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Topic Modeling

Large number of latent variables makes the
@ iInferences inefficient and induces overfitting

Issue: Latent Dirichlet Allocation alleviates the
overfitting issue by introducing Dirichlet priors
for latent variables, but it fails to capture the
rich topical correlations among topics.
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Amortized (Variational) Inference (AVI)

o \ariational inference analytical approximates to the posterior distribution of
latent variables by making some assumptions about the form of posterior
distribution. It is challenging for large datasets and non-conjugate models,

because it separately updates each latent variable with a conjugate posterior
distribution

Ai = A; + eVELBO(A;, x),

* To alleviate this issue, amortized variational inference (AVI) is developed to
reformulate the variational inference as a prediction neural network which is
shared (amortized) across all the data in the dataset

Ai = f(x;,|¢d),«— Learnable parameter



GAT as Semi-Amortized Inference of SBM

01’ ® 9] 91'
qij = = ©|0;,
0; 6; |\6; ) a
traditional
Inference

O = ija: ]lef ) = gi (Z aijqij(k))

J



GAT as Semi-Amortized Inference of SBM
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GAT as Semi-Amortized Inference of SBM
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GAT can be regarded as the Semi-Amortized Inference (SAIl) of SBM, which

alternately performs the amortized inference and traditional inference.



GAT as Semi-Amortized Inference of SBM

Table 1: Comparisons between Stochastic Block Model and Graph Attention Network.

Stochastic Block Model

Graph Attention Network

Latent Variable 0; (community membership) h; (node representation)
Initialization random initialization x; (node attributes)
Amortized Mapping without mapping h = Whg.l) with learnable parameter W
Propagation Weight 9319 softmax; (LeakyReLU(b' [h] \h;])
i J

Propagation Weight Granularity
Propagation Weight Learnability

element-wise
without learnable parameters

edge-wise
with learnable parameter b

Propagated Information

0; (original latent variable)
[ 0;

h’ (latent variable after mapping)

Weighted Information qij = \W) © 0; h:; = softmaxj(LeakyReLU(bT[h;\\hj’.])h]’.
: [+1
Propagatlon Rule 0; = gi ( Zj aijqij) hg. +1) = O'( Zj aijh;;.)
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Probabilistic Latent Semantic Indexing (pLSI)

(1) Choose the number of word N, ~ Poisson(7,) for document o;

(2) For each of the N, words wy;, in document o; G m @

T

(a) Choose a topic zpn, ~ Multinomial(6, );
(b) Choose a word wy, ~ Multinomial(f;_ ).

0,

(a) The probabilistic graphical model of pLSI
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Topic Modeling as SBM on Bi-partite Graph
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Graph Attention TOpic Network (GATON)

Issue: Latent Dirichlet Allocation alleviates the
overfitting issue by introducing Dirichlet priors

for latent variables, but it fails to capture the

rich topical correlations among topics.

Intent: Overcome the overfitting issue of pLSI
by exploiting the word embedding.

Question: How to integrate word embedding
into generative topic modeling?




Graph Attention TOpic Network (GATON)

Issue: Latent Dirichlet Allocation alleviates the

overfitting issue by introducing Dirichlet priors Configuration of GATON

for latent variables, but it fails to capture the

rich topical correlations among topics. Word embedding

Intent: Overcome the overfitting issue of pLSI words
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Graph Attention TOpic Network (GATON)

First Layer of GATON
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Evaluations

Table 3: Document classification performances on datasets.

Table 2: Topic coherence performances on both datasets.

Dataset 20News Reuters

#Top-words 5 10 20 5 10 20
NMF -18.05 -85.53 -417.19 -11.28 -66.41 -335.61
pLSI -15.15 -78.59 -365.69 -13.22 -70.07 -333.57
LDA -15.30 -80.48 -368.82 -12.09 -69.80 -352.29
Gauss-LDA | -19.45 -94.52 -435.90 -24.22 -108.45 -478.43
LF-LDA -16.58 -78.54 -385.73 -13.26 -71.35 -369.00
CLM -11.62 -60.30 -282.79 -11.48 -63.08 -313.45
GATON-C -10.17 -55.82 -245.29 | -10.06 -57.46 -285.90
GATON-S -10.92 -55.98 -244.73 | -10.35 -56.75 -277.34
GATON-G -11.55 -58.13 -285.91 -11.66 -61.03 -299.35

Dataset 20News Reuters
Metrics Prec. Recall F1 Prec. Recall F1
NMF 0.704  0.701 0.697 | 0.911 0.877  0.891
pLSI 0.722 0.712 0.709 | 0.919 0.896 0.906
LDA 0.727 0.722 0.719 | 0.888 0.870  0.879
Gauss-LDA | 0.309 0.265 0.227 | 0.462 0.315 0.353
LF-LDA 0.716 0.714 0.709 | 0.893 0.591 0.661
CLM 0.825 0.818 0.816 | 0.944 0.916 0.929
TWE 0.525 0466 0.437 | 0.794 0.512 0.626
PV-DBOW | 0.510 0.491 0.459 | 0.755 0.505 0.549
PV-DM 0.428 0.386 0.361 | 0.681 0.434 0.507
TopicVec 0.713 0.713  0.712 | 0.925 0.921 0.922
MeanWV 0.704 0.703 0.701 | 0.920 0.896 0.905
TV+Mean 0.718 0.715 0.716 | 0.922 0.916 0.916
GATON-C | 0.822 0.803 0.812 | 0.975 0.979 0.977
GATON-S | 0.859 0.842 0.850 | 0.944 0.937 0.940
GATON-G | 0.716 0.767 0.741 | 0914 0.896 0.905

Table 4: Word embedding performances on 20News dataset.

W353 WRel WSim  Men Turk  SimL Rare

SPPMI 0.461 0.444 0.465 0.444 0.551 0.131 0.245
SPPMI+SVD 0.451 0.435 0.449 0.426 0.489 0.166 0.349
PV-DBOW 0.477 0.442 0.486 0.449 0.488 0.139 0.285
TWE 0.317 0.231 0.407 0.190 0.260 0.084 0.184
CLM 0.526 0.486 0.550 0.477 0.525 0.189 0.411
CBOW 0.488 0.451 0.494 0.432 0.529 0.151 0.407
Skip-Gram 0.492 0.479 0.473 0.456 0.512 0.155 0.407
GloVe 0.300 0.279 0.320 0.192 0.268 0.049 0.230
GATON-C 0.563 0.531 0.579 0.505 0.569 0.232 0.470
GATON-S 0.552 0.527 0.573 0.516 0.560 0.242 0.473
GATON-G 0.461 0.405 0.460 0.352 0.435 0.154 0.358




Conclusions

 We propose a novel approach to overcome the overfitting issue in topic modeling by adopting
amortized inference, with the word embedding as input, to significantly reduce the number of
to-be-estimated parameters.

* We reveal the connections between the generative stochastic block model (SBM) and graph
neural networks (GNNs), especially graph attention network (GAT). GAT is equivalent to the
Semi- Amortized inference algorithm of SBM.

* We observe that the probabilistic latent semantic indexing (pLSIl) can be seen as SBM on a
specific bi-partite graph, where the documents and the words are the two kinds of the nodes,
respectively.

* Jo relax the I.i.d. data assumption of vanilla amortized inference, we pioneer to propose a novel
graph neural network model, named Graph Attention TOpic Network (GATON), for correlated
topic modeling. GATON, which constructs the graph topology with the bi-partite graph of
documents and words, explores the topic structure by convolving the node attributes over the
graph with an attention mechanism.
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