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ABSTRACT 
Due to the simplicity, intuition and explanation, most Graph Neural 
Networks (GNNs) are proposed by following the pipeline of message 
passing. Although they achieve superior performances in many 
tasks, propagation-based GNNs possess three essential drawbacks. 
Firstly, the propagation tends to produce smooth efect, which meets 
the inductive bias of homophily, and causes two serious issues: 
over-smoothing issue and performance drop on networks with 
heterophily. Secondly, the propagations to each node are irrelevant, 
which prevents GNNs from modeling high-order relation, and cause 
the GNNs fragile to the attributes noises. Thirdly, propagation-
based GNNs may be fragile to topology noise, since they heavily 
relay on propagation over the topology. Therefore, the propagation, 
as the key component of most GNNs, may be the essence of some 
serious issues in GNNs. To get to the root of these issue, this paper 
attempts to replace the propagation with a novel local operation. 
Quantitative experimental analysis reveals: 1) the existence of low-
rank characteristic in the node attributes from ego-networks and 
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2) the performance improvement by reducing its rank. Motivated 
by this fnding, this paper propose the Low-Rank GNNs, whose 
key component is the low-rank attribute matrix approximation 
in ego-network. The graph topology is employed to construct the 
ego-networks instead of message propagation, which is sensitive 
to topology noises. The proposed Low-Rank GNNs posses some 
attractive characteristics, including robust to topology and attribute 
noises, parameter-free and parallelizable. Experimental evaluations 
demonstrate the superior performance, robustness to noises and 
universality of the proposed Low-Rank GNNs. 
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1 INTRODUCTION 
Originated from spectral graph theory [14], graph neural networks 
(GNNs), which apply deep neural networks in graph domain, have 
become a powerful tool in modeling irregular data [37, 49]. They 
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Figure 1: Comparison between existing propagation-based 
GNNs and the proposed Low-Rank GNNs without propaga-
tion in an ego-network. (a) Ego-network in original graph. 
Colors of nodes stand for categories, while center node, i.e. 
node 1, is highlight with purple dashed border. (b) Existing 
propagation-based GNNs are equivalent to weighted averag-
ing of neighbourhood nodes. They may lose information due 
to mixing nodes from diferent categories. (c) The proposed 
Low-Rank GNNs employ low-rank matrix decomposition, 
which keeps critical information by taking high-order rela-
tionship between nodes in the ego-network. 

boost the performance in many tasks, such as node classifcation 
[12, 13] and link prediction [47], and been widely employed by many 
felds, such as machine learning [30], computer vision [11], natural 
language processing [8, 9] and information retrieval [20, 25], etc. 
GNNs can be designed from two diferent perspectives, i.e., spectral 
fltering and spatial message passing. Many classic GNNs, such as 
GCN [21], ChebyNet [15] and CayleyNet [23] are motivated from 
spectral graph fltering. However, due to the simplicity, intuition 
and explanation, most GNNs are proposed by following the pipeline 
of message passing [16]. Recent work bridges the gap between spec-
tral and spatial domains in GNNs by demonstrating the equivalence 
between them [1]. 

Many eforts on spatial GNNs have been paid on the propagation, 
i.e., what should be propagated and how to propagate message. For 
example, Graph Attention Network (GAT) [34] shows the propa-
gation weighs can be learned via self-attention mechanism, while 
Diverse Message Passing (DMP) [43] constructs the message with 
the element-wise product of the attributes from the two connected 
nodes. Although they achieve superior performances in many tasks, 
propagation-based GNNs possess three essential drawbacks. 

Firstly, the propagation tends to produce smooth efect [24], 
which meets the inductive bias of homophily [44], and causes two 
serious issues. 1) It may cause the over-smoothing issue when per-
forms multiple propagation by stacking multiple layers [24]. 2) Its 
performance may signifcantly drop on networks with heterophily, 
which are common in real world. Take Figure 1(a) as an example. 
The ego-network consists of 7 nodes from 3 categories, which are 
marked with yellow, blue and red, respectively. Nodes from the 
same category possess the similar attributes. As shown in Figure 
1(b), existing propagation-based GNNs are equivalent to weighted 
average of the neighbourhood nodes. Since the neighbourhood is 
mixed with nodes from multiple categories, averaging between 
them may cause the loss of critical information (yellow content) in 
obtained node representation. 

Secondly, the propagations to each node are irrelevant [41], since 
propagation weights are either predefned according to the topology 
or learned based on the contents of the two connected nodes. It 
prevents GNNs from modeling high-order relation, and cause the 
GNNs fragile to the attributes noises. Actually, the representation 
of one node should refect global characteristics of its ego-network. 

Thirdly, propagation-based GNNs may be NOT robust to topol-
ogy noise. It is widely-accepted that there exist large amount of 
noises. Topology structure signifcantly impacts the performance, 
since GNNs relay on propagation over the topology. Although many 
graph structure learning methods, which refne the given topology 
and then propagate on the refned topology, has been proposed, 
they are exposed to overftting due to the high model complexity. 

Therefore, the propagation, as the key component of most GNNs, 
may be the essence of some serious issues in GNNs. To get to the 
root of these issue, this paper attempts to replace the propagation 
with a novel local operation. Firstly, the low-rank characteristic of 
the node attributes, which is employed in transductive classifcation 
in machine learning [17] and many tasks in computer vision [18], in 
ego-network are investigated. Quantitative experimental analysis 
demonstrates: 1) the existence of low-rank characteristic and 2) the 
performance improvement by reducing rank. 

Motivated by this fnding, this paper propose the Low-Rank 
GNNs, whose key component is the low-rank attribute matrix ap-
proximation in ego-network. The graph topology is employed to 
construct the ego-networks instead of message propagation, which 
is sensitive to topology noises. Specifcally, representation for each 
node is obtained from low-rank attribute matrix approximation in 
its ego-network, which is implemented via the RPCA [6] and opti-
mized by Alternating Direction Methods of Multipliers (ADMM) 
[4]. Then, representations of all nodes are fed into a multilayer per-
ceptron (MLP), which is trained with the supervision from labeled 
nodes. Benefcial from the remarkable performance of low-rank ap-
proximation and the novel way of utilizing topology, the proposed 
Low-Rank GNNs posses some attractive characteristics, including 
robust to topology and attribute noises, parameter-free and par-
allelizable. Besides, Low-Rank GNNs can handle networks with 
heterophily by avoiding the smooth efect in propagation. 

The main contributions of this paper are summarized as follows: 

• We observe the low-rank characteristic of the collection of 
attributes in the ego-network for the frst time. 

• We propose a novel Low-Rank GNNs by replacing the at-
tribute propagation in ego-network with low-rank approxi-
mation of attribute matrix. 

• We analyze the attractive characteristics of the proposed 
Low-Rank GNNs, including robust to topology and attribute 
noises, handling networks with heterophily, parameter-free 
and parallelizable. 

• We experimentally verify the efectiveness, robustness and 
universality of the Low-Rank GNNs. 

2 PRELIMINARIES 
This section provides the notations used in this paper, reviews the 
previous work on graph neural networks, and introduces the basic 
concept on low-rank matrix approximation, which forms the basis 
of the current work. 
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2.1 Notations 
Let G = (V, E) denote a graph with node set V = {�1, �2, · · · , �� }
and edge set E, where � is the number of nodes. The topology of 
graph G can be represented by its adjacency matrix A = [�� � ] ∈ 
{0, 1}� ×� , where �� � = 1 if and only if there exists an edge �� � = 
(�� , � � ) between nodes �� and � � . The degree matrix D is a diagonal Í� matrix with diagonal element �� = �=1 �� � as the degree of node �� . 
N(�� ) = {� � | (�� , � � ) ∈ E} stands for the neighbourhoods of node 
�� . Let G� = (V� , E� ) represents the ego-network around node �� , 
where V� = N(�� ) ∪ �� and E� denotes edges between nodes in V� . 
X ∈ R� ×� and H ∈ R� ×� ′ denote the collections of node attributes 
and representations with the ��ℎ rows, i.e., x� ∈ R� and h� ∈ R� ′ , 

′corresponding to node �� , where � and � stand for the dimensions 
of attribute and representation. For convenience, X� ∈ R(�� +1)×� 

and H� ∈ R(�� +1)×� ′ denote the collections of node attributes and 
representations of ego-network around node �� , i.e., G� Note that 
X ∈ R� ×� and H ∈ R� ×� ′ can be used to represent the collections 
of data samples and their representations on non-graph dataset, 
respectively. 

2.2 Graph Neural Networks 
Most of the Graph Neural Networks (GNNs) follow an aggregation-
combination strategy [16], where each node representation is iter-
atively updated by aggregating node representations in the local 
neighbourhoods and combining the aggregated representations 
with the node representation itself as 

(n o)
h̄� = AGGREGATE� h� −1 |� ∈ N(�) , (1)� � 

( )
h� h� −1 h̄� = COMBINATE� , , (2)� � � 

h� where ¯ � stands for the aggregated representation from local neigh-
bourhoods. Besides of the concatenation based implementation, 
such as GraphSAGE [19] and H2GCN [50], averaging (or summa-
tion) has been widely adopted to implement COMBINATE� (·, ·), 
such as GCN [21], GAT [34], GIN [38], etc. Except for the MAX 
and LSTM implementations in GraphSAGE [19], most of the GNNs 
utilize averaging function to implement AGGREGATE� . Therefore, 
they can be unifed as 

∑ 
h� = � �(( � � 1 � � − −1 � 

  h
 

 +� �� �  ��� h� )W ), (3)
� ∈N(�) 

where W� represents the learnable parameters and � (·) denotes the 
nonlinear mapping function. Note that the scalar ��� is the averag-√ 
ing weight. For example, GCN [21] sets �� = 1/( (�� + 1) (�� + 1),�� 
GIN [38] sets �� = 1 for � ≠ � and �� = 1+�� , and GAT [34] learns �� �� 
non-negative �� 

�� based on the attention mechanism. Recently, to 
handle the network with heterophily via high-passing fltering,√ 
GPRGNN [13] sets �� = �� /( (�� + 1) (�� + 1) with �� being a�� 
learnable real value, while FAGCN [2] directly relaxes the learnable 
��� in GAT to real value. 

2.3 Low-Rank Matrix Approximation 
Since most real data are corrupted with noise, how to remove noise 
and reveal the structure of the data is a critical problem in many ar-
eas, such as signal processing, computer vision, pattern recognition 
and social modeling [10, 48]. Low-rank matrix approximation is a 
class of widely-used methods to fnd the underlying structure of the 
given data. They operate under the assumptions that the underlying 
structure of the data lies on a low dimensional subspace and the 
high dimension of the observed data is often due to noises. If the 
rank of the low dimensional subspace is known, matrix factoriza-
tion strategy can be employed. It factorizes data matrix X ∈ R� ×� 

into two low-dimensional matrices U ∈ R� ×� and V ∈ R� ×� by 
minimizing argminU,V Dis(X, UV ′), where � ≪ min(�, �) is the 
dimension of the latent space or the rank of the underlying data and 
Dis(X, UV ′) denotes the error between the original data X and the 
reconstructed data UV ′ under some specifc distance metric, such 
as KL-divergence, ℓ1 norm and Frobenius norm. The most serious 
limitation of this kind of methods is that the dimension of the latent 
space, i.e., � , must be pre-determined. In reality, nevertheless, it is 
often difcult to determine � in advance. 

When the rank of the data is not given, we may directly approx-
imate X ∈ R� ×� with a low-rank matrix H ∈ R� ×� , which is the 
idea of low-rank approximation [6], by minimizing 

argmin Dis(X, H) + � rank(H), 
H 

where rank(H) is the rank of the matrix H and � is a parameter 
for tradeof between the two terms. Since the rank function is 
nonconvex, we can alternatively minimize its convex surrogate as 

argmin Dis(X, H) + � | |H| |∗, (4) 
H 

where | |H| |∗ is the trace norm of H, i.e., the sum of the singular 
values of H. The most well-known approach for low-rank approxi-
mation with unknown rank is Robust PCA (RPCA) [6], which has 
been used for background subtraction, texture repair and subspace 
segmentation. RPCA uses the ℓ0 norm to measure the diference 
between the original data X and the low-rank approximation H, 
i.e., Dis(X, H) = | |X − H| |0, where | |X| |0 is the number of nonzeros 
in X. As before, RPCA directly optimizes the | |X| |1 for its convex-
ity instead of | |X| |0 and for the equivalence of the following two 
problems under rather broad conditions (the error matrix X − H is 
sufciently sparse relative to the rank of H) [6]: 

argmin | |X − H| |0 + � rank(H), 
H 

argmin | |X − H| |1 + � | |H| |∗ . (5) 
H 

Since the nosies have been separated from data, the obtained low-
rank approximation H achieves better performance and general-
ization on many tasks, such as subspace clustering [26] and back-
ground extraction [7]. 

3 METHODOLOGY 
In this section, the Graph Neural Networks without propagation 
are given. Firstly, the low-rank characteristic of node attributes in 
ego-network, which motivates the proposed method, is analyzed. 
Secondly, the ego-network low-rank approximation is proposed 
to replace the widely-used propagation. Finally, the Low-Rank 
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Figure 2: Low-rank characteristic of the collection of at-
tributes in ego-networks. (a) Low-rank structure destroy 
procedure. (b) Percentage of nodes with nuclear norm in-
creased on 8 networks. The blue and orange bars stand for 
homophilic nodes (homophily rate > 0.4) and heterophilic 
nodes (homophily rate < 0.4), respectively. 

Graph Neural Networks are introduced based on the proposed 
ego-network low-rank approximation. 

3.1 Analysis and Motivations 
This section frst investigate whether the low-rank characteris-
tic exists in ego-network. Then, it verifes whether the low-rank 
approximation boosts the performance. 

3.1.1 Low-rank characteristic. This subsection, we tend to demon-
strate the low-rank characteristic of the collection of attributes in 
ego-networks. In some computer vision tasks, such as background 
subtraction [6], the low-rank characteristic is very obvious. Unfortu-
nately, it is difcult to directly show whether a collection attributes 
possesses this characteristic, although it has been employed in 
transductive classifcation [17]. To this end, we alternatively inves-
tigate whether the rank will increase when the low-rank structure 
is destroy. However, the rank of matrix is sensitive to foating-point 
operation, the rank of matrix is replaced with its convex surrogate, 
i.e., nuclear norm, as in the RPCA (Eq. (4)), which is the singular-
values summation of the matrix. 

The remaining problem is how to destroy the low-rank struc-
ture. The main assumption is that the collection of attribution from 
nodes, which belong to the same category, should possess the low-
rank structure. The procedure is shown in Figure 2(a). For stable 
experiments, the nodes are divided into homopilic nodes and het-
erophilic ones, according to its local homophily rate [28]. Besides, 
the isolated nodes are removed. 

Figure 3: The percentage of nodes with performance im-
proved as the percentage of rank reduced. 

For homophilic nodes, i.e. nodes with homphily rate large than 
0.4, the attribute of nodes, which belong to the same class as central 
node, are collected as low-rank structure, such as the yellow matrix 
in 2(a). The destruction procedure is to randomly replace one row 
with attribute of nodes from other classes, such as the yellow matrix 
with one blue row in Figure 2(a). 

For heterophilic nodes. i.e. nodes with homphily rate smaller 
than 0.4, the attribute of nodes, which do NOT belong to the same 
class as central node, are collected as low-rank structure, such as the 
blue-pink matrix in 2(a). The destruction procedure is to randomly 
replace one row with attribute of central node, such as the matrix 
with one blue row, one yellow row, and one pink row in Figure 2(a). 

We investigate the percentage of nodes where low-rank structure 
destruction cause an increase in nuclear norm. The results are 
shown in Figure 2(b). It can be observed that most of the nodes 
have nuclear norm increased. This indicates that most collections 
of attribute from eg-network beneft from low-rank recovery. 

3.1.2 Performance Improvement. Next, we investigate whether the 
rank reduction boost the performance on 3 citation networks. To 
this end, we check whether the amount of rank reduced is related to 
performance improvement. Figure 3 gives the percentage of nodes 
with performance improvement calculated with the percentage of 
rank reduced. The positive correlation can be observed. Therefore, 
the rank reduction can boost the performance. 

3.2 Ego-network Low-Rank Approximation 
As discussion in the previous sub-section, the propagation in ego-
network may cause the smooth efect, which leads to the loss of 
critical information and performance drop in networks with het-
erophily. To alleviate this issue, the low-rank matrix approxima-
tion is employed to model the characteristic of attributes in ego-
network. As given in Section 2.1 (Notation), X� ∈ R(�� +1)×� and 

′ 
H� ∈ R(�� +1)×� denote the collections of node attributes and rep-
resentations of ego-network around node �� , i.e. G� . Therefore, the 
formula of low-rank matrix approximation in Eq. (5) can be applied 
on X� , i.e. 

argmin | |H� | |∗ + | |X� − H� | |1 . (6) 
H� 

To facilitate the optimization, by denoting S� = X� − H� , Eq. (6) can 
be reformulated as 

argmin | |H� | |∗ + � | |S� | |1 (7) 
H� ,S� 

� .� . X� = H� + S� (8) 
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By applying the Augmented Lagrangian Methods (ALM) [3], the 
constrained optimization problem in Eqs. (7) and (8) can be con-
verted to 

F (H� , S� , Y� , �) = | |H� | |∗ + � | |S� | |1 + < Y� , X� − H� − S� > 
� + 2 
| |X� − H� − S� | |2 (9)� , 

where Y� is the Lagrange multipliers for the constraint X� = H� + S� . 
< Y, X >= �� (YX ′) stands for the inner-product of matrix Y and X. 
This objective function can be optimized via Alternating Direction 
Methods of Multipliers (ADMM) [4]. ADMM alternatively updates 
H� , S� and Y� by fxing others. 

Update S� . By fxing H� and Y� , Eq (9) can be converted to 

� 1argmin | |S� | |1 + 2 
| |Q� − S� | |2 (10)� ,� S� 

1
Q� = X� − H� − Y� . (11)

� 

Eq. (10) has a closed-form element-wise solution via soft-thresholding 
[3, 40] as follows: � � 

= �� � � ( 
� ) = ���� 

( ) 
· max − 

� 
, 0 (12)(S� )∗ (Q� ) �� , (Q� ) �� (Q� ) �� �� � � 

where the soft-thresholding function is 
�� � � (�, �) = ���� (�) max {|� | − �, 0} (13) 

Update H� . By fxing S� and Y� , Eq (9) can be converted to 

1 1argmin | |H� | |∗ + 2 
| |P� − H� | |2 (14)� ,� H� 

1
P� = X� − S� − Y� . (15)

� 

Eq. (14) has a closed-form with singular-value thresholding [5] as 
1

H∗ V ′ = U��� � � (Σ� , ) (16)� � ,� 

where X� = U� Σ� V ′ is the singular-value decomposition (SVD) of 
� 

matrix X� , and �� � � (·, ·) is the soft-thresholding [40] as in Eq. (13). 
The Lagrange multipliers Y� can be update as 

Y� = Y� + � (X� − H� − S� ). (17) 
By gradually increasing � and repeatedly update H� , S� and Y� until 
convergence, the low-rank matrix H∗ can be obtained. Then, the 

� 
row in H∗ corresponding to the node �� is extracted as h∗ as the 

� � 
fnal representation of node �� . 

Remark 1: The main procedure to obtain the low-rank approx-
imation is the singular-value thresholding in Eq. (16) . It is the 
low passing spectral flter in attribute space. Therefore, it explores 
the high-order relationship in ego-network, which is beyond the 
propagation in existing GNNs (pairwise relationship). 

3.3 Low-Rank Graph Neural Networks 
In previous section, one node representation is obtained via low-
rank approximation in ego-network around it. By traversing the 
entire graph, extracting ego-network around all nodes, and per-
forming low-rank approximation on each ego-network to obtain 
embedding of central node, all the node representations can be 
obtained. Then, the Low-Rank Graph Neural Networks (Low-Rank 
GNNs) are constructed by feeding the embeddings of all nodes 

into a multilayer perceptron (MLP), and trained by using the cross-
entropy objective function. 

3.4 Insights and Discussions 
This section provides some insights and discussion towards ro-
bustness to topology and attribute noises, the characteristics of 
parameter-free and parallelizable, local and global information, and 
diference from existing Low-rank strategy in GNNs. 

3.4.1 Robustness to Topology Noises. It is widely-accepted that 
there exist large amount of noises, i.e. edges between nodes from 
diferent classes. Topology structure signifcantly impacts the per-
formance, since GNNs relay on propagation over the topology. Thus, 
the graph structure learning is an important topic in GNNs [35, 42]. 
Most existing graph structure learning methods focus on correcting 
and refning the existing topology and then propagating on the re-
fned topology. However, the graph structure learning may increase 
the model complexity of GNNs, and thus is exposed to overftting. 
Alternatively, the proposed Low-rank GNNs is without propagation. 
The give topology is only used to form the ego-network. Therefore, 
Low-rank GNNs tend to be robust to topology noises. 

3.4.2 Robustness to Atribute Noises. Although the smooth efect 
of the propagation in existing GNNs can be robust to attribute 
noises, its also leads to the loss of information due to the propa-
gation between two nodes, i.e., individual pairwise relationships. 
In contrary, the proposed Low-rank GNNs de-noise the node at-
tributes by jointly considering all nodes in the ego-network. That 
is the denoising in Low-rank GNNs may take the high-order rela-
tionship in the ego-network. Therefore, Low-rank GNNs may be 
more robust to attribute noises. 

3.4.3 Parameter-free. Note that above low-rank matrix approxi-
mation is parameter-free. Thus, this procedure does not need to be 
learned with label supervision, and can be perform in advance. This 
attractive characteristic is also possessed by SGC [36]. However, the 
proposed Low-rank GNNs are powerful than SGC, since it explores 
the diverse characteristic in diferent ego-networks. 

3.4.4 Parallelization. Most existing GNNs need repeatedly propa-
gation. Therefore, the neighbourhood explosion issue [?] prevents 
them from being parallelized. Fortunately, the proposed Low-rank 
GNNs only need the information of ego-network to obtain repre-
sentation, and thus are easy to beparallelized. 

4 EVALUATIONS 
In this section, the performance of our proposed Low-Rank GNNs 
is experimentally evaluated on node classifcation task. Then, the 
robustness analysis of Low-Rank GNNs is provided for intuitive 
understanding. Finally, the comparison is conducted between exist-
ing propagation-based GNNs and the proposed Low-Rank GNNs 
to illustrate the superiority of low-rank approximation. 

4.1 Experimental Setup 
4.1.1 Datasets and spliting. For node classifcation task, four kinds 
of datasets are adopted to comprehensively evaluate the proposed 
Low-Rank GNNs. The statistics of datasets are shown in Table 1. 
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Table 1: Benchmark dataset statistics for node classifcation. 

Dataset Cora Citeseer Pubmed Computer Photo Chameleon Squirrel Actor Cornell Texas Wisconsin 

# Nodes 2,708 3,327 19,717 13,752 7,650 2,277 5,201 7,600 183 183 251 
# Edges 5,429 4,732 44,338 245,861 119,081 36,101 217,073 33,544 295 309 499 
# Features 1,433 3,703 500 767 745 2,325 2,089 931 1,703 1,703 1,703 
# Classes 7 6 3 10 8 5 5 5 5 5 5 

Table 2: Mean Classifcation Accuracy on Heterophilic Datasets (Bold indicates the best, underlined indicates the second best). 

Dataset Chameleon Squirrel Actor Cornell Texas Wisconsin 

MLP 
GCN 
GAT 
SGC 

49.67±0.78 
28.18±0.23 
42.93±0.28 
63.02±0.43 

37.04±0.46 
23.96±0.26 
42.93±0.28 
43.14±0.28 

34.10±0.25 
26.86±0.23 
28.45±0.23 
29.39±0.20 

81.08±6.37 
55.14±7.57 
58.92±3.32 
47.80±1.50 

81.89±4.78 
55.68±9.61 
58.38±4.45 
55.18±1.17 

85.29±3.61 
58.42±5.10 
55.29±8.71 
54.31±2.10 

GCNII 
APPNP 
JKNet 

60.61±2.00 
54.30±0.34 
62.31±2.76 

37.85±2.76 
33.29±1.72 
44.24±2.11 

36.18±0.61 
31.71±0.70 
36.47±0.51 

74.86±2.73 
82.16±3.83 
56.49±3.22 

69.46±1.86. 
82.43±1.72 
65.35±4.68 

74.12±1.62 
84.51±2.40 
51.37±3.21 

GPR-GNN 
FAGCN 
H2GCN-1 
H2GCN-2 
DMP 

67.48±1.98 
61.12±1.95 
57.11±1.58 
59.39±1.98 
55.92±1.26 

49.93±1.34 
40.88±2.02 
36.42±1.89 
37.90±2.02 
47.26±1.54 

36.58±1.04 
36.81±0.26 
35.86±1.03 
35.62±1.30 
35.86±0.46 

79.73±3.91 
67.95±10.02 
82.16±4.80 
82.16±6.00 
70.27±1.74 

77.84±2.78 
61.82±8.71 
84.86±6.77 
82.16±5.28 
78.38±2.14 

82.55±1.67 
76.93±3.46 
86.67±4.69 
85.88±4.22 
80.39±2.27 

Low-Rank GNNs 62.71±2.06 51.70±1.28 38.51±0.33 78.48±0.36 88.10±1.27 83.13±1.90 

• Citation Networks. Cora, Pubmed and Citeseer are citation 
networks originally introduced in [27, 31], which are among 
the most widely used benchmarks for semi-supervised node 
classifcation. 

• Co-purchase Networks. Computers and Photo are two 
networks of Amazon co-purchase relationships [32]. In these 
networks, nodes represent goods and edges stand for the 
connected two goods being frequently bought together. 

• Web page Networks. Squirrel and Chameleon are sub-
graphs of web pages in Wikipedia discussing the correspond-
ing topics, collected by [29]. Texas, Wisconsin and Cornell 
are graphs representing links between web pages of the cor-
responding universities, originally collected by the CMU 
WebKB project. 

• Co-occurrence Networks. Actor is a graph representing 
actor co-occurrence in Wikipedia pages, processed by [28] 
based on the flm-director-actor-writer network in [33]. 

For Cora, Citeseer and Pubmed, we use 20 labeled nodes per class for 
training, 500 nodes for validation and 1000 nodes for testing. Details 
can be found in [2]. For Computer and Photo, we use 20 labeled 
nodes per class for training, 30 nodes per class for validation and 
the rest nodes for testing. For Chameleon, Squirrel, Actor, Cornell, 
Texas and Wisconsin, we randomly split nodes of each class in to 
60%, 20% and 20% for training, validation and testing, and run on 
test sets over 10 random splits, as suggested in [28]. 

4.1.2 Baselines. To verify the efectiveness of the proposed Low-
Rank GNNs on node classifcation task, 11 methods are employed 
as the baselines with default hyper-parameters. They are divided 
into 3 categories: 

• Classic GNN models for node classifcation task include 
vanilla GCN [21], GAT [34] and SGC [36]. 

• Deep GNNs designed to tackle over-smoothing issue include 
GCNII [12], APPNP [22] and JKNet [39]. 

• Models designed for networks with heterophily include GPR-
GNN [13], FAGCN [2], H2GCN [50] and DMP [43]. 

4.1.3 Parameter setings. We implement Low-Rank GNNs based 
on Pytorch. To ensure fair comparisons, we set the hidden size 
as 64, the learning rate lr=0.01 and dropout rate d=0.3 for all the 
models. Besides, early stopping with a patience of 200 epochs and 
L2 regularization with coefcient of 0.01 is employed to prevent 
overftting. We set the model layer K=2 of Low-Rank GNNs on 
Cora and Citeseer, and set K=1 for the other datasets. 

4.2 Node Classifcation 
4.2.1 Results analysis. Results on homophilic datasets are summa-
rized in Table 3 and Results on homophilic datasets are summarized 
in Table 2. It can be observed that the proposed Low-Rank GNNs 
achieves new remarkable state-of-the-art results on Citeseer, Com-
puter, Photo, Squirrel, Actor and Texas, which demonstrates the 
superiority of it. 

To validate the performance of Low-Rank GNNs, three strong 
baselines: GCNII, APPNP and JKNet, which can act as deep models, 
are compared with Low-Rank GNNs. Note that Low-Rank GNNs 
signifcantly outperforms other state-of-the-art deep models e.g., 
the accuracy of LRGNN are 12.21% and 8.18% higher than those of 
APPNP on Computer and Photo, and obtains competitive results 
on most real-world datasets. This demonstrates that shallow-layer 
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Table 3: Mean Classifcation Accuracy on Homophilic 
Datasets (Bold indicates the best, underlined indicates the 
second best). 

Dataset Cora Citeseer Pubmed Computer Photo 

MLP 58.20±2.10 59.10±2.30 70.00±2.10 44.90±5.80 69.60±3.80 
GCN 81.50±1.30 70.30±0.28 77.80±2.90 76.30±2.40 87.30±1.20 
GAT 81.80±1.30 70.80±0.26 78.50±0.27 78.00±1.90 85.70±1.70 
SGC 81.00±0.00 71.90±0.10 78.90±0.00 74.40±0.01 86.40±0.00 

GCNII 85.50±0.50 73.40±0.60 80.20±0.40 57.11±13.92 63.03±4.43 
APPNP 83.30±0.00 71.80±0.00 80.10±0.00 71.69±4.67 83.62±3.73 
JKNet 81.10±0.00 69.80±0.00 78.10±0.00 64.08±2.10 78.10±7.07 

GPR-GNN 80.55±1.05 68.57±1.22 77.02±2.59 81.71±2.84 91.58±0.87 
FAGCN 77.80±0.66 69.81±0.80 76.74±0.66 77.47±2.70 87.61±4.80 
H2GCN-1 79.63±0.11 65.75±0.49 77.60±0.14 OOM OOM 
H2GCN-2 80.23±0.20 69.97±0.66 78.79±0.30 OOM OOM 
DMP 80.41±1.48 71.08±1.21 76.29±2.44 71.90±1.84 82.37±1.86 

Low-Rank 
GNNs 82.10±0.24 73.91±1.03 78.50±1.20 83.90±0.90 91.80±1.04 

information is actually quite abundant for extracting node repre-
sentation as for Low-Rank GNNs. 

We also compare the results of proposed Low-Rank GNNs with 
GPR-GNN, FAGNN, H2GCN and DMP, which are all the GNNs de-
signed for processing datasets with heterophily. It can be observed 
that Low-Rank GNNs achieves new state-of-the-art results on Squir-
rel, Actor and Texas, which are three heterophilic datasets. That is 
because the low-rank approximation remain the heterophilic infor-
mation from the ego-networks instead of the impairing heterophilic 
information as processing by averaging operation. 

These results suggest that by adopting the low-rank approxima-
tion, our proposed Low-Rank GNNs is more efective and universal 
than the previous models on processing datasets with both ho-
mophily and heterophily for node classifcation. 

4.2.2 Visualization. To provide an intuitive interpretation, the t-
SNE visualizations of node embeddings obtained by GCN,GAT and 
Low-Rank GNNs on four datasets are given in fgure4. The clusters 
of embeddings of nodes from diferent classes are marked with vari-
ous colors. The shapes of these clusters refect the characteristics of 
the corresponding models. The clusters of embeddings of diferent 
classes processed by GCN are overlapped, which demonstrates that 
GCN tends to be under-ftting. The clusters of embeddings obtained 
by GAT are quite sharp, which indicates that labeled data plays a 
very essential rule for the embedding and tends to be overftting, 
while the clusters of embedding obtained by Low-Rank GNNs are 
more regular and the nodes with the same label exhibit spatial 
clustering, which shows the discriminative power of Low-Rank 
GNNs. 

4.3 Propagation v.s. Low-Rank Approximation 
In this section, the comparison is conducted between existing 
propagation-based GNNs and the proposed Low-Rank GNNs to 
illustrate the superiority of low-rank approximation and the ade-
quacy of shallow-layer information. Existing propagation-based 
GNNs are equivalent to weighted average of the neighbourhood 
nodes.The results on both homophilic and heterophilic datasets 
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Figure 4: The visualization for node representations obtained 
by GCN, GAT and Low-Rank GNNs in a 2-D space. Node colors 
denote node labels. 

are shown in Figure 7. Coauthor-CS (CS) and Coauthor-Physics 
(Physics) are two co-author networks based on the Microsoft Aca-
demic Graph from the KDD Cup 2016 challenge[32], which are two 
homophilic datasets. In this fgure, Low-Rank GNNs (k=1) stands for 
processing 1-hop neighbors of each node by low-rank approxima-
tion, Low-Rank GNNs(k=2) stands for processing 2-hop neighbors 
of each node by low-rank approximation, AVG (k=1) stands for pro-
cessing 1-hop neighbors of each node by averaging , and AVG (k=2) 
stands for processing 2-hop neighbors of each node by averaging. 

It can be observed that the frst-order information is actually 
quite abundant for extracting node representation as for Low-Rank 
GNNs. It is worth noting that the second-order information makes 
the performance much worse as for Low-Rank GNNs. The essential 
reason is that low-rank property often exists in local regions and 
the global low-rank approximation ignores the graph topology 
information. 

Meanwhile, it is obvious that the model with low-rank approx-
imation obtains better results than averaging processing. That is 
because the neighbourhood is mixed with nodes from multiple 
categories, averaging between them may cause the loss of critical 
information in obtained node representation, which leads a wide 
diference between the Low-Rank GNNs and the existing GNNs 
which employ the averaging processing on heterophilic datasets. 
This attractive property also reveals that Low-Rank GNNs can han-
dle the datasets with heterophiliy. 

4.4 Robustness Analysis 
In this section, we investigate the robustness of Low-Rank GNNs 
with randomly adding noisy edges and attributes, and compare 
the performance of Low-Rank GNNs with GCN and GAT on Cora, 
Citeseer and Pubmed. 
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Figure 5: Node classifcation performace on graphs with randomly adding noisy edges. 
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Figure 6: Node classifcation performace on graphs with randomly adding noisy attributes. 
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Figure 7: The comparison between existing propagation-
based GNNs and Low-Rank GNNs on node classifcation task 
on both homophilic and heterophilic datasets. 

As the noisy edges increase, the performance of GCN and GAT de-
crease signifcantly, which indicates the over-ftting issue. while the 
performance of Low-Rank GNNs are relatively stable, which shows 
the robustness of Low-Rank GNNs and can be attributed to the 
efect of low-rank approximation as shown in fgure 5. Specifcally, 
the proposed Low-Rank GNNs obtains node embedding without 
propagation and the given topology is only used to form the ego-
network, while GCN needs to propagate the information based on 
topology and GAT focuses on correcting and refning the existing 
topology and then propagating, which indicates that they are more 
likely to be efected by corrupted topology information. Therefore, 
Low-Rank GNNs tends to be more robust to topology noises than 
the existing GNNs. 

We also evaluate the robustness of Low-Rank GNNs with adding 
noisy attributes. Specifcally, according to the given sampling rate, 
a certain number of attributes are randomly selected and changed 
from the original features. Figure 6 reports that the performance 
degradation of Low-Rank GNNs is slight and outperforms GCN 
and GAT with diferent levels of noise interference, which can be 

attributed to the denoising in Low-rank GNNNs may take the high-
order relationship in the ego-nework. Therefore, Low-Rank GNNs 
may be more robust to attribute noises as discussed in Section 3.4. 

5 CONCLUSIONS 
This paper has investigated some essential issues in most existing 
propagation-based graph neural networks, including causing over-
smoothing and performance drop in networks with heterophily, 
irrelevance to model high-order relationship and fragility to topol-
ogy and attribute noises. The propagation, as the key component of 
most GNNs, may be the essence of these serious issues. Therefore, 
the graph topology is only employed to construct the ego-networks 
instead of message propagation, which is sensitive to topology 
noises, and the propagation in the ego-network is replaced with a 
novel local operation, i.e., low-rank matrix approximation. Quanti-
tative experimental analysis reveals: 1) the existence of low-rank 
characteristic in the node attributes from ego-networks and 2) the 
performance improvement by reducing its rank. The proposed 
Low-Rank GNNs, which perform low-rank attribute matrix ap-
proximation in ego-network, posses some characteristics, including 
robust to topology and attribute noises, handling networks with 
both homophily and heterophily, parameter-free and parallelizable 
with theoretically analysis and experimental evaluations. Low-Rank 
GNNs can be applied to task assignment learning tasks [45, 46]. 
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