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Improving the Efficiency and 
Effectiveness of Community 
Detection via Prior-Induced 
Equivalent Super-Network
Liang Yang1,2, Di Jin3, Dongxiao He3, Huazhu Fu  5, Xiaochun Cao2 & Francoise Fogelman-
Soulie4

Due to the importance of community structure in understanding network and a surge of interest 
aroused on community detectability, how to improve the community identification performance with 
pairwise prior information becomes a hot topic. However, most existing semi-supervised community 
detection algorithms only focus on improving the accuracy but ignore the impacts of priors on speeding 
detection. Besides, they always require to tune additional parameters and cannot guarantee pairwise 
constraints. To address these drawbacks, we propose a general, high-speed, effective and parameter-
free semi-supervised community detection framework. By constructing the indivisible super-nodes 
according to the connected subgraph of the must-link constraints and by forming the weighted super-
edge based on network topology and cannot-link constraints, our new framework transforms the 
original network into an equivalent but much smaller Super-Network. Super-Network perfectly ensures 
the must-link constraints and effectively encodes cannot-link constraints. Furthermore, the time 
complexity of super-network construction process is linear in the original network size, which makes it 
efficient. Meanwhile, since the constructed super-network is much smaller than the original one, any 
existing community detection algorithm is much faster when using our framework. Besides, the overall 
process will not introduce any additional parameters, making it more practical.

Community structure is ubiquitous in networks of diverse fields, such as social networks, biological networks and 
technological networks. It is the foundational component in understanding complex systems. Many downstream 
tasks, such as link prediction and network embedding, can benefit from the identified community structure. 
Communities are often considered as subgraphs in which nodes are more tightly connected with each other 
than with nodes outside the subgraph, albeit the absence of general and widely-accepted definition of commu-
nity structure across different fields. In the past few decades, many community detection algorithms have been 
proposed1–5. Some of them achieve satisfactory accuracy at the expense of speed, such as nonnegative matrix fac-
torization and modularity maximization based on spectral optimization. However, it has been verified by many 
recent researches that, when the difference between the number of intra and inter community edges is below a 
threshold, merely utilizing the network topology is insufficient to correctly identify the communities6, 7.

In the past few years, the question of improving community detection performance with additional informa-
tion besides the network topology has attracted a surge of interest. In real world, additional information, such 
as node and edge contents, is ubiquitous. Prior information in the form of either node label or pairwise relation-
ship, can be obtained by human labeling depending upon the additional information and domain knowledge. 
Therefore, many semi-supervised community detection algorithms are designed to combine network topology 
information and prior information8–16. Compared with node labels8, 9, pairwise relationships, i.e., must-link and 
cannot-link constraints, are widely accepted and have the following two advantages. First, they can be obtained 
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more easily. Determining whether two nodes belong to the same community is more readily accessible than 
identifying which community a node belongs to. Second, pairwise relationships can be used to represent node 
labels. A pair of nodes with the same node label can be represented through a must-link constraint, while nodes 
with different labels can be represented through a cannot-link constraint. Therefore, semi-supervised community 
detection mainly focuses on how to effectively encode pairwise priors so as to produce significant improvement 
on community detection performance10–16.

According to the acquisition strategies for prior information, most semi-supervised community detection 
algorithms can be divided into two categories, namely passive and active. Given in advance the pairwise prior 
information, passive semi-supervised community detection designs the algorithm to increase the performance as 
much as possible10–14. For example, Zhang et al. modify the network adjacency matrix according to the pairwise 
prior information and apply existing community detection algorithms to the modified network11, 12. Yang et al. 
unify many existing community detection algorithms, including nonnegative matrix factorization and modular-
ity maximization model into a clustering framework in latent space14. To force a pair of nodes with must-link to 
belong to the same community, they encode them to have similar latent space representations by introducing a 
weighted latent space graph regularization. Different from passive techniques, active semi-supervised community 
detection techniques, i.e., semi-supervised community detection based on active learning, assume that pairwise 
prior information is not given in advance and design the algorithm to select pairs of nodes critical for perfor-
mance improvement, for human labeling15, 16. Taking Yang et al.’s work as an example, according to the result 
of nonnegative matrix factorization, they select for human labeling the pair of nodes with largest membership 
uncertainty, i.e., entropy15. Then they modify the adjacency matrix based on the labeled edges. Shi et al. jointly 
consider the maximum uncertainty, maximum impact and minimum redundancy and construct an objective 
function with submodular and monotonic properties that guarantee the greedy algorithm with a high approxi-
mation rate16.

Although the above mentioned semi-supervised methods have significantly improved performance, most 
of them meet common drawbacks that impede the effectiveness and efficiency of community detection. First 
and foremost, all of them only consider how to improve detection accuracy via prior information, but ignore 
how to speed up community detection via the priors. Second, most of the algorithms cannot make sure pairwise 
constraints are met in the detected community structure. For instance, Zhang et al. connect the two nodes with 
must-link and disconnect the nodes with cannot-link11, 12. This strategy only increases the probability that nodes 
with must-link belong to the same community and nodes with cannot-link belong to different communities, 
but it does not guarantee these constraints are satisfied. Third, most methods require tuning additional parame-
ters to ensure effective encoding of the pairwise prior information. For example, Yang’s unified semi-supervised 
framework introduces a parameter balancing the impact of the topology information and priors to maximize the 
performance improvement14. All of these drawbacks limit the application of these methods for problems. Besides, 
most of the semi-supervised algorithms, except Zhang et al.11, 12, are specific algorithms without generalization 
to a wide range of unsupervised community detection algorithms. They may only be applied to few unsuper-
vised community detection algorithms and have limitation on benefiting from the development of community 
detection.

In this paper, to alleviate the afore mentioned issues, especially how to speed up community detection via 
prior information, we propose a novel semi-supervised community detection framework that can improve both 
accuracy and speed of existing community detection algorithms through pairwise prior information. The main 
idea is to construct a super-network based on the network topology (Fig. 1(a)) and pairwise prior information 
(Fig. 1(b)), which is equivalent to the original network topology with smaller size and tight formulation and pre-
serves the must-link pairwise prior information.

In the super-network, each super-node consists of a group of nodes in the original network belonging to the 
same community, and each super-edge between two super-nodes represents the weighted relationship between 
two super-nodes. The overall process of the proposed framework, which is composed of three steps, is shown in 
Fig. 2.

In the first step (Fig. 2(a)), the super-nodes are constructed. Specifically, the connected subgraphs, which are 
the super-nodes in the super-network, are constructed based on the must-link constraints instead of the network 
topology. This guarantees that nodes in the same connected subgraph (super-node) will belong to the same com-
munity. Through this step, the network size, i.e., the number of super-nodes in the super-network, is significantly 
reduced w.r.t. the original network.

In the second step (Fig. 2(b)), the super-network topology, i.e., super-edges, is initialized. If there is at least one 
edge between the nodes of two super-nodes, there is a super-edge between the corresponding super-nodes, and 
the weight of the super-edge should reflect the overall relationship between the two super-nodes. Specifically, the 
super-edge weight should be in proportion to the total number of edges between the nodes of two super-nodes.

In the third step (Fig. 2(c)), the super-network is refined according to the cannot-link constraints. If there is 
a cannot-link constraint between the nodes of two super-nodes, the nodes in the two super-nodes must belong 
to different communities, since the nodes in the same super-node belong to the same community. Therefore, 
we impose that there is a cannot-link constraint between two super-nodes if there is at least one cannot-link 
constraint between their nodes. As Zhang et al. did, we disconnect the super-edges between super-nodes with 
cannot-link constraint. Through this step, the number of super-edges in the network can be dramatically reduced.

After the above three steps, the super-network is constructed with O(M + N) time complexity where N and M 
are the numbers of nodes and edges, separately. Besides, this process is parameter-free. It means that it does not 
require to tune any parameter during the process, which makes the process easy to apply in practice.

The constructed super-network effectively integrates the original network topology information and the pair-
wise prior information. This structure has the following important properties. First, the must-link constraints 
can be perfectly preserved through the framework, since pairs of nodes with must-link constraints are wrapped 
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within indivisible super-nodes. Second, nodes without any pairwise constraints form super-nodes that only con-
tain themselves, and the relationship between these super-nodes is the same as that between corresponding nodes 
in the original network. That is, if there is an edge between them in the original network, this edge remains and 
its weight is 1 in the super-network, while if there is no edge between them in the original network, there does 
not exist any edge between them in the super-network. Third, the relationship between super-nodes is the com-
bination of topology information and cannot-link constraints. On one hand, since the cannot-link constraint 
is much stronger than the network topology, if there exists a cannot-link between two nodes in the original 
network, no super-edge will exist between the corresponding super-nodes. On the other hand, if there does not 
exit a cannot-link between two nodes, the relationship between the super-nodes containing them is determined 
by the original network topology and can be seen as the relationship from a more macro perspective. Besides, 
most of the existing community detection algorithms can be transformed to their semi-supervised versions by 
applying them to the constructed Super-Network to improve both accuracy and speed. On one hand, since the 
structure of the super-network is the effective combination of the original network topology information and the 
pairwise prior information, the performance of community detection should be significantly improved. On the 
other hand, since the number of super-nodes and super-edges is remarkably reduced, the speed of the community 
detection should be significantly reduced.

Results
In this section, we verify the accuracy and the run time of our proposed semi-supervised community detection 
framework (Super-Network). To this end, we apply two widely-used community detection models, i.e., the non-
negative matrix factorization model with multiplicative updating role17 and the modularity maximization model 
with spectral optimization18, 19, to the constructed equivalent super-network. The experiments are conducted on 
two synthetic network benchmarks and several real world networks. To demonstrate its high accuracy and speed, 
we take the framework from Zhang et al.12 as baseline for comparison. Both our approach (Super-Network) and 
Zhang’s (ModTop) modify the network topology according to the pairwise constraints and can be readily used 
in many existing community detection methods. ModTop modifies the network topology by adding weighted 
edges between nodes with the must-link constraint and removing edges with the cannot-link constraint. We set 
the weight of must-link edge to 1 as Zhang et al.12. Normalized Mutual Information (NMI)20 and run time given 
in seconds are used to measure the accuracy (the first column in the following result figures) and efficiency (the 

Figure 1. The network topology (a) and pairwise (must-link and cannot-link) constraints (b). In (b) the black 
solid line and the red dashed line denote the must-link and cannot-link constraints, respectively.
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Figure 2. The overall process of the super-network construction.
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second column in the following result figures), respectively. Considering that different pairwise constraints with 
the same amount may cause different performance improvement, we randomly sample 10 groups for each percent 
and average the resulted accuracy and run time.

Synthetic Network Benchmarks. We test the proposed Super-Network framework on two synthetic net-
work benchmarks, i.e. Girvan-Newman (GN) benchmark4 and Lancichinetti-Fortunato-Radicchi (LFR) bench-
mark21. Each network from GN benchmark is composed of four communities of 32 nodes each. Each node has 16 
edges that include Zin intra-community edges and Zout inter-community edges on average, i.e., Zout + Zin = 16. 
Specifically, Zout mainly determines the clarity of the community structure, and the task of identifying community 
structure becomes difficult as Zout increases. Compared with GN benchmark, LFR benchmark can generate more 
flexible networks whose size, distributions of node degree and community sizes and minimum and maximum 
community size can be specified. Besides, the mixing parameter μ, which is the fraction of inter-community edges 
and is equivalent to 

+
Z

Z Z
out

out in
 in GN, is key to the clarity of community structure and difficulty of identifying com-

munities. In experiments, we set the number of nodes as 1,000, the minimum and maximum community sizes as 
10 and 50, the exponent of degree distribution as 2 and that of community size distribution as 1, as did 
Lancichinetti21. To demonstrate the effectiveness and speedup of our framework on the network with diverse 
community clarities, we vary Zout from 7 to 8 for GN networks and μ from 0.7 to 0.75 and 0.8 for LFR networks. 
On both GN and LFR networks, we apply the nonnegative matrix factorization with multiplicative updating role 
on the Super-Network and the ModTop networks. We further apply the modularity maximization with spectral 
optimization on LFR networks, which is much more complicated, to show the generality of our Super-Network 
framework.

The results are shown in Figs 3, 4 and 5. Figure 3 presents the performance of nonnegative matrix factorization 
(NMF) on GN networks with Zout = 7 (first row) and Zout = 8 (second row). From the first column of Fig. 2 which 
presents the accuracy performance, it can be observed that although both Super-Network and ModTop have 
improved performance with increasing percent of pairwise constraints, NMF with Super-Network achieves supe-
rior NMI accuracy than that with ModTop. Specifically, with 5% pairwise constraints, NMF on Super-Network 
with Zout = 8 achieves 0.96, while that on ModTop only achieves 0.88. This means our Super-Network frame-
work is more effective for pairwise prior information encoding. To evaluate the improvement of speed, we show 
the run time given in seconds in the second column of Fig. 2. NMF upon Super-Network gets apparent speed 
advantage compared with NMF on ModTop with increasing percent of pairwise priors. Particularly, taking the 

Figure 3. Accuracy (NMI) and run time (spent time in second) on GN benchmark networks based on NMF.
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original network with Zout = 8 and 5% pairwise constraints as an example, time spent on Super-Network (0.28 s) 
is almost 10 times smaller than ModTop (2.86 s). This illustrates the high efficiency and speed of our proposed 
Super-Network.

LFR network has a larger structure with more nodes and a topology more complex than GN network, there-
fore the improvement of accuracy and speed on LFR will be more convincing compared with that on GN. In 
Figs 4 and 5, we show the performance on LFR network using NMF and modularity maximization with spectral 
optimization, respectively. In each figure, the three rows are the results on network with μ = 0.7, 0.75 and 0.8, 
respectively. All of the results illustrate consistent improvement on both accuracy and speed get higher perfor-
mance upon Super-Network compared to ModTop, especially on speed. For example, on network with μ = 0.75, 

Figure 4. Accuracy (NMI) and run time (spent time in second) on LFR benchmark networks based on NMF.
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the time of NMF on Super-Network is about 5 seconds which is 35.8 times faster than ModTop (about 179 sec-
onds). The reason why the time spent on Super-Network extremely decreases is that the size of super-network 
becomes smaller with decreasing number of nodes and simplified links between nodes. We obtain similar results 
with higher accuracy and shorter run time as on GN network. In summary, the proposed Super-Network is much 
more effective and efficient in encoding pairwise constraints on synthetic networks.

Real-World Large Networks. We also verify the performance of our proposed Super-Network on 9 real 
world networks with large variance as shown in Table 1. The number of nodes in networks varies from 62 to 3312. 
The comparison results are shown in Figs 6, 7 and 8. As done in the synthetic network benchmark, we conduct 

Figure 5. Accuracy (NMI) and run time (spent time in second) on LFR benchmark networks based on 
modularity maximization with spectral method.
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the NMF on small networks like Dolphins22, Football4, Friendships23 and Polbooks19 and both the NMF and 
modularity maximization with spectral optimization on large networks such as Polblogs24, Cora25 and Citeseer25 
etc. The results shown in Fig. 6 illustrate the results on Friendship6 (first row), Polbooks (second row), Football 
(third row), Dolphins (fourth row) and Friendship7 (fifth row) networks, respectively. The trend of performance 
improvement and speedup is similar with that found in synthetic networks. Figures 7 and 8 are results of NMF 
and modularity maximization with spectral optimization, respectively. Both figures show the results on Polblogs 
(first row), Cora (second row), Citeseer (third row) and Adjnoun18 (fourth row) networks. We can find that on 
Super-Network, both NMF and modularity maximization with spectral optimization are more effective and effi-
cient in encoding the pairwise constraints, and the speedup is more significant on large real world networks than 
on small ones.

Case Study. To make the results more intuitive, we carry out a case study on the Polbooks19 network. The 
results are shown in Fig. 9. In Fig. 9(a), we visualize the topology (gray line), 3% must-link constraints (blue line) 
and 3% cannot-link constraints (red line) in an integrated network. The shape represents ground truth commu-
nities while the color represents the detected communities.

NMF on ModTop network is conducted and obtains detection results shown in Fig. 9(b). It is quite obvious 
that the communities cannot be correctly detected and NMI is 0.55. Figures 9(c) plots the detected results via 
employing NMF based on super-network. It achieves a higher NMI 0.78 that demonstrates the superiority of 
detecting communities upon the super-network. The size of a super-node represents the number of nodes con-
tained inside and the width of super-edge indicates its weight. In contrast to the original network in Fig. 9(a), 
super-network effectively prevents must-link constraints from being broken and greatly decreases the number of 
nodes and edges which significantly speeds up detection. Taking a super-node containing nodes 30, 42 and 78 for 
instance, the merged super-node perfectly meets the must-link constraints among these nodes and is indivisible 
in following steps (nodes 30, 42 and 78 are classified into the same community). Besides, as shown in Fig. 9(c), 
the size of Super-Network (50) is smaller than that of original network (105), which is the main reason why the 
algorithms, such as NMF, on Super-Network are faster than that on the original network and ModTop network. 
In Fig. 9(d) we project the community detection results in Fig. 9(c) upon the original network. The community 
labels of a super-node and its components are consistent. For example, a super-node consisting of nodes 30, 42 
and 78 is classified into “circle” community in the Super-Network, thus nodes 30, 42 and 78 are also classified 
into “circle” community. Compared with the result in Fig. 9(b), detection result in Fig. 9(d) achieves better per-
formance and effectively corrects the wrongly classified nodes. It strongly demonstrates the effectiveness and 
efficiency of the proposed super-network framework.

Discussion
In this paper, we have proposed a novel framework, namely Super-Network, for semi-supervised community 
detection which can remarkably improve both accuracy and speed of community detection. By constructing 
the super-nodes as the connected subgraphs determined by the must-link constraints and forming the weighted 
super-edges based on the original network topology and cannot-link constraints, our framework can effectively 
and efficiently encode the network topology and pairwise prior information into an equivalent super-network. 
Since the super-network contains both the topology and pairwise constraint information, many existing unsuper-
vised community detection algorithms can be directly applied to it turning them into semi-supervised algorithms 
which simultaneously take network topology and pairwise prior information into consideration. From the analy-
sis and experimental results, we find that this semi-supervised super-network framework has the following advan-
tages. First, the effectiveness of encoding pairwise prior is high, since the super-network framework guarantees 
that the must-link constraints are perfectly preserved. Second, the computing speed and the efficiency are very 
high, since it significantly reduces the network size only with linear time complexity. Third, the super-network 

Datasets N M K Descriptions

Dolphins 62 159 2 Dolphin social network

Football 115 613 12 American College 
football

Friendship6 69 220 6 High school friendship

Friendship7 69 220 7 High school friendship 
High school friendship

Polbooks 105 441 3 Books about US politics

Polblogs 1,490 16,718 2 Blogs about US politics

Adjnoum 112 l 2
Word network 
from novel “David 
Copperfield”

Cora 2,708 5,429 7
Publication citation 
dataset from machine 
learning area

Citeseer 3,312 4,732 6
Publication citation 
dataset from Citerseer 
site

Table 1. Real-world networks used here. N, M and K are the numbers of nodes, edges and communities, 
respectively.
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Figure 6. Accuracy (NMI) and run time (spent time in second) on real world networks based on NMF.
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Figure 7. Accuracy (NMI) and run time (spent time in second) on four real world networks based on NMF.
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Figure 8. Accuracy (NMI) and run time (spent time in second) on four real world networks based on 
modularity maximization with spectral method.
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construction process is parameter-free. That is, we do not need to tune any parameter to balance the topology 
and pairwise priors in practice. In summary, the proposed Super-Network is a general, high speed, effective and 
parameter-free semi-supervised community detection framework. The proposed Super-Network still has a few 
weaknesses. First, cannot-link constraints cannot be perfectly guaranteed. That is nodes with cannot-link may be 
assigned to same community. Second, the inconsistency of the pairwise prior information has not been perfectly 
solved. We will carry out research on these issues in the future.

Methods
An undirected network can be represented as a graph G = (V, E) with N nodes = V v v v{ , , , }N1 2  and M edges 

= =E e v v{ } {( , )}ij i j  connecting two nodes vi and vj, as shown in Fig. 1(a). The network topology can be repre-
sented as a binary-valued adjacency matrix = ∈ ×A a{ } {0, 1}ij

N N  where aij = 1 if there exists an edge between vi 
and vj, and aij = 0 otherwise. The must-link and cannot-link prior information can be modeled as sets of pairs 

=ML v v{( , )}i j  and =CL v v{( , )}i j , respectively, as shown in Fig. 1(b). For convenience, we also represent 
cannot-link constraints by a binary-valued matrix = ∈ ×C c{ } {0, 1}ij

N N  where cij = 0 if there is a cannot-link 

Figure 9. Illustrative example on Polbooks network.
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constraint between vi and vj, and cij = 0 otherwise. Besides, we assume that the number of communities K is 
known as a prior.

Super-Network Construction. To simultaneously improve the accuracy and speed of community detec-
tion, we construct an equivalent super-network =G V E( , )s s s . = V v v v{ , , , }s s s

N
s

1 2 s  is the set of Ns super-nodes 
(SNs) each of which contains at least one node in the network G. = =E e v v{ } {( , )}s

ij
s

i
s

j
s  is the set of Ms super-edges 

(SEs) each of which connects two super-nodes vi
s and vj

s in Vs. The super-network requires to be effective and 
efficient in integrating the network topology information and the pairwise prior information. The overall process 
consists of three steps, namely super-node construction, super-network initialization and refinement, as shown 
in Fig. 2.

Super-node Construction. To guarantee that the must-link constraints are perfectly met, a straightforward 
idea is to make the nodes with must-link constraints indivisible. Consequently, we merge the nodes belonging to 
the same community into a super-node as shown in Fig. 2(a). For example, if we know nodes f and d belong to 
the same community and nodes d and a belong to the same community, nodes f, d and a must belong to the same 
community. Thus, we merge them into a super-node SN III. If a node is not included in any must-link constraints, 
it forms itself as a super-node, such as node 1, 7 and e. This process is equivalent to constructing a connected 
subgraph according to the must-link constraints. In the following steps, we treat each super-node as an indivisible 
unit for community detection. The advantages of super-node construction are twofold. On the one hand, the 
must-link constraints are perfectly met since the super-nodes are indivisible. On the other hand, the number of 
super-nodes Ns in the super-network Gs is much less than that of nodes N in the original network G. Thus, the 
community detection algorithms on Gs are much faster than on G. These two advantages make our framework 
effective and efficient on must-link encoding.

Super-network Initialization. Given the constructed super-nodes, we initialize the super-network topol-
ogy, i.e. super-edges, which represents the relationship between super-nodes. Since each super-node consists of 
multiple nodes from the original network, the relationship between two super-nodes should reflect the sum-
marization of relationships between the nodes of the two super-nodes. Intuitively, if there exists no connection 
between the nodes of the two super-nodes, we add no super-edge between these two super-nodes. Otherwise, 
we add a super-edge between these two super-nodes, and set the weight of the super-edge as the total number of 
connections between the nodes of the two super-nodes. For example, as shown in Fig. 2(b), there are 3 connec-
tions between the nodes of SN II and SN III, i.e., the connection between nodes a and b, between nodes b and d 
and that between nodes c and d. Therefore, the weight of the super-edge between SN II and SN III is equal to 3.

Formally, we represent the assignment of nodes to super-nodes by a binary matrix = ∈ ×bB { } {0, 1}pj
N N s

, 
where bpj = 1 if node vp belongs to super-node vj

s and bpj = 0 otheriwse. Then =b a b 1pi pq qj  if and only if bpi = 1, 
bqj = 1 and apq = 1, which means node vp belongs to super-node vi

s, node vq belongs to super-node vj
s and there is 

a link between nodes vp and vq, respectively. It indicates that if there is a link between nodes vp (from super-node 
vi

s) and vq (from super-node vj
s), =b a b 1pi pq qj , and ∑ ∑= = b a bp

N
q
N

pi pq qj1 1  is the total number of links between 
super-nodes vi

s and vj
s. Therefore, we specify the adjacency matrix of the super-network as = ∈ ×{ }aA {0, 1}s

ij
s N Ns s

 
where = ∑ ∑= =a b a bij

s
p
N

q
N

pi pq qj1 1 , i.e.,

= .A B ABs T

Although the elements on the diagonal of As denote the number of links in each super-node, to make the 
structure of As to be similar to A, they are set to 0.

By doing so, the topology of the super-network is initialized and can be regarded as a view of the original 
network topology from the macro viewpoint of super-nodes. The relationship between two super-nodes, each 
of which only consists of one node from the original network, is defined as the same as that between these two 
nodes in the original network. For example, if there exists an edge between nodes 1 and 7 in the original network, 
a super-edge with weight 1 is settled between SN V (only consists node 1) and SN VI (only consists node 7).

Super-network Refinement. After the above two steps, the super-network is constructed by con-
sidering the network topology and must-link constraints. In this step, we refine the super-network topology 
via cannot-link constraints. This step is composed of two sub-steps, i.e., constructing cannot-link constraints 
between super-nodes and applying super-node cannot-link to super-network topology.

First, since nodes in the same super-node must belong to the same community, if there is a cannot-link con-
straint between two nodes from different super-nodes, all the nodes in these two super-nodes must belong to dif-
ferent communities. Therefore, we add a cannot-link constraint between these super-nodes in the super-network, 
if there exists at least one cannot-link constraint between the nodes from these two super-nodes. Formally, as in 
the super-network initialization step, we obtain the cannot-link constraints for super-nodes as

= ={ }cC B CB,s T
ij
s

where C is the original cannot-link constraint matrix and B is the relationship matrix considering nodes and 
super-nodes. The element cij

s is the total number of cannot-link constraints between the nodes in super-nodes vi
s 

and vj
s. For example, since there is a cannot-link between nodes 6 and b as shown in Fig. 1(b), we add a cannot-link 

constraint between SN I (contains node 1) and SN II (contains node b).
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Second, given the cannot link constraints for super-nodes, motivated by Zhang et al., we modify the 
super-network topology by removing super-edges between the super-nodes with cannot-link constraints. 
Since the cannot-link constraint is much stronger than the network topology, it will be implemented no matter 
how large the weight of the super-edge is. Formally, we refine the initialized super-network topology As with 
super-node cannot-link constraints Cs as

= − αA A C 0max( , ),s s s

where α is a large parameter that makes the cannot-link constraint suppress the adjacency matrix As and set to be 
equal to the largest element in As in general. For example, though the super-edge weight between SN I and SN II 
is 2, we remove this super-edge since there exists a cannot-link between them as shown Fig. 2(c).

After the above three steps, i.e., super-node construction, super-network initialization and refinement, our 
super-network is effectively constructed by integrating the network topology information with pairwise con-
straints. Subsequently, we can apply many widely-used community detection algorithms, including symmetric 
nonnegative matrix factorization method or modularity maximization model, on the super-network to detect the 
communities. Due to the smaller numbers of super-nodes and super-edges, the algorithms on the super-network 
will be much faster than on the original network.

Complexity Analysis. Since the equivalent super-network construction consists of three components, we 
analyze their complexities one by one. First, the complexity of super-node construction requires O(ML + N), 
where N and ML are the numbers of nodes and must-link constraints, respectively, according to the complex-
ity of connected subgraphs construction. Second, in super-network initialization, we need to obtain the corre-
sponding super-nodes of each node and accumulate the total number of edges between two super-nodes. These 
two sub-steps respectively require O(N) and O(M) operations where M is the number of edges. Third, in the 
super-network refinement, disconnecting super-nodes with cannot-link constraint consumes O(CL) operations 
where CL is the number of cannot-link constraints. Therefore, the overall complexity is O(M + N + ML + CL). 
Since the number of pairwise constraints is less than that of edges, the overall complexity is reduced to O(M + N). 
As a result, the process of super-network construction will not increase the complexities of most existing commu-
nity detection methods whose complexities are higher than or equivalent to O(M + N).

Inconsistency of Pairwise Prior Information. In the previous discussion, we have obtained the pairwise 
prior information from ground truth and is consistent. However, in practice it may be inconsistent. For exam-
ple, if the prior information indicates there are a must-link between nodes f and d, a must-link between nodes 
f and 7 and a cannot-link between nodes 7 and d, we may find there is inconsistency between these constraints. 
Here, we consider how to extend the Super-Network framework to incorporate the inconsistent pairwise prior 
information. The solution is to consider cannot-link with higher priority than must-link. That is to retain the 
cannot-link constraint and treat the corresponding must-link as normal link. Therefore, in the above inconsist-
ency example, we take the must-link between nodes f and d and the must-link between nodes f and 7 as normal 
links, and remain the cannot-link between nodes 7 and d. This treatment is based on the following observations. 
First, there must be at least one wrong constraint between these nodes, thus all the corresponding constraints 
are not credible. Second, must-link can be perfectly guaranteed by our framework, thus if some of them are not 
credible, we should weaken the strength of the must-link constraints. Third, by treating the must-link as normal 
link, the probability of assigning corresponding nodes to the same community will increase. However, it is also 
possible that they be assigned to different communities according to the network topology. Fourth, although the 
probability of assigning corresponding nodes with cannot-link to different communities will increase, it is also 
possible that they be assigned to the same community according to the network topology. Therefore, we keep the 
cannot-link constraint. We can find that this treatment is a compromise approach to balance the positive and 
negative impacts of untrusted pairwise prior information.
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