
98

Autonomous Semantic Community Detection via Adaptively

Weighted Low-rank Approximation

LIANG YANG, YUEXUE WANG, and JUNHUA GU, Hebei University of Technology, China

XIAOCHUN CAO, Institute of Information Engineering, Chinese Academy of Sciences, China

XIAO WANG, Beijing University of Posts and Telecommunications, China

DI JIN, Tianjin University, China

GUIGUANG DING, Tsinghua University, China

JUNGONG HAN, University of Warwick, UK

WEIXIONG ZHANG, Washington University, USA

Identification of semantic community structures is important for understanding the interactions and

sentiments of different groups of people and predicting the social emotion. A robust community detection

method needs to autonomously determine the number of communities and community structure for a

given network. Nonnegative matrix factorization (NMF), a component decomposition approach for latent

sentiment discovery, has been extensively used for community detection. However, the existing NMF-based

methods require the number of communities to be determined a priori, limiting their applicability in practice

of affective computing. Here, we develop a novel NMF-based method to autonomously determine the

number of semantic communities and community structure simultaneously. In our method, we use an initial

number of semantic communities, larger than the actual number, in the NMF formulation, and then suppress

some of the communities by introducing an adaptively weighted group-sparse low-rank regularization to

derive the target number of communities and at the same time the corresponding community structure. Our

method not only maintains the efficiency without increasing the complexity compared to the original NMF

method but also can be straightforwardly extended to handle the non-network data. We thoroughly examine

the new method, showing its superior performance over several competing methods on synthetic and large

real-world social networks.
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1 INTRODUCTION

The network has been evolving into a major means of communication in our society, and as it

is becoming more and more social, a massive amount of content is produced and widely shared

online. This also creates new opportunities for understanding the interactions and sentiments of

different groups of people and predicting the social emotion, at the core of which of is the analysis

of complex networks [20, 31, 35, 36]. As a key feature of networks, semantic communities or mod-

ules are subgraphs where vertices within a subgraph are more densely connected than vertices

across subgraphs. Many semantic community detection algorithms [11, 12, 22] and their semi-

supervised versions [46, 48, 49] have been proposed. They can be grouped into two categories,

i.e., the ones that need to predetermine the number of semantic communities [15, 29, 43, 47, 50]

and the methods that are able to determine the number of semantic communities and detect the

semantic community structure simultaneously [5, 10, 13]. Although some of these methods can

produce good results on determining the number of semantic communities, most of them cannot

produce accurate community structures at the same time, and it does not seem to be straightfor-

ward to seamlessly integrate them with other accurate semantic community detection approaches

when given the number of communities. This seriously hinders their applicability in practice of

affective computing.

Nonnegative matrix factorization (NMF) [17, 44], which aims to decompose a system into (hid-

den) components or patterns embedded in the data, has been widely used in affective computing,

e.g., predicting speech, image and video emotion [32, 38], image processing [17], audio processing

[37], and text mining [42]. NMF has also been successfully applied to semantic community de-

tection in complex networks [30, 43]. In semantic community detection, the number of columns

of the final factorized matrix corresponds to the number of communities, and hence this number

is also critical for parsing the result. Furthermore, to be effective, the NMF method often needs

to know the number of communities in advance. However, this number is generally unknown or

difficult to determine in practice. A related idea is to apply a low-rank approximation method to

directly derive the number of communities. In essence, NMF seeks a low-rank approximation to

the original data with a known rank, i.e., the number of components or communities. This idea

has been pursued lately to directly derive the underlying low-rank representation for given data

without knowing the rank, with Robust PCA (RPCA) being one of the most well known [6]. Un-

fortunately, the results from RPCA are often not low rank. It imposes some restrictions on given

data, i.e., the noise is sparse and the rank of underlying data is sufficiently low, which cannot be

met in reality, defeating its primary design objective and applicability to finding the number of

components autonomously.

In this article, we consider the problem of determining the number of semantic communities and

identifying the corresponding semantic communities at the same time. We develop such a method

under the NMF paradigm. Our method, namely, NMF-AWL, stems from two ideas. We first intro-

duce a weighted group-sparse low-rank regularization to help decompose a given network into

components. The second is an innovative adaptive optimization scheme to learn the right rank or
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number of components of the given data. To the best of our knowledge, this is the first NMF-based

approach to directly determining the underlying low-rank representation for networks without

knowing the rank. Compared with previous low-rank approximation methods that constrain the

underlying data with uniformly weighted low-rank regularization, this is the first time to intro-

duce an adaptively weighted low-rank regularization to NMF for the detection of communities. It

is worth noting that NMF-AWL is readily extensible to other NMF-based methods and applications

on non-network data.

The article is organized as follows. We briefly review the previous work on community detec-

tion with NMF and low-rank matrix approximation in Section 2. We then propose our method of

Nonnegative Matrix Faction with Adaptively Weighted Low-rank approximation (NMF-AWL) in

Section 3. We consider optimization of the method, provide insights to its components and analyze

complexity in Section 4. Extensive experiments on synthetic and real datasets are presented in

Section 5. We conclude in Section 6 by highlighting the main contributions and discussing future

directions.

2 PRIOR WORK

Here, we review the previous work on low-rank matrix approximation, which forms the basis of

the current work. We then discuss how NMF is used to solve the community detection and why

original NMF-based methods need pre-determine the rank of the factorized matrices.

2.1 Low-rank Matrix Approximation

Since most real data are corrupted with noise, how to remove noise and reveal the structure of the

data is a critical problem in many areas, such as signal processing, computer vision and pattern

recognition. Low-rank approximation is a class of widely used methods, which can be divided into

two groups to be discussed next, to find the underlying structure of a given dataset. They operate

under the assumptions that the underlying structure of the data lies on a low dimensional subspace

and the high dimension of the observed data is often due to noises.

2.1.1 Approximation with Known Rank. A given dataset over n entities (vertices), which are

characterized by m features, can be represented by a matrix X ∈ Rm×n , where a column specifies

the features of an entity. We may approximate X by decomposing or factorizing X into two low-

dimensional matrices U ∈ Rm×k and V ∈ Rn×k by minimizing

argmin
U,V

Dis(X,UV′), (1)

where k � min(m,n) is the dimension of the latent space or the rank of the underlying data and

Dis(X,UV′) denotes the error between the original data X and the reconstructed data UV′ under

some specific distance metric, such as KL-divergence, �1 norm and Frobenius norm. In nonnegative

matrix factorization (NMF), a well-known low-rank approximation with known rank, U and V are

required to be nonnegative. Besides, U and V have their own specific meanings in many applica-

tion. Taking face clustering as an example [17], each column of U is considered as a basis image

(latent space dictionary atom), while each column of V is called an encoding (new representation).

This new representation is more effective and robust for clustering. The most serious limitation of

this kind of methods is that the dimension of the latent space, i.e., k , must be pre-determined. In

reality, nevertheless, it is often difficult to determine k in advance.

2.1.2 Approximation with unknown Rank. When the rank of the data is not given, we may di-

rectly approximate X with a low-rank matrix A ∈ Rm×n , which is the idea of low-rank approxi-

mation [6], by minimizing

argmin
A

Dis(X,A) + λ rank(A),
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where rank(A) is the rank of the matrix A and λ is a parameter for tradeoff between the two terms.

Since the rank function is nonconvex, we can alternatively minimize its convex surrogate as

argmin
A

Dis(X,A) + λ | |A| |∗, (2)

where | |A| |∗ is the trace norm of A, i.e., the sum of the singular values of A. The most well-known

approach for low-rank approximation with unknown rank is Robust PCA (RPCA) [6], which has

been used for background subtraction, texture repair and subspace segmentation. RPCA uses the

�0 norm to measure the difference between the original data X and the low-rank approximation A,

i.e., Dis(X,A) = | |X − A| |0, where | |X| |0 is the number of nonzeros in X. As before, RPCA directly

optimizes the | |X| |1 for its convexity instead of | |X| |0 and for the equivalence of the following two

problems under rather broad conditions (the error matrix X − A is sufficiently sparse relative to

the rank of A) [6]:

argmin
A

| |X − A| |0 + λ rank(A),

argmin
A

| |X − A| |1 + λ | |A| |∗.

However, this method has drawbacks. It imposes some restrictions on the data, particularly, the

noise is assumed to be sparse and the rank of data is sufficiently low [6]. In practice, we often

cannot derive the actual rank by directly computing the rank of the resultant matrix A, since

minimizing the rank function and its convex surrogate is not equivalent for many applications

when the sparsity of the error is not sufficient relative to the actual rank of the data. Second, it

cannot directly obtain the latent space dictionary and representation based on this dictionary as

in NMF, which is very important for many clustering problems, including community detection.

Third, although it has been argued that balancing parameter λ can be done in theory under rather

broad condition, the parameter still needs to be tuned in practice when the sparsity of the error is

not sufficient relative to the actual rank of the data.

2.1.3 Rank Determination. While determining the rank of a dataset is critical, the available ap-

proaches are limited, which can be divided into two categories. The methods of first category do

not directly determinate the rank of the data, but rather evaluate each candidate using the Markov

chain Monte Carlo [7] or sampling the rank along with other parameter using computationally

intensive reversible jump Markov chain Monte Carlo [60]. This type of sampling methods is com-

putationally expensive. The methods in the second category compute the rank through a Bayesian

approach. Some of them assume the elements of factorized matrix follow exponential priors [24,

25], while others assume them follow Gamma priors [4]. BNMF assumes the reconstruction er-

ror, the factorized matrix and parameters are Poisson, half-normal and Gaussian distributions,

respectively [40]. There are two main drawbacks of this kind of methods. First, there are many hy-

perparameters, which significantly affect the performance, need to be tuned. Although the authors

provide some suggestions to tune them, it often can not obtain the best performance. Second, it

lacks of interpretability as many other Bayesian learning methods, which makes it hardly to tune

the parameters and analyze the results.

2.2 Community Detection with NMF

The community detection problem using NMF can be modeled by a generative process of a network

[30]. In particular, let xi j be a variable indicating whether vertices i and j are connected. We then

define U = [uit ] ∈ Rn×k
+ and V = [vjt ] ∈ Rn×k

+ as the membership matrices where elementsuit and

vjt represent the probabilities that vertex i generates an in-edge and an out-edge in community

t , respectively. They also imply the probability that node i belongs to the in- or out-community t .

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 15, No. 3s, Article 98. Publication date: November 2019.



Adaptively Weighted Low-rank Approximation in NMF 98:5

Fig. 1. Illustration and comparison of the three NMF-based methods. Community detection methods via

NMF take the network adjacency matrix as input, and classify the node according to the factorized matrix.

(a) Original NMF needs to pre-determine the number of communities, i.e., the number of columns in factor-

ized matrix. (b) NMF with low-rank constraint, which is equivalent to suppressing all columns uniformly, can

not make the factorized matrix column-sparse, thus it can not directly obtain the number of communities.

(c) NMF with weighted column-sparse low-rank constraint can suppress most of the columns to zero, and

the number of nonzero columns is that of the communities.

Since the networks that we considered here are undirected, either U or V can be used to partition

the network and separate the vertices.

Whether vertices i and j are connected depends on probability that they belong to the same com-

munity. The probability of vertices i and j belonging to community t is uitvjt , and the probability

that vertices i and j belong to the same community is then

x̂i j =

k∑
t=1

uitvjt . (3)

Therefore, the community detection problem can be modeled as a NMF problem X ≈ X̂ = UV′. This

process is illustrated in Figure 1. Viewed as low-rank matrix approximation, community detection

is to find a low-dimensional (low-rank) representation of the original network. In general, the

index of the largest element in each row of U and V is the community that the corresponding

vertex belongs to.

We should notice that since the ith row of U and V, denoted as ui and vi, respectively, can be

regarded as the membership distribution of vertex i . If the number of the communities, i.e., the

rank of U and V, is not correctly set, then the result may be meaningless.

2.3 Model Selection in Community Detection

The community detection methods can be divided into two categories, discrimination model

and generative model. According to the detection method, a number of model selection algo-

rithms have been proposed, such as greedy algorithm, spectral algorithm and statistical algorithms

(expectation-maximization algorithms and sampling methods). Louvain [5] and Infomap [33] are

two commonly used greedy algorithm. Louvain, which adopts agglomerative hierarchical method,

initially assigns each node to its own community, and then moved in the community associated to

the largest modularity gain. This process is repeated until no further improvement can be achieved.

Infomap optimizes the map equation, which quantifies the information needed to represent some

random walk in the network, using simulated annealing. In Spectral algorithm [27, 28], the lead-

ing eigenvector of modularity matrix is regarded to be correlated to the optimum assignments

and the eigenvalues is used to determine the number of communities. The index of eigenvalue

that gets the largest drop from previous one is considered as the number of communities. Akaike
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Information Criterion (AIC) [3] and Bayesian Information Criterion (BIC) [34] are well-known sta-

tistical model selection methods adopted by Bayesian community detection including stochastic

block model (SBM).

3 MODELS

Our new method NMF-AWL hinges upon the idea of introducing an adaptively weighted low-

rank regularization to NMF. We first present a straightforward method, i.e., NMF with a low-rank

constraint. We then discuss the rationale that it cannot yield a satisfactory result and develop a

novel NMF with a weighted column-sparse low-rank constraint. Finally, we present a strategy to

adaptively determine the weights of the columns.

3.1 NMF with Low-rank Constraint

A straightforward method to combine the merits of these two kinds of low-rank approximation

methods discussed in the previous section is to factorize the matrix A in Equation (2) into U ∈
Rm×p and V ∈ Rn×p ,

argmin
U,V

Dis(X,UV′) + λ | |UV′ | |∗, (4)

where p � k and p ≤ min(m,n) is a pre-defined number of columns for U. Equation (4) can be

regarded as adding a low-rank constraint λ | |UV′ | |∗ to Equation (1). By doing so, we hope the rank

of the resulting matrix U to be automatically determined as in RPCA.

3.2 Weighted Column-Sparse Low-rank Constraint

However, the resulting matrix U may not have a low rank in practice. Even if it is low rank, it may

also be difficult to determine which columns should be selected for data representation (member-

ship in community detection). We thus like to force the resulting matrix to be column sparse to

help choose the non-zero columns as the final membership matrix. However, the original low-rank

constraint cannot yield column-sparse matrix. To see this, we rewrite Equation (4) into

argmin
U,V

Dis(X,UV′) + | |(U(
√
λI)) (V(

√
λI)′| |∗, (5)

where I is the p-dimensional identity matrix. Since U = [u1, u2, . . . , up], where ui is the ith column

of U, U(
√
λI) = [

√
λu1,
√
λu2, . . . ,

√
λup]. This means that the introduction of a low-rank constraint

to Equation (4) equally suppresses each column of U, which can be formally proven following a

lemma by Reference [23].

Lemma 3.1. For any matrix A ∈ Rm×n , the following holds:

| |A| |∗ = min
U,V,A=UV′

1

2

(
| |U| |2F + | |V| |

2
F

)
.

When rank(A) = k ≤ min(m,n), the minimum is attained with a factorization A = UV′ where U ∈
Rm×k and V ∈ Rn×k .

Based on Lemma 1, we have the following result.

Theorem 3.2. If A is the solution to Equation (2), and (U,V) is the solution to the following mini-

mization problem:

argmin
U,V

Dis(X,UV′) +
λ

2

(
| |U| |2F + | |V| |

2
F

)
,

then A = UV′.
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Proof. According to Lemma 3.1, we can write

argmin
A

Dis(X,A) + λ | |A| |∗

⇔ argmin
A

�
�
Dis(X,A) + min

U,V
A=UV′

λ

2

(
| |U| |2F + | |V| |

2
F

)�
�

⇔ argmin
A

min
U,V

A=UV′

(
Dis(X,UV′) +

λ

2

(
| |U| |2F + | |V| |

2
F

))

⇔ argmin
U, V

(
Dis(X,UV′) +

λ

2

(
| |U| |2F + | |V| |

2
F

))
.

So, we have A = UV′. �

Therefore, minimizing λ | |UV′ | |∗ is equivalent to minimizing λ
2 ( | |U| |2F ) + | |V| |2F ), and

λ | |U| |2F = | |U(
√
λI) | |2F = λ

p∑
t=1

| |ut | |22 =
p∑

t=1

| |
√
λut | |22 .

This result is intuitive, i.e., introducing a low-rank constraint equally suppresses each column of

matrices U and V. Consequently, no column-sparse matrix U can be obtained by directly optimizing

NMF with a low-rank constraint through Equation (4).

Our first idea for deriving a column-sparse matrix U is to introduce a low-rank regularization

that is able to selectively suppress some columns of U. To do so, we use distinct weights for different

columns, i.e., use the following regularization in place of λ | |U| |2F :

| |UΣ
1
2 | |2F =

p∑
t=1

σt | |ut | |22 =
p∑

t=1

| |
√
σt ut | |22 , (6)

where Σ = diag([σ1,σ2, . . . ,σp]), a p-dimensional diagonal matrix whose ith diagonal element is

σi and non-diagonal elements are zero, is used to specify the degree of suppression on different

columns. If σi > σj , then the ith column will be suppressed more than the jth column when mini-

mizing Equation (6). Thus, Equation (5) can be generalized to matrix factorization with weighted

low-rank constraints as

argmin
U,V

Dis(X,UV′) + | |(UΣ
1
2 ) (VΣ

1
2 )′ | |∗. (7)

The remaining problem is how to determine the weights in Σ.

3.3 Adaptive Weights

Since there are p parameters in Σ, it is impractical to consider them once at a time. A strategy is

needed to learn the parameters from the data. We first make the following two observations. First,

each σi should not be too small; otherwise, the regularization will have little effect and the overall

objective function degrades to the original low-rank matrix factorization problem that requires to

have the rank of the data be known. Second, some σi ’s should be larger than the others to suppress

the corresponding columns. However, not all the σi ’s should be large, otherwise, all the columns

will be suppressed to zero.

To make Σ satisfy these criteria, we introduce a penalty function,

F (Σ) = G (Σ) + H (Σ), (8)

where G (Σ) is used to prevent all σi ’s from being too small, and H (Σ) is used to prevent all the

σi ’s from being too large.
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Fig. 2. Curves of the penalty functions with different parameter b. (a) The curves of д1 (x ). When b is large,

the curve decreases rapidly approaching to 0 and has a flat tail, while it decreases slowly near 0 and has a

steep tail when b is set small. (b) The curves of f (x ). A larger b makes f (x ) reach its minimum at a small x ,

and vice versa. Thus, to make it have the minimum at x = 1, we choose b = e .

To obey the first criterion, G (·) should be a monotonically non-increasing function. For sim-

plicity, we also choose a differentiable function for G (·). Furthermore, we suppose that we can

individually penalize each σi and the penalty is zero if σi = 1. Two simple functions that meet

these requirements are

G1 (Σ) = −β logb ( |Σ|) = β

p∑
t=1

− logb (σt ) = β

p∑
t=1

д1 (σt ),

G2 (Σ) = β

p∑
t=1

(
1

σt
− 1

)
= β

p∑
t=1

д2 (σt ), (9)

where β is a positive value to determine the strength ofG (·) and |Σ| denotes the determinant of Σ.

Figure 2(a) shows д1 (x ). Since Σ is a diagonal matrix, |Σ| =∏p
t=1 σt . Herein, we will fix parameter

2β to the total number of rows of the targeting matrices U and V, i.e.,m + n; the rationale for doing

so will be discussed in Section 4.2. Furthermore, д1 (·) and д2 (·) are collectively referred to д(·), and

we will verify that natural logarithm, i.e., b = e , often yields good results in reality.

However, to obey the second criterion,H (·) should be a monotonically non-decreasing function.

For simplicity, we use the trace of Σ as H (·), i.e.,

H (Σ) = α tr(Σ) = α

p∑
t=1

σt = α

p∑
t=1

h(σt ), (10)

where tr(·) is the trace of a matrix and α is a positive value to determine the contribution of H (·).
Since H (·) is not as important asG (·), we should choose a small α . Unless noted, we set α = 1. The

role of α will also be discussed in detail in Section 4.2. Thus, Equation (8) can be expressed as

F (Σ) = β

p∑
t=1

д(σt ) + α

p∑
t=1

h(σt )

=

p∑
t=1

(
βд(σt ) + αh(σt )

)
. =

p∑
t=1

f (σt ). (11)
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Herein, f (σ ) is the penalty function to make σ ’s meet the above mentioned criteria, and it is shown

in Figure 2(b) with α = β = 1. Furthermore, to make f (σ ) reach its minimum at σ = 1, b = e is a

natural choose.

3.4 Reconstruction Error

Traditional nonnegative matrix factorization (NMF) seeks the latent representation by minimizing

the reconstruction error from the factorized nonnegative matrices as in Equation (1). The proposed

NMF-AWL, however, balances between the reconstruction error and the regularization terms of

low-rank constraint and adaptive weights. Therefore, the reconstruction error of NMF-AWL should

theoretically be larger than that of traditional NMF with the same fixed rank. Reconstruction error

is also a commonly used criterion for model selection such as minimum description length (MDL)-

based model selection in Reference [14]. The main drawback of reconstruction error-based model

selection is its complexity. It needs to traverse all possible rank values and choose the one with

the smallest reconstruction error. Different from reconstruction error-based model selection, our

proposed NMF-AWL does not need this traversal, but simultaneously detects community structure

and the number of communities. Therefore, advantage in complexity is very obvious.

4 OPTIMIZATION AND INSIGHT

We now consider the optimization algorithm, provide some insights to the final model, discuss

how to set the model parameters, present the algorithm for autonomously detecting community

and analyze the complexity of the algorithm.

4.1 Objective Function and Optimization

The overall objective function consists of the weighted group-sparse low-rank constraint in Equa-

tion (7) and the weights for penalty in Equation (11). The KL-divergence is adopted as the distance

measure between the original data and reconstructed data, since it is more robust to measure

the distance between two probability distributions than L2 norm. Specifically, each element xi j in

original data X ∈ {0, 1}N×N is either 0 or 1 to represent whether an edge between corresponding

nodes i and j is observed. Each element yi j in the reconstructed data Y = UV′ is the probability of

edge existence according to community assignments U and V. Therefore, KL-divergence is used to

measure the difference between these two probability distributions. Besides, the three matrices are

forced to be nonnegative for interpretability of the expected result. The final objective function is

argmin
U>0,V>0,Σ>0

LK L (X| |UV′) + | |UΣV′ | |∗ + f (Σ). (12)

Herein,

LK L (X| |UV′) =
∑
i, j

(
xi j log

(
xi j

yi j

)
− xi j + yi j

)
, (13)

where X = [xi j ] and Y = [yi j ] = UV′. Following Theorem 3.1 and Equations (13), (9), and (10), the

overall objective function Equation (12) can be written as

L (U,V, Σ) = LK L (X| |UV′) + α

p∑
t=1

σt + β

p∑
t=1

д(σt )

+
1

2

p∑
t=1

σt

(
| |ut | |22 + | |vt | |22

)
.
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Since the loss function L (U,V, Σ) is not convex for all U, V, and Σ together as in the original KL-

divergence-based NMF, it is difficult to find the global minima. We develop an iterative algorithm

similar to the multiplicative updating rules in Reference [18], which can reach local minima. The

procedure has two major steps. First, we compute the gradients of the object function L (U,V, Σ)
with respect to U, V and Σ. Second, we update U and V by multiplying their current values with

the ratio between the positive to the negative parts of the gradients. The updating rules for U and

V are as follows:

uit ← uit

∑
j (xi jvjt/

∑
t uitvjt )

σtuit +
∑

j vjt
, (14)

vjt ← vjt

∑
i (xi juit/

∑
t uitvjt )

σtvjt +
∑

i uit
. (15)

We update Σ by setting its derivative equal to zero as it is analytically calculated given U and V.

The updating rules for Σ with G1 (·) and G2 (·) are as follows:

σt ←
β(

1
2 ( | |ut | |22 + | |vt | |22 ) + α

)
lnb
, (16)

σt ←
√

β

( | |ut | |22 + | |vt | |22 )/2 + α
,

where b is the base of logarithm, and α and β are parameters to be set, as discussed next. For

network data, each row of U or V represents one node. For non-network data (such as face image

collection in Reference [17]), rows of U and V possess different meanings (such as one image and

pixel, respectively). However, no matter network or non-network data, ut and vt, which are the t th
columns of factorized matrix U and V, have the same role, i.e., one latent component. Therefore,

Equation (16) makes sense for both network and non-network data.

4.2 Parameter Setting

Based on our experiments (Section 5.2), b = e , i.e., taking the natural logarithm, often gives rise to

good results, which is the value we will use. With b = e and α = 0, Equation (16) can be rewritten

as

σt ←
2β

| |ut | |22 + | |vt | |22
. (17)

This means that if the �2 norm of the kth columns of U and V is small, the corresponding weight

σt will be large, so that these two columns will be heavily suppressed in the next iteration. If we

set β = (m + n)/2, then σk is the reciprocal of the average of the square of all the m + n elements

in ut and vt, i.e.,

σt ←
1

1
m+n

(
∑m

i=1 u
2
it +

∑n
j=1v

2
jt )
.

It implies that whether σt > 1 should be determined by whether the average of the square of

elements in ut and vt is smaller than 1.

Second, if α = 0, then σt will approach infinity if the t th column is suppressed to zero. To avoid

this situation, we set α to a smaller number than β . This is consistent with the rule that the first

criterion of forcing some columns to zero predominates the second of not forcing all columns to

zero. As our experimental results suggested, α can be simply set to 1 to obtain satisfactory results.

From Equation (16), it is evident that a smaller α makes σt ’s larger, so that more columns will be
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ALGORITHM 1: NMF with adaptively weighted low-rank constraint (NMF-AWL) for community detection

Input: Adjacency matrix X ∈ Rm×m , the number of columns p =m/2, β =m and α = 1 for normal

circumstances or α ∈ {1, 2, 3} for hierarchical community detection.

Output: The number of communities k and the nodes’ affiliation.

Initialization: Σ = I, random matrix U,V ∈ Rm×p

for t = 1 : niter do
Update U via Equation (14);

Update V via Equation (15);

Update Σ via Equation (16);

end

The number of communities k is that of columns of U whose �2 norms are less than 10−200.

By removing the zero columns of U, we obtain the final affiliation matrix U∗ = [u∗i j ] ∈ R
m×k .

We assign the ith node to the t th community if u∗
ik

is the largest element in the ith row of U∗

suppressed to zero, resulting in a smaller number of communities. Thus, if we want to divide the

network into smaller communities, then we can properly increase α .

Finally, based on Equations (14) and (15) the only difference between the updating rules of the

conventional KL-divergence-based NMF and NMF-AWL is the added term σtuit or σtvjt in the

denominator. Since σt is the reciprocal of the average of the square of all the elements in ut and

vt, if uit or vjt is larger than this average, σtuit or σtvjt is larger than 1 and Equation (14) or

Equation (15) makes it (uit and vjt ) smaller, i.e., suppresses it to zero.

4.3 Autonomous Community Detection

The adjacency matrix of an undirected and unweighed graphG = (V ,E) overm vertices is a sym-

metric nonnegative binary matrix X = [xi j ] ∈ Rm×m
+ . Assume the actual rank k of X is much

smaller than m, i.e., k �m, we may set the initial number of columns of factorized matrices to

p =m/2 � k . and α to 1. In general, if we can estimate an upper bound of k , then we may set the

initial value of p to the upper bound. We then factorize the adjacency matrix X into a component

(community) matrix U by minimizing L (U,V, Σ). This community detection method is specified

in Algorithm 1. The iteration is terminated if the relative change of the maximum value of σt ’s is

little than 1e-5. The number of communities is the number of nonzero columns of U, i.e., k , and

the resulting communities correspond to the non-zero columns. By removing zero columns of U,

we have the final community membership matrix U∗ = [u∗it ] ∈ Rm×k . Following convention, we

may assign a vertex to the community to which it has the highest membership.

4.4 Computational Complexity

For convenience, we only analyze the complexity of Equations (14) and (16). We reformulate Equa-

tion (14) as

uit ← uit

∑
j (

xi j∑
t uit vjt

vjt )

σtuit +
∑

j vjt
. (18)

Since the size of U is np, the multiplication between uit and the fraction will be repeated np times.

The denominator consists of two parts. The first part σtuit will be repeated for each i and k , thus

needs np floating-point multiplications. The second part
∑

j vjt will be repeated for each t , thus

needs np floating-point additions. The numerator is made up of a summation of n elements, which

will be repeated np times, thus it requires n2p floating-point additions. Similarly, the multiplica-

tion inside the brackets needs n2p floating-point multiplications. Since
xi j∑

t uit vjt
is independent of
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Table 1. Real-world Networks that Were Experimentally Analyzed

Datasets m n k Description

Karate [52] 34 78 2 Zachary’s karate club

Dolphins [21] 62 159 2 Dolphin social network

Friendship6 [45] 68 220 6 High school friendship

Friendship7 [45] 68 220 7 High school friendship

Football [13] 115 613 12 American College football

Polbooks [28] 105 441 3 Books about US politics

Polblogs [1] 1,490 16,718 2 Blogs about US politics

Cora [51] 2,708 5,429 7 Publication citation dataset from ML

Citeseer [51] 3,312 4,732 6 Publication citation dataset from Citerseer site

Syracuse [41] 13,653 543,982 7 Facebook networks at Syracuse University

NYU [41] 21,679 715,715 7 Facebook networks at New York University

Word Association [26] 5,017 29,148 - Words that people always associate

k , it only needs n2 floating-point divisions. The summation
∑

t uitvjt is repeated for each i and

j, resulting in n2p floating-point additions. Overall, Equation (14) needs 2np + np floating-point

additions, 2np + np floating point multiplications and 2n2 + np floating-point divisions. The over-

all complexity is O (n2p). Thus, according to Equations (14), (15), and (16), NMF-AWL does not

incur additional complexity with respect to the conventional KL-divergence-based NMF.

Due to the sparsity of the adjacency matrix X, the n2p and n2 operations can be reduced to mp
and m, respectively. For example, since there are only m nonzero elements xi j , we do not have to

compute all the
∑

t uitvjt , but only need to perform the multiplication for i and j whenxi j � 0. Thus

its complexity is reduced to mp. Thus, the complexity of Equation (14) is O ((m + n)p). Although

we iteratively update σt ’s in Equation (16), its overall complexity is only O (np). Therefore, the

complexity of the NMF-AWL is O ((m + n)p). If we can properly choose p = O (k ), i.e., p and k are

in the same order of magnitude, then the complexity of NMF-AWL is nearly linear inm and n.

Furthermore, from the experiments in Section 5.3, we observed that most of the columns of

the model in Section 3 were suppressed to zero over iterations. Thus, by considering the column-

sparsity of U and V, the complexity of each iteration is O ((m + n)p) over the initial few iterations,

while it reduces to O ((m + n)k ), which is independent of the initial number of columns p, over

most of the iterations. Therefore, NMF-AWL is nearly linear in network size, and thus efficient on

large networks.

Note that, since the only difference between our NMF-AWL and conventional KL-divergence-

based NMF is the multiplication factors of σtuit and σtvjt in the denominators of the updating

rules for U and V, the parallel [8] and distributed [19] computing technologies designed for NMF

can be applied to NMF-AWL to make it applicable to larger networks.

5 EXPERIMENTS

To evaluate NMF-AWL, we carried out experiments on two types of synthetic networks and several

widely used real-world networks, listed in Table 1. We compared NMF-AWL with four state-of-

the-art approaches for autonomous community detection methods, i.e., the louvain algorithm [5],

the spectral (SP) algorithm due to Reference [28], the external optimization (EO) algorithm by

Reference [10], and the Bayesian NMF (BNMF) algorithm from Reference [30]. We adopted two

metrics for performance evaluation, the normalized mutual information (NMI) [39] and the dif-

ference between the ground-truth communities and the detected communities. The first metric
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directly evaluates the accuracy of detected community structures, while the second metric only

assess the number of communities detected; the first metric is more informative than the second

as the former measures community structures. To compare the accuracy of the number of detected

communities, we use the following measurement:

diff (kдt ,kdetected ) = |kдt − kdetected | + 1, (19)

where kдt is the number of ground-truth communities and kdetected is the number of detected

communities. It is evident that this function is equal to 1 if and only if kдt = kdetected and in-

creases with the difference between kдt and kdetected increases. Suppose φa is the ground-truth

of community structure and φb is the result from the algorithm, then the NMI of this algorithm is

defined as

NMI(φa ,φb ) =

∑kдt

i=1

∑kdet ect ed

j=1 ni j log
(

n ·ni j

na
i ·n

b
j

)
√(∑kдt

i=1 n
a
i log

na
i

n

) ( ∑kdet ect ed

j=1 nb
j log

nb
j

n

) , (20)

in which n is the number of nodes, ni j is the number of nodes both in ground-truth community i

and in result community j, na
i is the number of nodes in ground-truth community i , and nb

j is the

number of nodes in the result community j. NMI is more informative than just simply counting

the number of misclassified nodes or computing the accuracy [39]. It is especially suitable for im-

balanced datasets such as Lancichinetti-Fortunato-Radicchi networks (LFR networks) benchmark

and some real-world networks, which will be discussed in the following sections.

All experiments were conducted on a single PC (Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz.

processor with 4 G memory). Since algorithms only converge to local minima, we repeated each

algorithm many times with random initialization and chose the result giving the smallest objective

function value. The source code of all the algorithms used in this article can be downloaded from

the authors’ websites.

5.1 Synthetic Networks

We considered two types of synthetic networks in our experiments, i.e., Girvan-Newman networks

(GN networks) [13] and Lancichinetti-Fortunato-Radicchi networks (LFR networks) [16].

Each GN network consists of 128 nodes that are divided into 4 communities of 32 nodes each.

Each node has on average 16 edges, among which Zout edges are inter-community edges. As Zout

increases, community detection is more difficult as the community structure becomes weaker. In

our experiments, we set the parameter α = 2 (similar results with α = 1). The results are shown in

Figure 3. As shown, NMF-AWL, the louvain, and the external optimization can correctly detect the

number of communities (right panel of Figure 3) and our method outperforms the other methods,

especially on networks with large Zout (left panel of Figure 3).

The LFR networks are more complicated than the GN networks. Its generator allows to specify

the number of node, average degree, community size distribution, degree distribution, minimum

and maximum of the community sizes and the fraction of the inter-community edge (mixing pa-

rameter μ). Following the experiment setting suggested by Reference [16], we set the number of

nodes to 1,000, the minimum community size to 20, the maximum community size to 100, the

average degree to 20, the exponent of a vertex degree and the community size to −2 and −1, re-

spectively, and vary the mixing parameter μ from 0.1 to 0.6. We set α = 1 and the diagonal elements

of adjacency matrix as the degree of corresponding nodes. The results are shown in Figure 4. The

right subfigure indicates that NMF-AWL are more accurate than many other algorithms on deter-

mining the number of communities (except for louvain on networks with μ = 0.5). From the left
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Fig. 3. Comparison of NMF-AWL and four existing methods on GN networks. The cyan, magenta, green,

blue, and red curves (bars) in the left (right) panel are the results of external optimization, spectral clustering,

leaven, Bayesian NMF, and NMF-AWL, respectively. The left panel shows the result on NMI; the larger the

value shown, the better the result. The right panel shows the results on the accuracy of the number of

detected communities according to Equation (19); the smaller the value shown, the better the result.

Fig. 4. Comparison of NMF-AWL and four existing methods on LFR networks. Comparison criteria are the

same as that for Figure 3.

subfigure, we can find out that NMF-AWL outperforms all the other methods, especially on net-

works with large μ. These two experiments illustrate that NMF-AWL outperforms other methods

on synthetic networks.

5.2 Effect of Parameters

To assess the effect of the two parameters, the base b of the logarithm function and α in Equa-

tion (9), on result quality, we experimented on the LFR networks as they capture many features

of real networks. In addition, we tested whether it is helpful to set the diagonal elements of the

adjacency matrix as the degree of corresponding nodes. The results (Figure 5) show that most

combinations of α and b can yield satisfactory results when μ is small; the best performance is

achieved when b is near e , the base for natural logarithm; and if we set the diagonal elements to

be the degree of corresponding nodes, then the best performance is achieved with α = 1. Thus, we

follows these results by using α = 1 on real-world networks. The effect of α on dividing network

into different scale communities in real-world networks is shown in Section 5.4 and Figure 9.
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Fig. 5. The effects of parameters α and b on LFR networks. We show the results on NMI (the z axes) of

different combinations of α and b. The results show that most combinations of α and b can yield satisfactory

results when μ is small; the best performance is achieved when b is near e , the base for natural logarithm.

Fig. 6. The slices of the 3D histogram in Figure 5 with μ from 0.4 to 0.6 by setting b = e . If we set the diagonal

elements to be the degree of corresponding nodes, then the best performance is achieved with α = 1.

In Algorithm 1, we set the initial number of columns as half of the number of nodes, i.e.,p =m/2.

However, this initial number does not significantly affect the performance and the number of fi-

nal detected communities, which fully illustrates the robustness of our framework. To verify this

independence, we adopted different proportions of initial columns (from m, m/2, to m/10) on six

real-world networks. The results are shown in Figure 8. With the changes of the proportion, the

performances (NMI) on all of the networks change slightly, and the number of detected commu-

nities on most of the networks does not change except the Football network. This is because the

Football network consists of 115 nodes that form 12 communities. With the decrease in the pro-

portion, the initial number of columns is smaller than the actual number of communities, and it is

the target number of communities to be detected.

5.3 Framework Verification

To obtain the number of communities, the model is designed to assign different penalty parameters

σt to different columns of the factorized matrices and suppress some of them to zero. To verify
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Fig. 7. The changes of column norms and σ ’s over iterations. The four rows are the results on Dolphins,

Karate, Friendship and Polbooks networks, respectively. The first and second columns are the changes over

the beginning few iterations, while the third and fourth ones are those over the whole iterations. Herein,

each row of the subfigures in the first and third columns represents one column of factorized matrices U,

while that in the second and fourth columns represents the σ corresponding to the column. The color of each

element of the subfigures in the first and third columns denotes the value of column norm, while that in the

second and fourth columns denotes the value of σ . We can find out that the results are consistent with our

expectations.

this procedure, we conducted experiments on the real-world networks, and the results on four

networks (one row for one network) are shown in Figure 7. The figure shows the changes of

column norms and σ ’s over iterations. The third and fourth columns show the changes over the

whole iterations, while the first and second columns provide some details over the initial few

iterations. The color of each element in the sub-figure represents the value of the factorized matrix

column norm (the first and third columns) and σ (the second and fourth columns).

It is evident that the results are consistent with our model. Most of the σ ’s become large

(the dark red in the second and fourth columns), and only a few columns become relatively small

(the blue or bright red in the second and fourth columns) at the end of the iteration. Meanwhile, the

norms of the columns corresponding to large σ ’s are suppressed to zero (the dark blue in the first

and third columns). The remaining non-zero columns are then the detected communities. Note

that this process doesn’t correspond to the hierarchical community detection, since neither σ ’s

nor column norms are monotonous as shown in Figure 7 (colors are not gradually varied). This

means that communities don’t hierarchical merge but simultaneously merge and split during the

iterations. Taking the Polbooks network as an example, there are 105 nodes in the networks, and

we set the initial number of columns to 53 (�105/2
). In the first iteration, we set all the σ ’s and
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Fig. 8. The impact of the initial number of columns p on performance (NMI) (a) and the number of detected

communities (b). The x-axis indicates the initial ratio of columns. With the decrease in the proportion, the

changes in performance and the number of detected communities are very slight except the Football network.

Table 2. NMI(%) and the Number of Detected Communities on Real-world Networks

Datasets Bayesian NMF Louvain Spectral Algorithm EO NMF-AWL

Dolphins 37.41 (16) 51.62 (5) 75.32 (2) 57.92 (4) 81.41 (2)

Karate 47.48 (9) 58.66 (4) 100.00 (2) 58.66 (4) 100.00 (2)

Friendship6 79.16 (12) 85.18 (7) 41.76 (2) 95.21 (6) 86.99 (8)

Friendship7 83.80 (12) 87.84 (7) 47.73 (2) 90.99 (6) 91.79 (8)

Polbooks 39.84 (15) 57.44 (3) 59.79 (2) 55.60 (5) 54.20 (3)

Football 93.63 (13) 89.03 (10) 33.35 (2) 88.48 (10) 93.83 (14)

Polblogs 23.30 (383) 37.52 (276) 18.76 (13) 19.00 (14) 36.29 (298)

Cora 42.01 (227) 25.96 (104) 29.49 (141) 44.07 (134) 46.72 (163)

Citeseer 33.19 (538) 24.38 (468) 27.70 (518) 32.75 (486) 34.24 (654)

Syracuse 22.92(36) 19.32(45) 20.28(69) 21.83(51) 29.22(21)

NYU 40.51(53) 23.99(99) 36.17(133) 41.62(109) 46.82(9)

the norms of all the columns to 1. After the third iteration, most of the σ ’s begin to increase, and

the corresponding columns are suppressed to zero. After the twentieth iteration, only three σ ’s

less than 50, while others reach 100. At the same time, the columns corresponding to large σ ’s are

zero. Thus, the number of final detected communities is three, and the non-zero columns are used

to divide the network into three communities. This result adequately verifies our model.

5.4 Real-world Networks

We considered nine widely used real-world networks, listed in the first nine rows of Table 1.

Herein,m, n, and k are the number of vertices, edges and communities, respectively. In our exper-

iments, we used α = 1 on most of the networks except Football. We set α = 2 on Football network,

since its community size is very small (about 10 nodes on average).

Among the 11 networks tested, NMF-AWL achieves the best performance (in bold) on 8 networks

(Dolphins, Karate, Friendship7, Football, Cora, Citeseer, Syracuse, and NYU) and the second best

performance (with underlined) on 2 networks (Friendship6 and Polblogs) (Table 2). In comparison,

BNMF, the other method that used NMF, performed poorly on all the networks except Football. Al-

though the external optimization algorithm also obtained some satisfactory results on 6 networks

(Friendship, Polbooks, Football, Cora, Citesseer, and NYU), its performance was slightly lower than

NMF-AWL on these networks, but performed poorly on Dolphins, Karate and Polblogs networks.
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The other methods were not consistent on the 11 networks. Louvain only obtained good results on

Friendship, Polbooks, Football and Polblogs networks, and the spectral algorithm only achieved

reasonable results on three networks (Dolphins, Karate, and Polbooks). Among the 11 real net-

works, the results on the two largest networks, Syracuse and NYU, are the most illustrative and

convincing ones. Specifically, our proposed NMF-AWL has significantly outperformed the other

state-of-the-art methods for the community structure detection task by 27.5% ((29.22–22.92)/22.92)

and 12.5% ((46.82–41.62)/41.62) on Syracuse and NYU, respectively, due to the accurate determi-

nation of the number of communities by NMF-AWL as shown in the brackets of Table 2. Some of

the illustrative examples of the detected communities are shown in Figures 9(a), 9(d), and 9(g).

As illustrated in Section 4.2, a smaller α makes σ ’s larger, so that more columns will be sup-

pressed to zero, resulting in a smaller number of communities, and vice versa. To appreciate the

effect of α on dividing network into different scale communities, we conducted experiments by,

respectively, setting α = 1, 2, and 3 on Karate, Dolphins, and Polbooks networks. The results are

shown in Figure 9. As shown, with increase of α , some communities are divided into smaller

sub-communities. For example, on Karate network, the green community in Figure 9(a), is di-

vided into two sub-communities, i.e., the new green sub-community and purple sub-community in

Figure 9(b) by increasing α from 1 to 2, and the new green sub-community is further partitioned

into two much smaller sub-communities, i.e., the yellow community and the new green community

in Figure 9(c) by increasing α to 3. The same observation can be made on the other two networks.

Therefore, we consider α as a parameter to control the scale of the communities to be detected.

Moreover, we compared these methods on the word association network [26], where a node

represents a word and a link an association between two words. We use the enrichment of vertex

pair similarity [2]—the average metadata similarity between all pairs of vertices that share a com-

munity divided by the average metadata similarity between all pairs of vertices—to evaluate the

quality of detected communities. The higher an enrichment, the better the result. The enrichment

of the result from NMF-AWL is 2.53, which is larger than that of BNMF (2.47) and the spectral al-

gorithm (1.22). The results showed that NMF-AWL outperformed the other methods on this large

real network.

6 CONCLUSION AND FUTURE DISCUSSION

We proposed a novel nonnegative matrix factorization approach for autonomous semantic com-

munity detection, namely, NMF-AWL. Two key ideas made the new method effective and efficient.

The first is a weighted group-sparse low-rank regularization to help decompose a given network

into components. The second is an adaptive, optimization scheme to learn the correct number

of components from the data by removing some of the initial components. To the best of our

knowledge, this is the first NMF-based approach to directly derive the underlying low-rank rep-

resentation for networks without knowing the rank. Compared with previous low-rank approx-

imation methods that directly constrain the underlying data with uniformly weighted low-rank

regularization, this is the first time to introduce an adaptively weighted low-rank regularization to

NMF to community detection. Extensive experiments on both synthetic and real-world networks

have shown the superior performance of NMF-AWL over four state-of-the-art approaches, show-

ing NMF-AWL’s superior performance on real networks. More importantly, NMF-AWL is readily

extensible to other NMF-based methods and applications on asymmetric data representation, e.g.,

NMF-based classification and clustering on non-network data.

We will pursue several lines of future research. One area is application of NMF-AWL to

study various complex network community structures, including hierarchical, overlapping, and

dynamic community structures. The second area is to extend the NMF-AWL method to many

variants of NMF, such as constrained NMF, structured NMF, semi-NMF, and nonnegative matrix
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Fig. 9. The effects of parameter α on real-world networks. The first, second, and third rows are the results

on Karate, Dolphins and Polbooks networks, respectively. And the first, second, and third columns are the

result with α = 1, 2, and 3, respectively. In each plot, the shapes represent the ground-truth communities,

while the colors represent the estimated communities. We can find out that as α grows, the number of com-

munities increases and many communities are divided into smaller sub-communities. In the first column,

the inconsistency between color and shape indicates the wrong prediction. For example, all nodes are cor-

rectly classified in subfigure (a), while the green rectangle (nodes 31 and 40) indicates the wrong prediction

in subfigure (d) .
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tri-factorization (NMTF), to develop a unified approach for rank determination under the NMF

framework. The third area is to adapt the adaptively weighted low-rank regularization for feature

selection as it is able to selectively boost and/or suppressed some columns (features) in NMF.

These attempts will benefit many problems in affective computing, including emotion recognition

and prediction [9, 53–59].
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