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ABSTRACT
Although existing Graph Neural Networks (GNNs) based on mes-
sage passing achieve state-of-the-art, the over-smoothing issue,
node similarity distortion issue and dissatisfactory link prediction
performance can’t be ignored. This paper summarizes these issues
as the interference between topology and attribute for the first
time. By leveraging the recently proposed optimization perspec-
tive of GNNs, this interference is analyzed and ascribed to that the
learned representation in GNNs essentially compromises between the
topology and node attribute. To alleviate the interference, this paper
attempts to break this compromise by proposing a novel objective
function, which fits node attribute and topology with different rep-
resentations and introduces mutual exclusion constraints to reduce
the redundancy in both representations. The mutual exclusion em-
ploys the statistical dependence, which regards the representations
from topology and attribute as the observations of two random
variables, and is implemented with Hilbert-Schmidt Independence
Criterion. Derived from the novel objective function, a novel GNN,
i.e., Graph Neural Network Beyond Compromise (GNN-BC), is pro-
posed to iteratively updates the representations of topology and
attribute by simultaneously capturing semantic information and
removing the common information, and the final representation
is the concatenation of them. The performance improvements on
node classification and link prediction demonstrate the superiority
of GNN-BC on relieving the interference.
∗Three authors contributed equally to this research.
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1 INTRODUCTION
Graph Neural Networks (GNNs) become the hot topic in deep learn-
ing for their superior performance on handling non-Euclidean data,
and are applied to many fields ranging from computer vision to
natural language processing [1, 2]. Motivated by the graph Fourier
Transform in spectral graph theory [3, 4], some graph convolutional
neural networks (GCNNs), including ChebyNet [5], GCN [6] and
GWNN [7], are designed, while another kind of GNNs are proposed
from the spatial perspective, i.e., message passing on graph [8],
such as GraphSAGE [9], GAT [10] and GIN [11]. The success of
GCNNs on combining topology and node content is attributed to
low-pass filtering [12] and smoothing [13] from these perspectives,
respectively.

Unfortunately, recent research realizes the interference between
topology and node content. On one hand, topology tends to inter-
fere the node attributes [14]. First, the well-known over-smoothing
issue is actually the loss of expressive power of node attributes
smoothened by the topology [13, 15]. Second, propagation also
makes nodes, which possess similar attributes, obtain very differ-
ent representations [16, 17]. On the other hand, attribute tends to
distort the network embedding from topology. Specifically, for link
prediction task, where topology information is dominant, GNNs
based on both topology and attribute often perform worse than
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Figure 1: Comparison between GNNs following the com-
promise strategy and the proposed GNNs beyond the com-
promise strategy. Compromise strategy makes the network
embedding balance between network topology and node at-
tribute, and leads to the information loss of both topology
and node attribute in the embedding. The proposed GNN en-
codse node attribute and topology with different representa-
tions and introduces mutual exclusion to reduce the redun-
dancy and information loss in both representations.

many topology-based network embedding methods [18], such as
matrix factorization (MF), stochastic block model (SBM) [19] and
node2vec [20], etc. Thus, the interference between topology and
node content is the primary cause of many issues in GNNs, and
significantly degrades the performance of GNNs in many tasks.

To understand the interference between topology and node con-
tent, this paper investigates the underlying philosophy of GNNs by
leveraging the recently proposed optimization perspective [21, 22].
The optimization perspective shows that the GNNs actually mini-
mize a group of objective functions, which balance the node rep-
resentation between node attribute and topology constraint, with
gradient descent [23]. Therefore, GNNs seek the representation by
compromising between the topology and node content as shown
in Figure 1(a). From the viewpoint of node content, this compro-
mise leads to the node content be smoothened. From the viewpoint
of topology, this compromise distorts the topology toward node
attribute. Therefore, the compromise between the topology and
attribute is the reason for interference between them.

To alleviate the interference between topology and node content,
this paper tends to break the compromise between them. A natural
way to break the compromise is to fit attribute and topology with
different representations in the objective function. Furthermore,
to reduce the redundancy and enhance the ability on exploiting
sufficient semantic information in embedding space with limited di-
mensionality, the representations of attribute and topology need to
be mutual exclusive. The framework is shown in Figure 1(b). To im-
plement themutual exclusion, statistical dependence, which regards
the representations from topology and attribute as the observations
of two random variables, is employed, and Hilbert-Schmidt Inde-
pendence Criterion (HSIC) [24] is added to the objective function

to measure the dependence between topology and attribute. The
derived GNN from the novel objective function, i.e., GNN Beyond
Compromise (GNN-BC), iteratively updates the representations
of topology and attribute by simultaneously capturing semantic
information and removing the common information. The final rep-
resentation is the concatenation of the representations of attribute
and topology. This GNN is trained by feeding the final representa-
tion into the specific objective functions, such as the cross-entropy
for semi-supervised node classification task.

The main contributions of this paper are summarized as follows:

• We raise and analyze the interference between topology
and attribute in GNNs, which causes the over-smoothing
issue, node similarity distortion issue and dissatisfactory
link prediction performance, and ascribe this issue to the
compromise between topology and attribute.

• We propose a novel GNN, i.e., GNN Beyond Compromise
(GNN-BC), by deriving from the objective function, which
fits attribute and topology with different representations and
introduces mutual exclusion based on Hilbert-Schmidt In-
dependence Criterion, to alleviate the interference between
topology and node content.

• We experimentally evaluate the superiority of the proposed
GNNs beyond the compromise strategy on both attribute
and topology related tasks.

2 RELATEDWORK
Although the success of the Graph Convolutional Layer (GCL)
in Graph Neural Network (GCN) [6] is attributed to the Lapla-
cian smoothing of the node feature among neigbourhoods [13]
or low-passing filtering [12], the original node features will be
over-smoothed by stacking too many GCLs, and the obtained node
representations are only determined by the degree of nodes and
graph connectivity but independent of their original feature [13, 25].
Thus, each GCL also induces the loss of expressive power and this
loss is exponential as the number of layers increases [15]. There are
two kinds of strategies to alleviate the over-smoothing issue. The
first strategy modifies the learned representations. APPNP and GC-
NII balance the output of GCL and original attribute [26, 27], while
PairNorm constrains the total distance of node representations con-
stant before and after GCL [28]. The second strategy modifies the
network topology to control the propagation. DropEdge randomly
drops edges in each training epoch to constrain the labelled node be
correctly predicted [29], while GRAND randomly drops nodes and
constrains all node representations not be significantly impacted.
Other methods combine multi-scale topology information to allevi-
ate over-smoothing issue, such as PPNP, MixHop, GDN and JKNet
[26, 30–33]. The equivalence between PPNP and APPNP in [26]
bridges the gap between these two strategies.

2.1 Homophily vs. Heterophily
Network homophily states that based on node attributes, similar
node pairs may bemore likely to attach to each other than dissimilar
pairs, while network heterophily depicts the opposite, i.e., dissim-
ilar pairs are more likely to be attached. Thus, smoothing-based
GCN and its variants only meet the property of network with high
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homophily. Unfortunately, networks with heterophily are ubiqui-
tous. Thus, it is important to make GNNs can be adaptively applied
to networks with both homophily and heterophily. To design GNNs
for network with heterophily, Geom-GCN augments the propaga-
tion by considering the similarity in embedding space as well as
topology space [34]. H2GCN and GraphSage concatenate the aggre-
gated feature from different hops instead of summation by finding
that second-order neighbourhods should be more similar than first-
order ones in networks with heterophily [9, 35]. To facilitate the
filtering beyond low-frequency, GPRGNN and FAGCN allow the
propagation with negative weights by generalizing APPNP [26] and
GAT [10], respectively [36, 37]. Recent works jointly investigate
the oversmoothing issue and heterophily and consider them as the
two sides of the same coin [38].

3 PRELIMINARIES
This section provides the notations used in the paper and some
classic GNNs for the analysis in the next section.

3.1 Notations
LetG = (V, E) denote a graphwith node setV = {v1,v2, · · · ,vN }

and edge set E, where N is the number of nodes. The topology of
graph G can be represented by its adjacency matrix A = [ai j ] ∈

{0, 1}N×N , where ai j = 1 if and only if there exists an edge ei j =
(vi ,vj ) between nodesvi andvj . The degree matrix D is a diagonal
matrix with diagonal element di =

∑N
i=1 ai j as the degree of node

vi . N(vi ) = {vj |(vi ,vj ) ∈ E} stands for the neighbourhoods of
node vi . X ∈ RN×F and H ∈ RN×F ′

denote the collections of node
attributes and representations with the ith rows, i.e., xi ∈ RF and
hi ∈ RF

′

, corresponding to node vi , where F and F ′ stand for the
dimensions of attribute and representation.

3.2 Graph Neural Networks
Although existing graph neural networks are proposed from the
perspectives of spectral and spatial, respectively, most of them
follow the message passing scheme [8] based on the connection
between these two perspectives [39], such as GCN [6], SGC [12],
APPNP [26] and GCNII [27]. The graph convolutional layers of
GCN, SGC and APPNP are as follows.

GCN H(t+1) = σ (ÃH(t )W), H(0) = X (1)
SGC H(t+1) = ÃH(t ), H(0) = X (2)

APPNP H(t+1) = (1 − α)P̃H(t ) + αX (3)

where Ã = D̄− 1
2 ĀD̄− 1

2 with Ā = A + I and P̃ = D̄−1Ā are the sym-
metric and asymmetric normalized adjacency matrix, respectively.
Besides, many GNNs tend to overcome over-smoothing issue by
incorporating multi-scale information [32], such as JKNet [33] and
DAGNN [25], as follows

H =
T∑
t=1

αt ÃtX, (4)

Note that the mapping function in intermediate layer in SGC,
APPNP, JKNet and DAGNN are omitted, since they all follow the
Decoupled GCN scheme [40], which adopts only one mapping
function instead of one for each layer.

Table 1: Attribute distortion induced by topology in terms of
node classification performance. The performances of some
GNNs are worse than those of attribute-based MLP.

Dataset Texas Wisconsin Actor Cornell

GCN 59.46±5.25 59.80±6.99 30.26±0.79 57.03±4.67
GAT 58.38±4.45 55.29±8.71 26.28±1.73 58.92±3.32
GraphSAGE 82.43±6.14 81.18±5.56 34.23±0.99 75.95±5.01
GCN-Cheby 77.30±4.07 79.41±4.46 34.11±1.09 74.32±7.46

MLP 81.89±4.78 85.29±3.61 35.76±0.98 81.08±6.37

4 ANALYSIS
In this section, the optimization perspective of GNNs is given. Then,
based on this perspective, a novel analysis is introduced to reveal
the limits of existing GNNs.

4.1 Optimization Perspective of GNNs
Recently, some attempts unify GNNs from the perspective of nu-
merical optimization [21–23]. They show that the message passing
in GNNs, such as GCN [6], actually is the gradient descent of the
graph Laplacian regularization with node attribute as the initial,
i.e.,

tr (HT L̃H) =
1
2

∑
uv

auv





 hu
√
du + 1

−
hv

√
dv + 1





2
. (5)

That is, each graph convolutional layer is equivalent to one gradient
descent of Eq. (5). Since the solution to Eq. (5) is hu =

√
du + 11,

where 1 is the vector of ones, the obtained node representation from
many graph convolutional layers is also hu =

√
du + 11, which is

only determined by the degree of node. Thus, GCN tends to be over-
smoothing by stacking multiple layers. To prevent over smoothing
issue, many GNNs, such as APPNP [26], GCNII [27] and JKNet [33],
balance the Eq. (5) with node attributes X as

∥H − X∥2
F + λtr (H

T L̃H), (6)

where λ is the weighting parameter. Although the trick of balancing
can alleviate the over-smoothing issue, it doesn’t essentially solve
the problem caused by the graph Laplacian regularization in Eq.
(5). In the following sections, the common philosophy of GNNs is
analyzed under this optimization perspective.

4.2 Compromise between Topology and
Attribute

As shown in Eq. (6), the unified optimization perspective of GNNs
consists of two terms. The first term constrains the learned rep-
resentations H be similar with the original node attributes. Since
the second term, i.e, graph Laplace regularization, possesses the
formula in Eq. (5), it makes the learned representation H meet the
topology structure, i.e., connected nodes with ai j = 1 own similar
representations. Therefore, it can be concluded that: The learned
representations from GNNs tend to compromise (balance) between
original node attribute and graph topology. Although this com-
promise strategy seems effective on integrating node attribute and
graph topology, it possesses one remarkable defect that interference
between topology and attributes weakens the expressive power of
representation.
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Table 2: Topology distortion induced by attribute in terms
of link prediction performance. The performance of VAGE
is worse than that of many topology-based methods.

Dataset MF SBM node2vec VGAE

USAir 94.08±0.80 94.85±1.14 91.44±1.78 89.28±1.99
PB 94.30±0.53 93.90±0.42 85.79±0.78 90.70±0.53
C.ele 85.90±1.74 86.48±2.60 84.11±1.27 81.80±2.18
Router 78.03±1.63 85.65±1.93 65.46±0.86 61.51±1.22
E.coli 93.76±0.56 93.82±0.41 90.82±1.49 90.81±0.63

On one hand, topology tends to interfere the node attributes.
First, the well-known over-smoothing issue is actually the loss of
expressive power of node attributes smoothened by the topology
[13, 15]. To make connected nodes possess similar representation,
some representative attributes are smoothened by propagation over
the neighbourhoods, and thus the representation power of node
attribute degrades after smoothing. This is demonstrated by the
fact that multi-layered perception (MLP) based on node attributes
outperforms GNNs, which combine attributes and topology, on
some datasets [35]. Table 1 from [35] shows some representative
results. Second, propagation also makes nodes, which possess simi-
lar attributes, obtain very different representations [16, 17]. These
two aspects show the attribute distortions induced by topology.

On the other hand, attribute tends to distort the network em-
bedding from topology. Recent studies reveal that most exiting
network embedding methods, such as DeepWalk [41], LINE [42],
node2vec [20], are equivalent to factorizing the multi-scale normal-
ized adjacency matrix [43], and proposed computationally efficient
matrix factorization methods, such as AROPE [44] and NetSMF [45].
Specifically, the Singular Value Decomposition (SVD) is applied on
the multi-scale normalized adjacency matrix as follow

UΣVT =
T∑
t=1

αt Ât , (7)

where Â denotes a general normalized adjacency matrix, and αt
represents the weights of different scales. The orthogonal matrices
U and V contain the singular vectors and diagonal matrix Σ consists
of singular values. If Â is symmetric, U and V are similar except
for the signal, according to the relationship between the Singular
Values Decomposition and Eigenvalue Decomposition [44]. Then

Ū = U
√

Σ, V̄ = V
√

Σ, (8)

are employed as the network embedding for node classification and
link prediction tasks.

The relationship between representations from GNNs and topol-
ogy based network embedding can be revealed by reformulating
the multi-scale GNNs in Eq. (4) as

H =

( T∑
t=1

αt Ãt

)
X = Ū

(
V̄T X

)
. (9)

The representation learned from GNNs, i.e., H, is equivalent to con-
verting topology-based embedding Ū via the transformation V̄T X.
Note that the transformation matrix V̄T X models the correlation
between topology information V̄ and node attribute information

X. If the attribute information is the same as topology informa-
tion, i.e., V̄ = X, then the representation of GNNs is the same as
topology-based embedding, i.e., H = Ū, due to the orthogonality of
the singular vector matrix, i.e., V̄T V̄=I. Unfortunately, since the at-
tribute information is very different from the topology information
in practice, Eq. (9) shows topology-based embedding is distorted to-
ward the attribute information space. Thus, some nodes with similar
topology information may obtain different representations after the
transformation, and some representative information contained in
the topology-based embeddings tend to lose after distortion. Table
2 from [18] shows the performance on link prediction task, which
demonstrates the impact of attribute on exploiting topology infor-
mation. Variational graph auto-encoder (VAGE) [46] based on both
topology and attribute performs worse than many topology-based
network embedding methods, such as matrix factorization (MF),
stochastic block model (SBM) [19] and node2vec [20].

Therefore, the compromise strategy between topology and at-
tribute, which is the underlying philosophy of most existing GNNs
based on message passing, tends to cause the interference between
topology and node attributes. This interference leads to the loss of
important information in representations learned from both topol-
ogy and node attribute, and thus degrades the expressive power of
the combination between topology and attribute.

5 METHODS
This section aims to propose a novel strategy to combine topology
and attribute information to alleviate the inherent drawback in
the widely-adopted compromise strategy. Firstly, the framework is
introduced. Then, the key component of the framework, i.e., mutual
exclusion, is given. Finally, an effective implementation along with
the model analysis is provided.

5.1 Motivations and Framework
Recall that the unified optimization perspective in Eq. (6) shows
the representation H of GNNs is essentially a compromise between
the topology A and attribute X by balancing the losses of fitting
to attribute and topology, i.e., ∥H − X∥2

F and tr (HT L̃H). Thus, a
natural way to break the compromise is to fit attribute and topology
with different representations. For generalization, the framework
can be formulated as

A
(
Y, f (X)

)
+ T

(
Z,д(A)

)
, (10)

where Y ∈ RN×F ′

and Z ∈ RN×F ′

stand for the representations
for attribute and topology, respectively. f (X) and д(A) represent
information extractions from attribute and topology, respectively,
such as multi-layered perception on attribute f (X) = XW and
multi-scale topology information д(A) =

∑
t At . A(·, ·) and T(·, ·)

denote the losses of representation on fitting attribute and topology,
respectively. Then, the final node embedding can be obtained by
concatenation as

H = [Y∥Z], (11)

where ∥ stands for the concatenation operation. Since Y and Z
respectively exploit the attribute and topology, concatenation can
overcome the interference between attribute and topology.

Unfortunately, Y and Z may contain some common patterns in
both attribute and topology. Thus, the final representation H may
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be redundant, and result in the incapability of exploiting sufficient
semantic information in embedding space with limited dimension-
ality. To reduce the redundancy and enhance the expressive power,
the common patterns in attribute and topology should be only
exploited by either attribute representation Y or topology represen-
tation Z. To this end, the representations of attribute and topology
need to be mutual exclusive, and the framework Eq. (10) can be
enhanced to

A
(
Y, f (X)

)
+ T

(
Z,д(A)

)
+M(Y,Z), (12)

where the third term M(Y,Z) constrains the mutual exclusion be-
tween the two representations. Therefore, the framework in Eq. (12)
possesses the ability to reduce both interference and redundancy,
and thus may facilitate the effective combination of topology and
attribute.

5.2 Mutual Exclusion
The main challenge in the implementation of Eq. (12) is how to de-
fine the mutual exclusion term M(Y,Z), since the representations
from topology and attribute may possess different scales and distri-
butions. Thus, instead of implementingmutual exclusion by directly
comparing the representations, statistical dependence is employed
[24]. Specifically, statistical dependence measures the dependence
between two random variables y and z with rows in Y and Z as their
observations, respectively. Here, the Hilbert-Schmidt Independence
Criterion (HSIC) [24] is adopted to measure the dependence for its
nonlinearity, flexibility and computational efficiency.

Since HSIC is an quantity defined based on the cross-covariance,
we first review its definition. Let’s define two mapping functions
from y and z to kernel space as ϕ(y) : Y 7→ F andψ (z) : Z 7→ J ,
such that the inner product between vectors are given by kernel
functionsk1(yi , yj ) =< ϕ(yi ),ϕ(yj ) > andk2(zi , zj ) =< ψ (zi ),ψ (zj ) >.
The cross-covariance is the covariance of two random variables as:

Cyz = Eyz

[
(ϕ(y) − µy) ⊗ (ψ (z) − µz)

]
, (13)

where µy = Ey[ϕ(y)] and µz = Ez[ψ (z)] stand for the means and
⊗ represents the outer product. Then, the HSIC is defined as the
Frobenius norm of the associated cross-covariance Cyz, i.e.

HSIC(pyz,F ,J) = ∥Cyz∥
2
F , (14)

where ∥A∥F =
√∑

i
∑
j ai j . In practice, the expectation Eyz[·] can’t

be obtained, since the joint distribution pyz is unknown. Therefore,
HSIC in Eq. (14) can be approximated by employing the obser-
vations of random variables y and z, i.e., the rows of Y and Z,
respectively. This approximation is given in [24] as

HSIC(Y,Z,F ,J) =
1

(N − 1)2
tr (K1QK2Q) , (15)

where K1 and K2 are the Gram matrices with elements as k1(yi , yj )
and k2(zi , zj ), respectively. Q = I − 1

N 1 is to center the Gram
matrix to have zero mean. To make the computation efficient, the
representations Y and Z are normalized with sigmoid nonlinear
function instead of multiplying with Q, and the inner produt kernel
is adopted. Thus, Eq. (15) can be reformulated as computationally
efficient forms by omitting the constant coefficient

HSIC(Y,Z) = tr (YTZZTY) = ∥YTZ∥2
F . (16)

Minimizing HSIC(Y,Z) tends to make representations from topol-
ogy and attribute diverse to reduce the redundancy.

5.3 Implementations
By employing the HSIC as the mutual exclusion term, the frame-
work defined in Eq. (12) can be implemented as

O = ∥Y − X∥2
F + λ1tr (ZTL̃Z) + λ2∥YTZ∥2

F , (17)

where λ1 and λ2 are the hyper-parameters to balance the impacts
from different terms. As discussed in previous section that exiting
GNNs can be derived by minimizing the objective function defined
in Eq. (6), a novel GNN can be derived by minimizing the novel
objection function defined in Eq. (17) with respect to both Y and Z.
Since Eq. (17) breaks the comprise between topology and attribute,
the derived GNN is named as GNN Beyond Compromise, i.e. GNN-
BC. To this end, the partial derivatives of O with respect to both Y
and Z are set to zero, respectively, i.e.

∂O

∂Y
= 2(Y − X) + 2λ2ZZTY = 0, (18)

∂O

∂Z
= 2λ1L̃Z + 2λ2YYTZ = 0. (19)

Since the two variables Y and Z are correlated, the following two
iterative updating rules can be obtained

Y(k+1) = X − λ2Z(k)Z(k)T Y(k), (20)

Z(k+1) =

(
Ã −

λ2
λ1

Y(k )Y(k)T
)

Z(k ). (21)

By iteratively updating them, the objective in Eq. (17) can be min-
imized. As shown in previous section, to make the computation
efficient, Z(k )Z(k)T and Y(k)Y(k)T should be normalized. Thus, Eqs.
(20) and (21) are improved to

Y(k+1) = X − λ2σ
(
Z(k )WZ(k)T

)
Y(k ), (22)

Z(k+1) =

(
Ã −

λ2
λ1
σ

(
Y(k)Y(k)T

))
Z(k ), (23)

where σ (·) stands for the sigmoid function, and W is an additional
learnable mapping function to enhance the expressive ability. The
attribute and topology representations after K iterations, i.e., Y(K )

and Z(K ) are concatenated to form the final representation H as in
Eq. (11). To train the proposed GNNs, i.e., the parameter W, the
final representation is fed into the specific objective functions, such
as the cross-entropy for semi-supervised node classification task.

Complexity: If we assume the dimensions of Y(k ) and Z(k ) as
same as the node attribute X ∈ RN×F and the number of edges as
M , the complexity of Eqs. (22) and (23) is O(NF 2 +MF ), which is
linear with the size of the network. Therefore, the proposed novel
GNN is efficient.

5.4 Model Analysis
Let’s analyze the iterative updating rules in Eqs. (20) and (21). To
deeply understand them, the key components areZ(k)Z(k)T Y(k ) and
Y(k )Y(k)T Z(k ) where Y(k ) and Z(k ) stand for attribute and topology
representations, respectively.
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Table 3: Benchmark dataset statistics for node classification.

Dataset Cora Pubmed Citeseer Chameleon Squirrel Computer Photo

# Nodes 2,708 19,717 3,327 2,277 5,201 13,752 7,650
# Edges 5,429 44,338 4,732 36,101 217,073 245,861 119,081
# Features 1,433 500 3,703 2,325 2,089 767 745
# Classes 7 3 6 5 5 10 8
Homphily Rate 0.656 0.644 0.578 0.024 0.055 0.272 0.459

Table 4: Mean Classification Accuracy (Bold indicates the best, underlined indicates the second best).

Dataset Cora Pubmed Citeseer Chameleon Squirrel Computer Photo

GCN 85.77±0.25 88.13±0.28 73.68±0.31 28.18±0.23 23.96±0.26 82.52±0.32 90.54±0.21
GAT 86.37±0.30 87.62±0.26 74.32±0.27 42.93±0.28 30.03±0.25 81.95±0.38 90.09±0.27
GraphSAGE 87.77±1.04 88.42±0.50 71.09±1.30 49.24±1.68 36.28±1.73 83.11±0.23 90.51±0.25
MLP 74.82±2.22 63.76±0.78 70.94±0.39 49.67±0.78 37.04±0.46 70.48±0.28 78.69±0.30

GCNII 88.49±2.78 89.57±1.56 77.08±1.21 60.61±2.00 37.85±2.76 86.13±0.51 90.98±0.93
APPNP 87.87±0.85 89.40±0.61 76.53±1.33 54.30±0.34 33.29±1.72 81.99±0.26 91.11±0.26
JKNet 88.93±1.35 87.68±0.30 74.37±1.53 62.31±2.76 44.24±2.11 77.80±0.97 87.70±0.70

Geom-GCN-I 85.19±1.13 90.05±0.90 77.99±1.23 60.31±1.77 33.32±1.59 NA NA
Geom-GCN-P 84.93±0.51 88.09±1.37 75.14±1.50 60.90±1.13 38.14±1.23 NA NA
Geom-GCN-S 85.27±1.48 84.75±1.39 74.71±1.17 59.96±2.03 36.24±1.05 NA NA
GPRGNN 88.65±1.37 89.18±0.61 77.99±1.64 67.48±1.98 49.93±1.34 82.90±0.37 91.93±0.26
FAGCN 87.77±1.69 88.60±0.64 74.66±2.27 61.12±1.95 40.88±2.02 86.09±0.40 91.96±0.71
H2GCN-1 86.92±1.37 89.40±0.34 77.07±1.64 57.11±1.58 36.42±1.89 OOM OOM
H2GCN-2 87.81±1.35 89.59±0.33 76.88±1.77 59.39±1.98 37.90±2.02 OOM OOM

GNN-BC 88.75±1.21 88.13±2.15 76.70±0.77 74.63±0.93 61.41±1.55 89.60±0.89 93.17±0.67

(1) Analysis to Eq. (20). Z(k)T Y(k ) can be seen as the correla-
tionmatrix between topology and attribute, and thusZ(k )

(
Z(k)T Y(k )

)
can be regarded as converting the topology embedding Z(k ) into the
space of attribute embedding Y(k ) via domain adaption. Therefore,
Eq. (20) is to remove the common information captured by topology
representation from attribute.

(2) Analysis to Eq. (21). It can be reformulated as Z(k+1) =

ÃZ(k ) − λ2
λ1

Y(k)Y(k)T Z(k). The first term ÃZ(k ) is the Label Prop-
agation Algorithm (LPA) in community detection [47]. Similar to
(20), the second term Y(k )Y(k)T Z(k ) can be regarded as converting
the attribute embedding Y(k ) into the space of attribute embedding
Z(k ) via domain adaption. Thus, Eq. (21) is to remove the common
information captured by attribute representation from topology
embedding.

Therefore, these two iterative updating rules meet the require-
ments of mutual exclusion.

6 EVALUATIONS
6.1 Node Classification Task

6.1.1 Datasets and splitting. For node classification task, three
kinds of networks are adopted. Cora, Citeseer, and Pubmed, which
are widely used to verify GNNs, are standard citation network
benchmark datasets [48, 49]. In these networks, nodes and edge
represent papers and citations between them, respectively. Words

in the paper are employed to represent the node feature in bag-of-
word form. The academic topic of paper is taken as the label of node.
Chameleon and Squirrel are two page-page networks on specific
topics in Wikipedia, where nodes represent webpages and edges
are mutual links between pages [50]. Node features correspond to
some informative nouns in the Wikipedia pages, and nodes are
classified into four categories via quartiles in term of the number of
the average monthly traffic of the page. Computers and Photo are
two networks of Amazon co-purchase relationships [51]. In these
networks nodes represent goods and edges stand for the connected
two goods being frequently bought together. Each node owns a bag-
of-words feature extracted from product reviews. The categories of
the goods are employed as the label of node. Dataset statistics are
summarized in Table 3.

For all datasets, we randomly split nodes of each class in to 60%,
20% and 20% for training validation and testing, and run on test
sets over 10 random splits, as suggested in [34].

6.1.2 Baselines. To verify the effectiveness of the proposed
GNN-BC on node classification task, 14 methods are employed
as the baselines with default hyper-parameters. They are divided
into 3 categories:

• Classic GNN models for node classification task including
vanilla GCN [6], GAT [10] and GraphSAGE [9]. GCN simpli-
fies spectral graph convolution as propagation with fixed-
weight, while GAT extends GCN by learning the propagation
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Figure 2: Node classification accuracies as the two hyper-paraemters λ1 and λ2 varying from 0 to 4.

Table 5: Link Prediction Task (Bold indicates the best, underlined indicates the second best).
Dataset nodes edges average node degree node2vec LINE VGAE GPR-GNN Geom-GCN GNN-BC

USAir 332 2,126 12.81 91.44±1.78 81.47±10.71 89.28±1.99 86.87±1.54 84.35±3.24 91.07±0.21
NS 1,589 2,742 3.45 91.52±1.28 89.63±1.90 94.04±1.64 90.01±3.11 86.47±1.03 93.98±1.47
PB 1,222 16,714 27.36 85.79±0.78 76.95±2.76 90.70±0.53 88.74±1.34 80.08±1.19 91.01±0.53
Yeast 2,375 11,693 9.85 93.67±0.46 87.45±3.33 93.88±0.21 86.90±6.85 87.72±1.93 94.47±1.10
C.ele 297 2,148 14.46 84.11±1.27 69.21±3.14 81.80±2.18 82.69±1.89 76.88±2.95 86.64±1.63
Power 4,941 6,594 2.67 76.22±0.92 55.63±1.47 71.20±1.65 73.45±3.61 71.74±3.05 74.71±0.61
Router 5,022 6,258 2.49 65.46±0.86 67.15±2.10 61.51±1.22 72.17±2.55 68.40±2.66 65.02±0.86
E.coli 1,805 14,660 12.55 90.82±1.49 82.38±2.19 90.81±0.63 88.54±3.31 86.92±1.87 95.17±0.56

with attention mechanism. GraphSAGE replaces the summa-
tion operation in GCN with concatenation operation over
neighbourhoods with different ranges.

• Deep GNNs designed to tackle over-smoothing issue includ-
ing GCNII [27], APPNP [26] and JKNet [33]. JKNet adds
residual connection between intermediate layer and output
layer, while APPNP adds initial residual connection between
intermediate layer and input layer. GCNII extends APPNP
by augmenting with decaying weighting parameter to the
mapping function in each layer.

• Models designed for networks with heterophily including 2-
layer MLP, Geom-GCN [34], GPRGNN [36], FAGCN [37] and
H2GCN [35]. For Geom-GCN, three variants, which employs
different network embedding strategies, are used. Geom-
GCN-I, Geom-GCN-P, and Geom-GCN-S employ Isomap
[52], Poincare embedding [53], and struc2vec [54], respec-
tively. For H2GCN, H2GCN-1 uses one embedding round (K
= 1) and H2GCN-2 uses two rounds (K = 2).

6.1.3 Results analysis. Results are summarized in Table 4. We
observe that our proposed model achieves new remarkable state-
of-the-art results on Chameleon, Squirrel, Computer and Photo,
which demonstrates the superiority of it. Among them, Chameleon
and Squirrel are representative networks with heterophily, while
Computer and Photo are large networks with homophily. Note that
the performances of GNN-BC are 7.15% and 11.47% higher that
those of GPRGNN, which is the SOTA method on networks with
heterophily, on Chameleon and Squirrel, respectively. Note that
recently proposed H2GCN tends to be out-of-memory on large net-
works, since its concatenation over neighbourhood with different
ranges, while GNN-BC overcome this issue by concatenating rep-
resentations of topology and attribute. This demonstrates that the
proposed GNN-BC breaks the smoothing effect of existing GNNs

and is more effective to incorporate network topology and node
attribute than existing ones on network with heterophily.

Besides, although GNN-BC’s performance on classic small net-
works with homophily, i.e., Cora, Citeseer and Pubmed, are lower
than those of SOTA, their differences is very slight. Besides, none
of the existing methods can consistently achieve the SOTA on all
networks, their performance on networks with heterophily are sig-
nificantly lower than the proposed GNN-BC. For example, most of
them including methods designed for networks with heterophily,
such as GCNII, Geom-GCN and H2GCN, only can achieve about
40% on Squirrel.

These results suggest that by breaking the compromise between
attribute and topology, our proposed GNN-BC is more effective and
universal than the previous models on incorporating topology and
attribute for node classification.

6.2 Link Prediction Task
6.2.1 Datasets and baselines. In this section, we evaluate the

performance of our proposed model for link prediction task on
eight datasets: USAir, NS, PB, Yeast, C.ele, Power, Router and E.coli
as shown in Table 5. We randomly remove 10% existing links from
each dataset as positive testing data and sample the same number
of nonexistent links as negative testing data. We use the remain-
ing 90% existing links as well as the same number of additionally
sampled nonexistent links to construct the training data. The base-
lines fall into two categories. Node2vec [20] and LINE [42] are ad-
vanced methods of network embedding. Besides, variational graph
auto-encoder (VGAE) [46] uses a node-level GNN to learn node
embeddings to best reconstruct the network.

6.2.2 Results analysis. We report area under the ROC curve
(AUC) score for each model on the test set in Table 5. Numbers
show mean results and standard error for 10 runs. The results show
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Figure 3: The performances of GNN-BC with different components on node classification and link prediction tasks.

that our model outperforms VGAE on 7 out of 8 datasets, which
demonstrates the superiority of concatenating representations from
attribute and topology under mutual exclusion constrain. More-
over, our model obtains competitive performance compared with
node2vec, which shows our model can avoid topology distortion
induced by attribute to some extent.

6.3 Parameter Analysis
To perform robustness analysis and provide practical implemen-
tation suggestion, the parameter analysis is investigated in this
section. There are two hyper-parameters λ1 and λ2 in both objec-
tive function Eq. (17) and the equivalent GNN-BC, i.e., Eqs. (22) and
(23), which balance the impact of topology, attribute and mutual
exclusion constrain. To demonstrate the robustness of GNN-BC,
these two hyper-parameters vary from 0 to 4, and the correspond-
ing node classification performances in term of accuracy on four
representative networks are shown in Figure 2.

It can be observed that GNN-BC achieves superior performances
as hyper-parameters varying in a large range on all the networks.
This demonstrates the robustness of GNN-BC on networks with dif-
ferent ratio of homopily. Besides, higher accuracy can be achieved
on heterophilic networks with smaller λ1 (λ1 ≤ 1.5), since the
original attributes play more important roles. Furthermore, better
performance can be obtained on homophilic networks with small λ2
(λ2 ≤ 2), since it tends to be more redundant to combine both topol-
ogy and attribute via smoothing effort. This phenomenon meets
the design of objective function and GNN-BC and demonstrates
the effectiveness of different components in the objective function.
Thus, these two hyper-parameters can be tuned in practice if some
prior information about the network is given.

6.4 Ablation Study
To provide intuitive understanding to the model’s components,
this section performs the ablation study on node classification and
link prediction tasks. To this end, GNN-BC with either topology
and attribute representation and the GNN-BC without the mutual
exclusion constraint are compared with, respectively. The results
on node classification and link prediction are shown in Figures 3.
Figure 3 provides an overall comparison. However, it is not obvious
to effect the proposed mutual exclusion constraint, since some
components possess very low performance, i.e., the component
without attribute in node classification and the the component
without topology in link prediction.

It can be observed that GNN-BC achieves the best performance
in all the tasks. In node classification task, embedding from node

attribute play more critical role, while embedding from topology
is more important in link prediction task. Besides, compared with
the variant without mutual exclusion term, the mutual exclusion
constraint can significantly and consistently improve the perfor-
mance on almost all the networks, since it effectively reduces the
redundancy and information loss to enhance the expressive power.

Note that, without the mutual exclusion, the performances of
the combination of topology and attribute may lower than those
of baselines with one kinds of information. For example, the per-
formance of combination without mutual exclusion is lower than
that of baseline based only on topology in the link prediction task
on Yeast. This may be caused by that the redundancy weakens the
expressive power of individual topology and attribute encoders.
This also demonstrates the importance of mutual exclusion term.

7 CONCLUSIONS
This paper unifies some serious issues in existing graph neural
networks, i.e., the over-smoothing issue, node similarity distortion
issue and dissatisfactory link prediction performance issue, as the
interference between topology and attribute. Then, this interference
is analyzed and ascribed to that the learned representation in GNNs
essentially compromises between the topology and node attribute.
To alleviate the interference, this paper breaks this compromise
by proposing a novel objective function, which fits node attribute
and topology with different representations and introduces mutual
exclusion constraints to reduce the redundancy in both representa-
tions. The proposed novel objective function induces a novel GNN,
i.e., Graph Neural Network Beyond Compromise (GNN-BC), by
iteratively updating the representations of topology and attribute.
The performance improvements on node classification and link
prediction demonstrate the effectiveness of GNN-BC on relieving
the interference between topology and attribute.
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