bk ,Wk } is a stationary point of Eq. (12).

B SYNTHETIC DATASETS CONTEXTUAL
STOCHASTIC BLOCK MODEL(CSBM)

The synthetic datasets cSBM allows for smoothly controlling the

“informativeness ratio” between node features and graph topology,

where the graph can vary from being highly homophilic to highly

heterophilic. We consider the case with two equal-size classes. In

cSBMs, the node features are Gaussian random vectors, where the

mean of the Gaussian depends on the community assignment. The

difference of the means is controlled by a parameter µ, while the
difference of the edge densities in the communities and between

the communities is controlled by a parameter λ. Hence µ and λ
capture the “relative informativeness” of node features and the

graph topology, respectively.

The cSBM adds Gaussian random vectors as node features on

top of the classical SBM. For simplicity, we assume C = 2 equally

GAUSS: GrAph-customized Universal Self-Supervised Learning WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 4: Performance with different number of blocks

k 1 2 3 4 5 6 7 8 9 10

Cora 83.95 84.31 84.19 83.80 82.61 82.37 81.59 81.11 81.47 80.24

Citeseer 72.78 72.89 73.14 72.80 72.47 71.97 71.58 71.34 71.06 70.85

PubMed 85.94 86.23 86.02 85.83 85.60 85.29 84.47 85.13 83.78 83.50

Wiki-CS 80.30 80.23 79.82 79.67 78.74 79.45 78.62 78.23 77.94 77.46

Computers 89.78 90.09 89.56 88.92 88.49 88.21 87.84 87.50 87.23 86.89

Photo 93.23 93.81 93.37 92.89 92.52 92.21 91.82 91.43 91.06 90.69

Chameleon 75.21 75.81 76.93 76.85 76.98 76.46 76.32 75.41 75.41 74.50

Squirrel 66.45 66.92 67.12 67.93 67.64 66.57 65.54 64.50 65.25 65.11

Actor 37.04 37.32 37.37 37.24 37.18 36.98 36.41 35.92 35.15 35.27

Cornell 82.20 82.69 82.51 82.46 81.29 81.77 81.29 80.67 79.82 80.43

Texas 83.56 85.38 84.73 84.90 84.25 83.85 84.11 83.56 82.41 82.25

Wisconsin 85.79 87.35 87.82 87.64 86.95 86.88 86.37 86.41 85.67 85.42

1 2 3 4 5 6 7 8 9 10
The number of blocks

81

82

83

84

A
cc

ur
ac

y(
%

)

74.5

75.0

75.5

76.0

76.5

77.0

A
cc

ur
ac

y(
%

)

Cora
Chameleon

Figure 9: Performance with different number of blocks.
sized communities with node labels vi in {+1,−1}. Each node i is

associate with a f dimensional Gaussian vector bi =
√

µ
nviu +

Zi√
f
,

where n is the number of nodes, u ∼ N (0, I/f) and Zi ∈ Rf has

independent standard normal entries. The (undirected) graph in

cSBM is described by the adjacency matrix A defined as

P(Ai j = 1) =

{
d+λ

√
d

n if vivj > 0

d−λ
√
d

n otherwise

(19)

Similar to the classical SBM, given the node labels the edges are

independent. The symbol d stands for the average degree of the

graph. Also, recall that µ and λ control the information strength

carried by the node features and the graph structure respectively.

C HYPERPARAMETERS
As shown in Figure 9, we ran experiments on the homophilic dataset

Cora and the heterophilic dataset Chameleon, respectively, which

were used to explore the effect of different numbers of blocks in

an ego network on node classification performance.For Cora, the

performance reaches better results when the number of blocks is

small and decreases as the number increases. This indicates that

for the homophilic dataset, most of the ego-network has only one

or two types of nodes in it. On the other hand, for Chameleon, the

performance initially increases as the number of blocks increases

and after a certain number the performance starts to decrease.

This also confirms that there are multi-class nodes within the ego-

network of the homophilic dataset.

The k value determines the number of blocks in the learned

affinity matrix. This value is expected to be the same as the number

of classes in the ego-network. Unfortunately, this value is unknown

without the label information in the self-supervised learning tasks.

Since the meaning of learning affinity matrix is to make the propa-

gation between nodes in the same class, we do NOT need an exact

value. Therefore, it often performs well by using a small k , such
as 2 or 3.The Table 4 gives the results on some datasets of exper-

imental analysis of the impact of k values on the performance In

this section, based on cSBM dataset, we give a visualisation of the

two parameters λ and γ during the iteration of the algorithm. The

parameter λ mainly constrains the degree of similarity between

matrix Z and matrix B. Figure 10 shows the local variations when

λ is taken as 1, 10, and 100 respectively, and it can be seen that the

differentiation is not very effective when λ is taken too large or too

small.

Figure 11 shows the local variations when γ is taken as 0.1, 1, 10

and 50 respectively. The parameter γ mainly affects the strength

of the block-forming constraints, when γ is too weak, it results in

an increase in the inter-class propagation coefficient, and when it’s

too strong, it reduces the intra-class weight.

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0.0

0.2

0.4

0.6

0.8

Matrix B in GAUSS Matrix Z in GAUSS

1

2

3

4

1

2

3

4

11

22

33

44

Class 0

Class 1

(a) λ = 1

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0.0

0.1

0.2

0.3

0.4

0.5Matrix B in GAUSS Matrix Z in GAUSS

1

2

3

4

1

2

3

4

1

2

3

4

11

22

33

44

Class 0

Class 1

(b) λ = 10

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0.00

0.05

0.10

0.15

0.20

0.25

0.30Matrix B in GAUSS Matrix Z in GAUSS

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

11

22

33

44

Class 0

Class 1

(c) λ = 50

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

1

2

3

4

1

2

3

4

1

2

3

4

11

22

33

44

Class 0

Class 1

Matrix B in GAUSS Matrix Z in GAUSS

(d) λ = 100

Figure 10: A local perspective on different λ.

0 1 2 3 4

0

1

2

3

4

Matrix B

0 1 2 3 4

0

1

2

3

4

Matrix Z

0.00

0.05

0.10

0.15

0.20

(a) γ = 0.1

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0.00

0.05

0.10

0.15

0.20

Matrix B in GAUSS Matrix Z in GAUSS

1

2

3

4

11

22

33

44

Class 0

Class 1

(b) γ = 1

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0.00

0.05

0.10

0.15

0.20

11

22

33

44

Class 0

Class 1

Matrix B in GAUSS Matrix Z in GAUSS

(c) γ = 10

0 1 2 3 4

0

1

2

3

4

0 1 2 3 4

0

1

2

3

4

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1

2

3

4

11

22

33

44

Class 0

Class 1

Matrix B in GAUSS Matrix Z in GAUSS

(d) γ = 50

Figure 11: A local perspective on different γ .

D COMPUTATION COMPLEXITY
The complexity of the proposed GAUSS is O(N (d2F + d3)), where

N is the number of nodes, d is the average degree of nodes and F
is the size of the node attribute. Specifically, for each node, GAUSS

constructs ego-network and optimizes the objective function in

Eqs. (10)-(11) with algorithm in Appendix and Algorithm 1. The

complexities of ego-network construction and the three iteration

steps are O(d2F), O(d3), O(d3), and O(d3), respectively. Thus, the

complexity for each ego-network is O(d2F + d3). Since GAUSS is

performed on each node, the overall complexity is O(N (d2F + d3)).

Note that the number of iterations is ignored since am maximum

number of iterations is set. Thus, the complexity of GAUSS is linear

WWW ’24, May 13–17, 2024, Singapore, Singapore Liang Yang et al.
O

U
R

S

Photo ChameleonCiteseer Computer

FA
G

C
N

G
C

N
G

R
A

C
E

D
G

I

Figure 12: The visualization for node representations.

with the size of the network and thus is scalable. Here we report

the runtime with the number of ego-networks in Table 5. Since we

typically construct an ego network for each node, the number of

ego-networks is the same as the number of nodes in each dataset.

We provide the average training time for each dataset based on ten

runs.The experiments were conducted on a Linux machine with

NVIDIA A800 GPUs.

Table 5: runtime with the number of ego-networks

Datasets Cora Citeseer PubMed Wiki-CS Computers Photo

#Nodes 2,708 3,327 19,717 11,701 13,752 7,650

Training time 8.7s 12.4s 78.1s 42.2s 54.7s 35.8s

Datasets Chameleon Squirrel Actor Cornell Texas Wisconsin

#Nodes 2,277 5,201 7,600 183 183 251

Training time 7.6s 36.2s 63.8s 2.3s 2.6s 3.7s

Here we give some baseline time complexity, the time complex-

ity of GRACE comes from two main components, infoNCE loss

negative sampling has a time complexity ofO((N 2)D) and GCN en-

coder has a time complexity ofO(ND+ND2). GCA is the advanced

version of GRACE and performs a quadratic all-pairs contrastive

computation at each update step. BGRL conducts the pairwise com-

parison between the embeddings learned by an online encoder

and a target encoder. Although BGRL does not require negative

examples, the two branch design, two different encoders and four

embedding table still need to be kept during training.

E VISUALIZATION
In order to provide a more illustrative perspective of the perfor-

mance of our model, we have used t-SNE visualisation to provide

a more intuitive view. Figure 12 shows t-SNE visualisations of

node embeddings obtained by GCN, GRACE, DGI, FAGCN and

our method on four different datasets. We use different colours to

represent different categories, showing the clustering effect of node

embeddings. The shapes of these clusters reflect the characteristics

of the respective models.

In particular, in the case of GCN, the embedding clusters for

different categories tend to overlap, indicating a susceptibility to

underfitting. Compared to the self-supervised methods GRACE and

DGI, the clustering phenomenon of our methods is better on the ho-

mophilic graph dataset, which is particularly evident in the Citeseer

dataset. At the same time, these two methods are significantly less

effective in dividing on the heterophilic graph dataset Chameleon,

which is also consistent with their poor performance. For FAGCN,

our method also shows good competitiveness and there is less over-

lap between nodes of different colours on the heterogeneous graph.

In contrast, the clusters produced by our method are more regular,

and nodes with the same label tend to exhibit spatial clustering.

This highlights the discriminative power of our method.

F LARGH GRAPH DATASETS
To address the scalability concerns, we have conducted evalua-

tions on larger graph datasets Ogbn-arxiv, Ogbn-mag, and Ogbn-

products. The numbers of Nodes, Edges, Features, and Train/Val/Test

of these datasets are shown in the following table. The experiments

were conducted on a Linuxmachine with 2000G RAM and 4 NVIDIA

A800 GPUs, each with 80GB GPU memory. The results can be seen

in Table 6, and our model exhibits some performance improvements.

Table 6: Evaluations on largh graph datasets

Datasets Ogbn-arxiv Ogbn-mag Ogbn-products

#Nodes 169,343 1,939,743 2,449,029

#Edges 1,166,243 21,111,007 61,859,140

#Features 128 128 100

#Train/Val/Test 54/18/28 85/9/6 8/2/90

MLP 56.34±0.28 39.15±0.21 61.72±0.15

DGI 68.47±0.02 45.36±0.04 74.38±0.20

GRACE 69.75±0.01 46.89±0.02 79.47±0.59

BGRL 70.27±0.03 48.72±0.01 78.59±0.02

GraphMAE 71.03±0.02 50.19±0.03 78.89±0.01

GAUSS 71.64±0.52 55.21±0.15 81.78±0.45

	Abstract
	1 Introduction
	2 Notations and Preliminaries
	2.1 Notations
	2.2 Graph Neural Networks
	2.3 Self-supervised Learning on Graph

	3 Analysis
	3.1 Necessity of Customizing SSL for Graph
	3.2 Issue of Employing Flexible GNNs in SSL

	4 Methodology
	4.1 Motivations
	4.2 GAUSS

	5 Evaluations
	5.1 Dataset
	5.2 Experimental Results
	5.3 Hyperparameter Analysis

	6 Conclusions
	7 acknowledgments
	References
	A Optimization of GAUSS
	B Synthetic datasets contextual stochastic block model(cSBM)
	C hyperparameters
	D computation complexity
	E Visualization
	F Largh Graph Datasets

