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Several semi-supervised community detection algorithms have been proposed recently to improve the
performance of traditional topology-based methods. However, most of them focus on how to integrate
supervised information with topology information; few of them pay attention to which information is
critical for performance improvement. This leads to large amounts of demand for supervised information,
which is expensive or difficult to obtain in most fields. For this problem we propose an active link selection
framework, that is we actively select the most uncertain and informative links for human labeling for the
efficient utilization of the supervised information. We also disconnect the most likely inter-community
edges to further improve the efficiency. Our main idea is that, by connecting uncertain nodes to their
community hubs and disconnecting the inter-community edges, one can sharpen the block structure of
adjacency matrix more efficiently than randomly labeling links as the existing methods did. Experiments on
both synthetic and real networks demonstrate that our new approach significantly outperforms the existing
methods in terms of the efficiency of using supervised information. It needs ~13% of the supervised
information to achieve a performance similar to that of the original semi-supervised approaches.

n real life, the data of many complex systems are modeled as networks. Community structure, i.e., a group of

densely connected subgraphs, has been shown as an important property of networks, although there is not a

general and widely-accepted definition. Community detection becomes one of the most important tasks to
explore and understand how the networks work. Since the emergence of this concept, a large number of
community detection algorithms have been proposed'~. Albeit some of them have achieved good performance,
approaches based solely on network topology can not yield satisfactory results for the following two reasons.
Firstly, the networks are often too complicated to be accurately detected. There usually exist overlapping com-
munities or hierarchical structures in real-world networks. This makes it difficult to accurately determine
community boundary and infer the number of communities. Secondly, the sparsity and noise of the topology
also affect the precision of community detection®”. Many nodes in the networks only have few noisy links, and
hence it is unreliable to determine their affiliations based solely on topology.

To alleviate these aforementioned problems, some semi-supervised community detection algorithms have
been proposed in the last few years®''. By making use of the supervised information or background information,
they significantly improved the performance of traditional topology-based methods. According to the types of the
supervised information, semi-supervised community detection algorithms can be mainly divided into two cat-
egories. One group of them directly utilizes the node labels as the supervised information™'°. Although this is the
most straightforward way to use supervised information, there exists a major drawback: community detection
usually pays much attention to which nodes belong to the same group instead of the specific label of the
community. Thus node label is not the most efficient supervised information in general. Furthermore, it is usually
expensive to obtain the node labels in community detection. For example, in a social media networks, e.g.,
Facebook or Twitter, it is difficult to determine which community a person belongs to based on their profiles
only. In contrast, it is much easier to determine whether two persons belong to the same community from their
profiles. Thus, the other group of semi-supervised community detection algorithms utilizes the link information
as the supervised information®'"**. Using must-link and/or cannot-link information, the performance of com-
munity detection can be significantly improved, especially in networks with unclear structures. Link-based semi-
supervised community detection methods usually focus on how to embed these supervised link information.
They, however, often ignore the problem that which supervised link information is the most important and useful
information for performance improvement, and they only add the randomly selected supervised link informa-
tion. In fact, many nodes may have been correctly classified based on the topology, and it is wasteful and unhelpful
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to add the supervised link information relating to these nodes.
Therefore, these current methods often need large amounts of super-
vised information to achieve the satisfactory performance.

In order to reduce the demand for the supervised information, we
propose an active link selection framework which actively selects
some links for human labelling. Motivated by active learning in
machine learning which actively selects unlabelled data near the
classification plane for human labelling, we find out that the nodes
near the community boundaries are the most uncertain and inform-
ative ones and are critical for accurate community detection. The
main idea is that, by connecting uncertain nodes to their community
hubs and disconnecting the inter-community edges, one can sharpen
the block structure of adjacency matrix more efficiently than ran-
domly labeling links as the existing methods did. Specifically, this
framework consists of three components. First, we conduct a non-
negative matrix factorization (NMF) process on the adjacency matrix
of the original network. Second, we select some uncertain and
informative links for human labeling based on the Connection
Strategy (see Strategy 1). Third, since the added links indicate that
their endpoints belong to the same community, they are more
informative than the normal links in the original network.
Therefore, to further utilize the added links, we perform the
Disconnection Strategy (see Strategy 2). After these three steps, we
obtain the new network topology, based on which we can conduct the
next NMF process. This process is repeated until we obtain the
satisfactory community results. The details of our two strategies
are introduced as follows.

Strategy 1 (Connection Strategy). Based on the result of the current
NME, we select one hub (node with the smallest entropy) for each
community; and select a set of inter-community links, whose
endpoints both are on community boundaries (nodes with the
largest entropy) and belong to different communities. Then, by
human labelling if the two endpoints of a selected link actually
belong to the same community, we will maintain this link;
otherwise, we will disconnect this link. We also ask human to
connect each endpoint to the hub of its own community.

Furthermore, we relax the Strategy 1 to ignore whether the end-
points of selected link belong to different communities. We name
this relaxation of Strategy 1 as Relaxed Strategy 1.

Strategy 2 (Disconnection Strategy). Based on the result of the
current NMF, we disconnect the links between the selected links’
endpoints and the nodes which do not belong to the connected
hubs’ community. The intuitive idea is that, besides the hub, the
endpoints of the selected link (to be labeled) may connect to other
nodes which have different labels with the hub. Then, we have big
reason to disconnect the links between the endpoints and these
nodes.

Furthermore, the NMF algorithms are dependent on the initiali-
zation and need repeat on many different initializations, and itera-
tively conducting many different NMFs will be time-consuming. To
solve this problem, we present a speedup scheme, i.e., taking the
result of previous NMF as the initialization of next NMF process.
The running time of the speedup scheme is shortened to one-
twentieth of the original one. In addition, our framework is near
linear with the size of the network, and can easily be parallelized
and distributed (see the “Complexity analysis and scalability” sec-
tion). Thus, it has the potential to be applied to real large-scale
problems.

To our knowledge, we are the first to design active link selection
strategy for community detection. Although there have been some
previous works on using active learning in community detection,
they all focus on active node selection rather than link selection'>**.
We summarize the main contribution as designing an active link
selection framework as well as its speedup scheme for effective and
efficient semi-supervised community detection.

Results

In this section, we demonstrate the effectiveness and efficiency of our
proposed active link selection framework for semi-supervised com-
munity detection. To this end, we apply it on two types of synthetic
datasets and six widely-used real networks. To verify the efficiency
of the proposed framework, we take a recently proposed semi-
supervised community detection method” as the baseline. This
method randomly selects two nodes in the network, and asks a
human if these two nodes belong to the same community. If the
answer is “yes”, this method adds an edge between them or increases
the edge weight. If the answer is “no”, it removes the edge between
these two nodes or decreases the edge weight. Thus, this method
encodes the labels of the links which are randomly selected without
taking into account the performance impact of the selected links.
Since there are three different strategies in our framework, to illustrate
the details of each strategy on performance improvement, we test on
four strategy combinations: only Connection Strategy (S1), only
relaxed Connection Strategy (rS1), Disconnection Strategy on top
of Connection Strategy (S12) and Disconnection Strategy on top of
relaxed Connection Strategy (rS12). To quantitate the performance,
we make use of normalized mutual information (NMI)' to evaluate
the performance of community detection. Compared to the ground-
truth community label C,, the NMI of the resulted community label
C, from algorithm is:

M=
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where K is the number of communities, # the number of nodes, r;; the
number of nodes in ground-truth community i that are arranged to
the resulted community j, n,"’ the number of nodes in ground-truth
community i and 7> the number of nodes in resulted community j.
Besides, we can use the growth rate of NMI as a function of the
percentage of the added and removed links to measure the efficiency
of different strategy combinations.

Synthetic networks. Firstly, we apply our approach to two types of
synthetic network datasets, i.e., Girvan-Newman (GN) benchmark
networks* and Lancichinetti-Fortunato-Radicchi (LFR) benchmark
networks'®. Each GN network is divided into four non-overlapping
communities each of which has 32 nodes. Each node has 16 edges on
average and connects to Z;, nodes in its own community and Z,,,
nodes in other communities. The community structure is clear when
Zoye 1s small (Z,,, < 5). As Z,,,, increases, however, the community
structure becomes vague and the community detection becomes
challenging. In Figure 1, we give a demonstration to show how our
framework sharpens the block structure of the network adjacency
matrix. As shown in Figure 1(a), the block structure of the
community in GN network with Z,,, = 8 is not clear since there
are too many non-diagonal elements, which means there exist many
inter-community connections. As shown in Figure 1(b) and (c), by
connecting some uncertain nodes with the hubs in their own
communities (Connection Strategy) and disconnecting them with
the nodes, which do not belong to the communities of the
connected hubs (Disconnection Strategy), the block structure
becomes very clear and the community detection task becomes
much easier.

As shown in the first row of Figure 2, compared with the baseline,
all the four strategy combinations can significantly improve the com-
munity detection performance with the same amount of supervised
information. For example, in GN networks with Z,,, = 8, the per-
formance can be improved to over 85% and 95% from 62% by adding
1% labelled links using only Connection Strategy and both
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Figure 1| Adjacency matrix changes. (a) the original adjacency matrix of the GN network with Z,,; = 8, (b) the final adjacency matrix after 50 iterations,

and (c) the differences between the final and original adjacency matrices in
respectively.

Connection Strategy and Disconnection Strategy, respectively. In
contrast, the performance of baseline method only achieves 68%
by adding 1% randomly selected labelled links. The performance
improvement using both the two strategies is ~5 times than that
using the baseline method.

To further demonstrate the efficiency, we apply our approach to
LFR benchmark networks'. Comparing with GN networks, LFR
networks are more complex and challenging. In LFR networks, the

GN networks

which the red and blue elements denote the added and removed edges,

distributions of node degree and community size obey power laws
with parameters y and . At the same time, we can specify the
number of nodes, the fraction of inter-community edges (mixing
parameter p), minimum and maximum community size. In this
paper, we follow experiment setting design by Lancichinetti: set the
number of nodes to 1000, the minimum community size to 10 or 20,
the maximum community size to 5 times the minimum community
size, the exponent of node degree distribution and community size
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Figure 2 | The performance of active link selection framework on synthetic networks. Each curve and error bar represent the average and standard
deviation of ten trials, respectively. The figure (a) and (b) are the results from GN networks with mixing parameter Z,,, = 7 and 8, respectively, while the
figure (c) and (d) are the results from LFR networks with small community size (10-20) and large community size (20—-100), respectively.
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distribution to 2 and 1, respectively. We vary the mixing parameter
from 0.65 to 0.8, since it plays a major role in determining the clarity
of community structure as Z,,, in the GN networks. In the second
row of Figure 2, we plot the performance improvement using differ-
ent link selection strategies on LFR networks with different com-
munity sizes and mixing parameters. We find out that our two
proposed strategies significantly and efficiently improve the com-
munity detection performance, especially on networks with large
mixing parameter and/or large community size. Taking networks
with mixing parameter p = 0.75, minimum and maximum com-
munity size ¢pin = 20, Cmax = 100 as an example, the performance
can be improved to 60% and 86% from 27% by adding 0.4% labelled
links using only Connection Strategy and both Connection Strategy
and Disconnection Strategy, respectively; while the performance
reaches only 29% when using the baseline method. These experi-
ments further illustrate the effectiveness and efficiency of our pro-
posed active link selection framework on synthetic networks.

Quantitative comparisons on real-world networks. In this section,
for quantitative comparison, we apply our proposed active link
selection on 18 widely-used real world networks, as shown in
Table 1. Herein Friendship6 and Friendship7 are the same network
with different ground-truth communities. The Friendship6 classifies
students into different communities based on their grades, while the
Friendship7 divides the grade 9 into two communities, i.e., the white
students and the black students.

First of all, we choose 6 classic networks, i.e. Dolphins, Polbooks,
Football, Friendship6, Friendship7 and Polblogs, for detailed com-
parison. The size of these networks is less than 1500, and we repeat
the experiments 10 times with different initializations. In Figure 3, we
provide the performance of above 4 strategy combinations and the
baseline method on six real-world networks. Each curve is the per-
formance obtained when different percentages of labelled links are
added. It is easy to find out that all the 4 strategy combinations grow
much faster than the baseline method on each of the networks.
Furthermore, S12 and rS12, which are the combination of connec-
tion and disconnection strategy, grow faster than the S1 (and rS1)
which only make use of the Connection Strategy (and its relaxed
version). Taking Dolphins Social Network as an example, the NMI
index of NMF based on the original topology only achieves ~82%.
To achieve 100%, the rS12 and rS1 need 0.5% and 2.5% labelled links,
respectively, while the random semi-supervised method needs more
than 15% labelled links. Taking the School Friendship Network as
another example, if the number of communities is 6, by adding 5%

labelled links, S1 and S12 achieve 86% and 90%, respectively; while
the baseline method only achieve less than 80%. If we take 7 as the
ground-truth number of communities, in order to achieve 92%, rS1
and rS12 need less than 3% and 1% labelled links, while the baseline
method need much more than 13% labelled links.

Although the combinational strategies have the fastest growth
rate at the beginning period of adding labelled links, they keep a
stable status when the number of added links achieves a certain
threshold on Small and medium scale networks. The reason may be
that, although Disconnection Strategy disconnects many inter-
community links, since we use the results from the previous
NMF, it may also disconnect some intra-community links.
Although we can solve this problem by using the ground-truth
labelled links instead of the results from last NMF, this solution
dramatically increases the demand for supervised information,
which is contrary to our original intention. In addition, although
the standard Connection Strategy is more intuitive, the relaxed
Connection Strategy achieves the similar or even better perform-
ance than the standard one, since the answer to whether two nodes
belong to different communities is also from the result of the pre-
vious NMF instead of the ground-truth labels.

To further validate the framework, we compare the performance
of our active link selection framework and the baseline method on 12
large-scale social networks, the sizes of which are in the range of
12,000 to 21,000 (see Table 1). These networks are Facebook social
networks at different universities in U.S. The friendships are undir-
ected, and there are six pieces of person’s metadata which are res-
idence hall, major, second major, class year, former high school and
gender, respectively. As suggested by Traud et al.**, we use the class
year as the ground truth community. For simplicity, we only com-
pare the performance of the rS12 (i.e., Disconnection Strategy on top
of the relaxed Connection Strategy) with that of the baseline method,
as shown in Figure 4. It is easy to find out that, the performance of the
original NMF-based community detection method only achieves less
than 40% on most of the networks (except for NYU network), and the
performance improvement is very small by adding the randomly
selected supervised link information as the baseline method did.
On the other hand, by adopting our proposed framework this per-
formance can be significantly improved. Taking Northeastern net-
work as an example, the performance of the NMF-based method
achieves 38.2%. By adding 0.03%, 0.04%, 0.05% 0.06% and 0.07%
supervised link information respectively, the baseline method which
randomly selects the supervised link information only achieves
39.00%, 39.27%, 39.48%, 39.75% and 39.99%; while our active link

Table 1 | Real-world networks used here
Datasets n m K Descriptions
Karate 34 78 2 Zachary's karate club?®
Dolphins 62 159 2 Dolphin social network'®
Friendshipé 68 220 6 High school friendship network'”
Friendship7 68 220 7 High school friendship network'”
Polbooks 105 441 3 Books about US politics?'
Footballl 15 613 12 American College football*
Polblogs 1,490 16,718 2 Blogs about politics®
Baylor 12,803 679,817 7 Facebook networks at Baylor University?*
USF 13,377 321,214 7 Facebook networks at University of San Francisco?*
Syracuse 13,653 543,982 7 Facebook networks at Syracuse University?*
Temple 13,686 360,795 7 Facebook networks at Temple University?*
Northeastern 13,882 381,935 7 Facebook networks at Northeastern University?*
ucsD 14,948 443,221 7 Facebook networks at University of California, San Diego?*
uc 16,808 522,147 7 Facebook networks at University of California?*
UVA 17,196 789,321 7 Facebook networks at University of Virginia®*
usc 17,444 801,853 7 Facebook networks at University of Southern California?*
NYU 21,679 715,715 7 Facebook networks at New York University?*
UCLA 20,467 747,613 7 Facebook networks at University of California, Los Angeles?*
Maryland 20,871 744,862 7 Facebook networks at University of Maryland?4
| 5:9039 | DOI: 10.1038/5rep09039 4
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Figure 3 | The performance of active link selection framework on 6 real networks. Each curve and error bar represent the average and standard deviation
of ten trials, respectively. The cyan line is the result of baseline method, which adds random selected links. The red and blue lines are the results of our
framework using only Connection Strategy and relaxed Connection Strategy, respectively. The green and magenta lines are the results of our framework

using Disconnection Strategy on top of the Connection Strategy and relaxed Connection Strategy, respectively.
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Figure 4 | The performance of active link selection framework on 12 Facebook networks at United States universities. In each figure, the blue line is the
result of baseline method, while the red line is the result of our framework using Disconnection Strategy on top of the relaxed Connection Strategy.
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Figure 5 | Topologies and detected communities of Dolphin network before and after using the active link selection. The shape square and circle
represent the ground-truth communities are female and male dolphins, respectively. And the color green and purple represent the estimated communities
are female and male dolphins, respectively. In the figure, the red lines denote added must-link and the yellow dashed lines denote the removed links.

selection framework achieves 45.77% 48.70%, 52.82%, 55.09% and
56.19%, respectively. The performance improvement of our frame-
work is ~9 times that of the baseline method.

In summary, from quantitative comparison, we find out that our
proposed active link selection framework needs much fewer super-
vised information than the state-of-the-art random semi-supervised
community detection methods to achieve the same performance. In
other words, the proposed active link selection framework is more
efficient in the use of supervised link information.

Case studies on real-world networks. In this section, we choose 3
networks for case studies and one of them, i.e., the Dolphins Social
Network, for detailed illustration.

As shown in Figure 5(a), the Dolphins Social Network'®, which
was reported by Lusseau, is an undirected social network between 62

dolphins. If two dolphins are together more often than expected by
chance, there exists a link between them. These dolphins are divided
into two communities based on their genders, i.e., male dolphins
(cycle nodes) and female dolphins (rectangle nodes).

As shown in Figure 5, before using our proposed active link selec-
tion framework, nonnegative matrix factorization (NMF) method
based on original network topology cannot correctly classify dol-
phins FL and SN89 as male dolphins, and the NMI of it only achieves
~81%.

Under our framework, we firstly select one hub for each commun-
ity based on the entropy of nodes. TR120 is selected as the hub of
female dolphin community, while Wave is selected as the hub of male
one. We conduct the first round active link selection based on the
result of NMF. According to Strategy 1, we select the link between
dolphins PL and Oscar, which is the link with the largest entropy, for
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human labelling. Since these two nodes belong to the same commun-
ity, we keep this link, and connect them to hub of female community,
i.e., TR120, according to human labels. According to Strategy 2, we
remove the links <PL, Knit>, <PL, DN63> and <Oscar,
Beescratch>, since Knit, DN63 and Beescratch does not belong to
the community of TR120 based on the result of NMF. Having
obtained the new network topology, we run the second NMF based
on the new topology. From the result we find out that dolphin PL can
be correctly classified and the NMI achieves 89%. Thereafter, we
conduct the second round active link selection on the result of the
second NMF. As before, we select link between dolphins SN100 and
SN89 for human labelling. According to the labelling results, we keep
this link, connect them to new hub SMN5 and disconnect link
<SNI00, Beescratch> and <SN89, Web>. Similarly, based on the
new network topology, we run the third NMF. It correctly classifies all
the dolphins, and the NMI achieves 100% now. If we repeat this
process, link <SN9, DN63> will be selected, and corresponding links
will be added and removed. However, it will not affect the final
community detection result any more. The final network topology
and community detection result after using our framework are shown
in Figure 5. In the figure, the red lines denote added must-link and the
yellow dashed lines denote the removed links. From the final network
topology, we find out that active link selection framework separates
dolphin nodes into two disconnected subgraphs, which makes com-
munity detection much easier. From this visualization, we find out
that the proposed strategies can not only select the most uncertain
nodes which significantly affect the detection performance, but also
correctly classify them by using only a few human labelled links.

The American College football network®, which was compiled by
Girvan & Newman, is the network of American football games
between Division IA colleges during regular season Fall 2000.
There are 115 terms represented as nodes, which belong to 12 dif-
ferent conferences. Terms have a link with each other if they played
against in that season. Most terms frequently played against other
terms in the same conference.

As shown in Figure 6, by setting the community number K = 12,
NMEF method can correctly classify 8 communities based on original
network topology. In conference 4 (Conference USA), there is only
one node (TexasChristian), which is not correctly classified, since it
played against more teams in conference 11 (Western Athletic).
There are 8 teams from conference 11 in all the 11 teams it has played
against. However, most of the nodes in conferences 5 (Independents)
and 10 (Sun Belt) are misclassified for the following two reasons.
Firstly, some nodes play against teams in other conference more
frequently than those in their own, such as teams Navy and
NotreDame in conference 5. From the viewpoint of community
detection, this means there are too many inter-community edges.
Secondly, there are some subgroups in a conference, and teams only
play against others in their own subgroup. This makes one commun-
ity be divided into some small communities. For example, conference
10 is divided into two small conferences. From the perspective of
community detection, this community is lack of sufficient intra-
community edges.

As shown in Figure 6(b), by iteratively processing active link selec-
tion 50 times, i.e., adding or removing 150 links, most of the inter-
community links are removed and some important intra-commun-
ity links are added. Taking term BoiseState as an example, since it
only played against 9 terms in other conferences, it is very difficult to
correctly classify it. By connecting it with term LouisianaTech which
is the hub of conference 11 and disconnecting links with the terms
from other conferences, term BoiseState can be correctly classified
into conference 11. Compared with the random semi-supervised
method proposed by Zhang**, which needs adding 1199 labelled links
to correctly classify all the nodes, our proposed active link selection
framework only needs less than 150 labelled links to achieve the same
performance. This demonstrates that our actively selected links are

more critical than randomly selected links and the use of the labelled
links is more efficient.

The School Friendship Network'’, which was compiled from the
National Longitudinal Study of Adolescent Health, is based on self-
reporting from students whose grades range from 7 to 12. According
to the different grades, the number of communities is 6. However,
there are two factors, which make the accurate detection difficult.
Firstly, there are only 4 students (1, 2, 68 and 69) in grade 12, and they
do not densely connect with each other. Secondly, in grade 9, there
are two subgroups corresponding to white and black students.

As shown in Figure 7(a), by setting community number K = 6,
NMF method can neither correctly classify students in grade 9 and 12
nor correctly classify students near the community boundaries. On
one hand, it misclassifies students near the community boundary,
ie., 43, 46, 59 and 64. On the other hand, it divides the grade 9 into
two groups, and one of them is merged with the grade 12. As shown
in Figure 7(b), by using our proposed active link selection strategy
and labelling only 42 links, the above-mentioned two problems are
significantly alleviated. Firstly, all the students near the community
boundary are correctly classified. For example, since students 43 and
46, which belong to grade 8, connect with much more students in
other grades, they are misclassified using original topology-based
method. In contract, by connecting them with the hub of grade 8
(student 52), they are correctly classified based on the modified
topology. Besides, by disconnecting some links between grade 9
and grade 12, we can correctly distinguish these two grades, although
there remain some nodes in grade 9 are classify into grade 12, i.e,,
students 14, 18 and 20. The cause of this phenomenon is that there
does not exit any hub in grade 12, which makes us cannot add some
must-links between hub and the nodes in grade 12. As shown in next
section, we will find out that our proposed framework can correctly
classify all the students by setting community number K = 7 when
using only Strategy 1.

To sum up, these above 3 examples all demonstrate the high
efficiency of our proposed active link selection framework. This
mainly stems from both the high efficient links selection strategy
and high efficient use of labelled information. First, Strategy 1 can
select the most critical links for human labelling. Most of these
selected links are near the community’s boundaries. Second,
Strategy 2 can further make full use of the added links to disconnect
the inter-community edges. Although there are few wrong discon-
nections, the majority of the disconnected links are important for
enhancing the performance. As shown in above four figures, most of
the removed links, which are represented as yellow dashed lines, play
an adverse role in accurate community detection.

Parameters setting. In our proposed active link selection framework,
there are two parameters to be determined. The first is the number of
selected links in Connection Strategy n;,.., and the second is the
number of iterations #;,,. To investigate the impact of #e; on
performance improvement, we conduct parameter tuning on GN
(Girven-Newman) networks, and vary ngp., from 1 to 20. As
shown in Figure 8, as the n,,,, increases, the growth rate slightly
decreases. Thus, we should give priority to small #,,,,. Besides, we
need to perform an accelerated NMF in each iteration, which will
take much more time on large networks. Balancing the growth rate
and running time, we set the n,, as the one tenth of the number of
nodes, i.e., M = 0.1n. For the number of iterations #;,,, we
determine it by stopping the iteration when there are 5 iterations
without membership changes.

Discussion

In this paper, we propose an active link selection framework for
efficient semi-supervised community detection. This framework con-
sists of two components: Connection Strategy and Disconnection
Strategy. By using the Connection Strategy, we interactively select
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Figure 6 | Topologies and detected communities on network Football before and after using the active link selection. The color represents the estimated
communities. In the figure, the red lines denote added must-link and the yellow dashed lines denote the removed links.

uncertain links for human labeling based on the result of nonnegative
matrix factorization. To further exploit the added links, we design the
Disconnection Strategy to disconnect the inter-community links.
These two strategies together can efficiently sharpen the block struc-
ture of the network’s adjacency matrix. Then based on the labelled
links, we modify the network topology and perform the next non-

negative matrix factorization. Compared with the traditional semi-
supervised methods which add the randomly selected supervised
information, our framework actively selects uncertain links for label-
ling, which significantly reduces the demand for supervised informa-
tion and obviously improves the efficiency of the semi-supervised
community detection. Besides, we proposed a speedup scheme to
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accelerate the NMF over the iterations tenfold. The experiments on
two types of synthetic benchmarks and several widely-used real net-
works demonstrate the effectiveness and efficiency of our approach.

There remain some interesting problems related to our work. In
the current work, we should predefine the number of communities as

a prior. However, as we added labelled links, our framework sharpens
the block structure of the networks, which indicates the number of
communities. In future work, we want to further investigate how to
determine the number of community and improve the detection
performance simultaneously. Besides, whether combining the active
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link selection and the active node selection can further improve the
efficiency of the semi-supervised community detection is also what
we are interested in in the future.

Methods

In this section, we first give an overview of our proposed active link selection
framework. Then, we describe the generative model of community detection, which
can be formulated as a nonnegative matrix factorization (NMF) problem, and present
the details of our active link selection strategies based on the result of the NMF
formulation. Finally, we provide a speedup scheme for NMF in our framework.

Overview. In Figure 9, we show the flow chart of our active link selection framework.
In each iteration, we first conduct a NMF according to network topology. Based on
the result of the current NMF, we then apply Strategy 1 (Connection Strategy) to
actively select the most uncertain links for human labelling. Notice that this is an
interactive process instead of just the passive acceptance of labelled links. To further
exploit the obtained label information, we apply Strategy 2 (Disconnection Strategy)
to disconnect inter-community links that may affect the performance. Notice that
Strategy 2 does not require human involvement any more. According to the results
from above two strategies, we modify the network topology, which is the input of the
NMEF in next iteration. This iteration is stopped when there are 5 iteration steps
without membership changes.

Generative model. A network can be modelled as a graph G = (V, E), in which Visa
set of n nodes and E a set of m edges each of which connects two nodes in V. For
simplicity, we assume G is an undirected and unweighted graph whose adjacency
matrix can be represented as a nonnegative symmetric binary matrix A. The element
a;; = 1 ifand only if there exists an edge between nodes i and j, and a;; = 0 forany 1 < i
= n. Besides, we assume there are K communities in the network, which is known as
prior information.

In the generative process of the network'®, a;; is an observed variable which denotes
the probability of existing a connection between nodes i and j, and it is determined by
the probability that they belong to the same community. We define the soft mem-
bership indicator variable x; as the probability that node i belongs to community k.

Under this model, an expected edge <i,j>> can be generated in the following steps.
First we uniformly select a community k. And then community k selects a pair of
nodes, i.e., nodes i and j, with the probability x;x and x;, respectively. Finally these two
nodes form an edge in community k. Summing over all the communities k, the
expected number of edge between nodes i and j can be formulated as

K
ﬁ,‘j = Z x,-kxjk. (2)
k=1

Using the matrix form, the above formula can be rewritten as
A=xx", 3)

in which A denotes the expected adjacency matrix, and X is the soft membership
indicator matrix. As a result, we transform the community detection problem into a
nonnegative matrix factorization (NMF) problem. We make use of square loss
function to measure the difference between the observed edge and the expected
number of edge, and formulate the community detection problem as the following
optimization problem

X= argminHA—A‘r: argmin||A—XXTH2. (4)
X0 X>0

By using gradient descent method introduced by Wang et al.'®, we can obtain the
multiplicative update rule for element x;; as

_ (1, (AX)y
Xik = Xik (2 + (2XXTX),-k> . )

By normalizing, the i row of X, i.e., X; can be seen as the membership probability
distribution of node i. One can classify node i to community k if x; is the largest
element in vector x;.

Active link selection strategies. Since each row of the community membership X
indicates the membership probability distribution of the corresponding node, we use
it as the evidence to find the hubs and the most uncertain nodes in each community.
To design a quantitative measure to select the community hubs and the most
uncertain nodes, we make use of entropy (information entropy) of the membership
probability distribution:

K k
H(x;)=— Y P(xi=k)log P(x;=k)= — > xilog (xi), (6)

k=i k=1

as the criterion. Entropy is a measure to characterize the uncertainty of an event, being
larger for more random event. For example, if the probabilities that one node belongs
to k different communities are equal, i.e., 1/k, the entropy of this node is the largest. In
contrast, if the probability that one node belongs to a specific community is 1, and the
probability that it belongs to other communities is 0, the entropy of that node is the
smallest. Having defined the entropy of a node, the entropy of a link can be defined as
the average of the entropies of its two endpoints. To facilitate description, we provide
the following two definitions.

Definition 1: The hubs of a community are defined as the set of nodes belonging to
this community and having the smallest entropy.

Definition 2: The boundary nodes of a community are defined as the set of nodes
belonging to this community and having the largest entropy.

As shown in the “Results” section, there are two main reasons why many topology-
based community detection methods degrade or fail. The first one is that there exist
many inter-community edges, which seriously break the block structure of the net-
work’s adjacency matrix. Most endpoints of these edges are on the boundaries of

Human Labelling

NMF Based on
Topology

Connection
Strategy

Disconnection
Strategy

Active Link Selection

Modify the Topology

Figure 9| The workflow of the active link selection framework.
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(c) Disconnection Strategy.

communities. They are the most uncertain nodes, and are likely to be misclassified.
Thus, what we should firstly verify using human labelling is the inter-community
edges, whose endpoints are both on the community boundaries. In order to efficiently
improve the performance of community detection, human only needs to label the
links by deciding whether these two nodes belong to the same community rather than
the specific community of each node.

In addition, another reason why nodes are misclassified is that nodes may connect
with more nodes in other communities than in its own. Taking the network in
Figure 10(a) as an example, nodes # and v belong to the community marked as
“orange”, but node v connects with much more nodes in the community marked as
“blue”. Topology-based methods usually classify nodes u and v into the “orange” and
“blue” community, respectively. Even though the link <u,v> is selected as the inter-
community edge for human labelling, we also cannot correctly classify node v into the
“orange” community. To solve this thorny problem, after each NMF process, we
select a hub for each community, and ask human to connect each endpoint to the hub
of its own community. As before, human only needs to decide whether two nodes
belong to the same community. As shown in Figure 10(b), by connecting nodes to
their corresponding hubs, node v will be drawn toward the “orange” community.
Although we can enhance the impact of added links by imposing large weights on
them, we set the weights of all the links to 1 for simplicity. We summarize this
connection strategy as follows:

Strategy 1 (Connection Strategy). Based on the result of the current NMF, we select
one hub (node with the smallest entropy) for each community; and select a set of
inter-community links, whose endpoints both are on community boundaries (nodes
with the largest entropy) and belong to different communities. Then, by human
labelling if the two endpoints of a selected link actually belong to the same
community, we will maintain this link; otherwise we will disconnect this link. We also
ask human to connect each endpoint to the hub of its own community.

Furthermore, since we determine whether the endpoints of selected link belong to
same community only based on the result of NMF instead of the ground-truth. This
decision may be wrong. Thus, we relax the Strategy 1 to ignore whether endpoints of
selected link belong to different communities. We name this relaxation of Strategy 1
as Relaxed Strategy 1.

To further exploit the added links between endpoints and hubs, we also disconnect
the links between the endpoints and other nodes, which do not belong to connected
hubs’ community. The intuitive idea is that, besides the hub, the endpoints of the
selected link (to be labeled) may connect to other nodes which have different labels
with the hub. Then, we have big reason to disconnect the links between the endpoints
and these nodes. As shown in Figure 10(c), since nodes 4, b and ¢ do not belong to the
community of v’s connected hub, the links between v and nodes a, b, ¢ are discon-
nected. We should notice that, although by asking human to label these links we can
obtain completely accurate results, it may need large amounts of human involvement.
Since the aim of our proposed framework is to reduce the demand for supervised
information, here we only use the result of last NMF as the evidence to disconnect
links. Though it may introduce some wrong disconnections, the experimental results
show that this scheme can significantly improve the performance of community
detection. We summarize this disconnection strategy as follows:

Strategy 2 (Disconnection Strategy). Based on the result of the current NMF, we
disconnect the links between the selected links’ endpoints and the nodes which do not
belong to the connected hubs’ community.

By using connection strategy, we can interactively select the most uncertain links
for human labelling based on the result of the NMF. In addition, by adopting dis-
connection strategy, we can make full use of the information inherent in the added
links. These two strategies both significantly and efficiently improve the performance
by sharpening the block structure of the network’s adjacency matrix, i.e., discon-
necting the inter-community links and connecting uncertain nodes with the hub of its
own community.

Speedup Strategy. As mentioned by Wang et al.'®, since the NMF problem in
equation (4) is not convex, the result of gradient descent is dependent on the
initialization. Thus, to obtain the satisfactory result, we usually repeat the iterative
updating rule in (5) using many different initializations (20 times in general) and

choose the result with the smallest error. This will reduces efficiency of the
nonnegative matrix factorization algorithm. Besides, since we need iteratively solve
many different NMFs, this problem becomes much more serious in our framework.
From experiments, we find out that the two consecutive NMFs in our framework
often take the similar network topologies as input, since we only modify the edges
related to 271, nodes. Thus their results should be similar. So we can use the result of
the previous NMF as the initialization of the current one. This makes our algorithm
more efficient for following two reasons. On one hand, the initialization of NMF is
near the final result, so the updating rule only needs few steps to converge to minima.
On the other hand, we do not need repeat it using different initializations. As a result,
our accelerated algorithm only spends less than one twentieth times than before, and
it is also very important on real large networks.

Complexity analysis and scalability. By taking into account the sparsity of the
adjacency matrix A, the complexity of each non-negative matrix factorization
iteration is O((nK + m)K). Connection Strategy needs O(n + m) floating-point
operations to compute the entropy of nodes and edges, O(pm) floating-point
operations to select p most uncertain links, and O(n) floating-point operations to
select one hub for each community. Thus, the complexity of the Connection Strategy
is O(n + pm). The Disconnection Strategy needs O(pd) floating-point operations to
disconnect the most likely inter-community edges, in which d is the average degree of
nodes. In summary, in each iteration, the algorithm needs O((nK + m)K) floating-
point operations to conduct NMF and O(n + pm + pd) floating-point operations to
modify the network topology. Thus, the computational complexity of our framework
is near linear with the size of the network (n or m).

Besides, the three components in our framework, i.e., NMF, Connection Strategy
and Disconnection Strategy, are all easily to be parallelized and distributed. To be
specific, there are many parallel algorithms on NMF proposed recently*>*°. The
computation of the nodes’ and edges’ entropy in the Connection Strategy can be
parallel implemented on multiple machines. And also, the operations in the
Disconnection Strategy do not require complex calculations, and hence can be done
quickly by only one machine.

To sum up, based on the above discussions our new semi-supervised framework
may have the potential to be applied to real large-scale problems.
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