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a b s t r a c t 

Community detection is an important task in social network analysis. In community detection, in gen- 

eral, there exist two types of the models that utilize either network topology or node contents. Some 

studies endeavor to incorporate these two types of models under the framework of spectral clustering 

for a better community detection. However, it was not successful to obtain a big achievement since they 

used a simple way for the combination. To reach a better community detection, it requires to realize a 

seamless combination of these two methods. For this purpose, we re-examine the properties of the mod- 

ularity maximization and normalized-cut models and fund out a certain approach to realize a seamless 

combination of these two models. These two models seek for a low-rank embedding to represent of the 

community structure and reconstruct the network topology and node contents, respectively. Meanwhile, 

we found that autoencoder and spectral clustering have a similar framework in their low- rank matrix re- 

construction. Based on this property, we proposed a new approach to seamlessly combine the models of 

modularity and normalized-cut via the autoencoder. The proposed method also utilized the advantages of 

the deep structure by means of deep learning. The experiment demonstrated that the proposed method 

can provide a nonlinearly deep representation for a large-scale network and reached an efficient com- 

munity detection. The evaluation results showed that our proposed method outperformed the existing 

leading methods on nine real-world networks. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

The development of Internet has led to producing more and

ore variety of data, such as online comments, product reviews

nd co-author networks, which have affected all aspects of peo-

le’s lives, and thus the analysis of those data has attracted more

nd more attention of researchers in various fields. One hot topic

n the studies of such social media or online data is to discovery

he underlying structure with group effect, which is the so-called

ommunity structure. The vertices (users) related to the commu-

ities in the network can be divided into groups, in which vertices

ave more multiple connection but the connections are relatively

parse in the whole network. Those individuals or users belonging

o the same community share common profiles or have common

nterests. The identification of communities consisting of users

ith similarity is very important, and has been applied in many

reas, e.g. , sociology, biology and computer science. For example,
∗ Corresponding author. 

E-mail addresses: alfred718china@tju.edu.cn (J. Cao), jindi@tju.edu.cn (D. Jin), 

angliang@iie.ac.cn (L. Yang), jdang@jaist.ac.jp (J. Dang). 

b  

a  

u  

t  

ttps://doi.org/10.1016/j.neucom.2018.01.065 

925-2312/© 2018 Elsevier B.V. All rights reserved. 
n biology, some different units belonging to an organization

ave some related functions that are interconnected with special

tructures to characterize the whole effect of the organization.

he interaction among a set of proteins in a cell can form an RNA

olymerase for transcription of genes. In computer science, finding

he salient communities from an organization of people can create

 guide which helps to web marketing, behavior prediction of

sers belonging to a community and understanding the functions

f a complex system [1] . 

For community detection, some methods have put forward,

hich can be cast as graph clustering. In normalized cut (n-cut)

4] , the Laplacian matrix is the main objective to be processed.

he eigenvectors with a non-zero eigenvalue, which are obtained

y the eigenvalue decomposition (EVD) of graph Laplacian ma-

rix, are treated as graph representation. Some other works can

e also transformed to spectral clustering. For example, the mod-

larity maximization model [10] first constructs a graph that is

ased on feature vectors, and then solves the top k eigenvectors

s network representation for clustering. Here, we can deem mod-

larity matrix as graph Laplacian matrix. We realize that, those

wo methods (i.e. modularity optimization and n-cut) can easily
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Fig. 1. The proposed framework. For community discovery on the attributed network, our input data consists of two parts which are modularity matrix and Markov matrix 

for the topological structure and node contents, respectively. Because of the similarity between spectral methods and autoencoder in terms of an approximation of the 

matrix reconstruction, the network representation is denoted by the low-dimensional encoding in the hidden layer of an autoencoder block. Finally, we achieve the fusion 

of network topology and node contents for community detection. Furthermore, we can append many autoencoder blocks and build a multiple layer deep neural network 

framework. 
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capture topology-based and content-based features by EVD of the

corresponding spectral matrices separately, as shown in Fig. 1 .

However, those methods for community detection are often lim-

ited to obtain the important information about the structure of the

communities in networks. It demonstrates that one of the tech-

niques can overcome the problem, which only consider topologi-

cal structure (or node contents), by fusing the vertex information

(or say node contents) with linkage information for community

detection [2] . 

When considering both topological and content information for

community discovery, we can combine these two objective func-

tions into one in the form of linearity directly. However, some clas-

sical graph embedding methods, such as locally linear embedding

(LLE) [11] , show that the relations among vertices in the real-world

networks are not certainly linear. So, the model based on this lin-

early combination strategy is still limited on real-world networks.

Moreover, although we could get a network representation by fus-

ing those two types of information, the problem in the optimiza-

tion of the combination model is, the low efficiency for deciding

an appropriate ratio of two kinds of information due to manual

tuning such ratios. 

In the recent years, deep learning is used in many areas, such

as speech recognition [6] , image classification [7] and so on. As we

known, neural network is a good framework for nonlinear compu-

tation with the elements that simulate the structure and properties

of neurons [8] . Among them, autoencoder is proposed by Ng [5] ,

which aims to obtain features from the input data. We found that

autoencoder and spectral methods all intent to obtain the low-

dimensional approximation of the corresponding matrix. Based on

this similarity, we adopt autoencoder as a breakpoint method to

solve the disadvantages of linear optimization, and to achieve the

incorporation of these two different spectral methods. 

In order to not only take the advantage of spectral methods

but also achieve the incorporation of linkage and node content

information, we propose an autoencoder-based method for com-

munity detection using the normalized-cut and modularity maxi-

mization. Our work is inspired by the similarity in theory between

autoencoder and spectral methods in terms of getting an intrin-

sic structure of the spectral matrix. The framework of our main
dea is shown in Fig. 1 . We realized that autoencoder is a type

f unsupervised learning methods, and thus only treat the low-

imensional encoding in the hidden layer as the network represen-

ation. In our method, we adopt modularity maximization model

nd normalized-cut to portray linkage and content information,

eparately, and construct the spectral matrices (i.e. modularity ma-

rix and Markov matrix) as the input of the autoencoder. We de-

ign a unified objective function to get the best reconstruction of

he combination matrix that consists of modularity matrix and

arkov matrix, while make use of autoencoder to get a best en-

oding in the hidden layer as the network representation which

s used to finding communities nicely. Furthermore, by building a

ulti-layers autoencoder, we adopt deep autoencoder to obtain a

owerful representation by means of the deep structure, and com-

ine with the intrinsic information of the original data to achieve

n improvement for discovering communities. In total, our frame-

ork has three main contributions as follows: 

• First, in theory both the autoencoder and spectral methods are

related to the low-dimensional approximation of the specified

corresponding matrix, i.e. the modularity matrix and Markov

matrix. This study utilizes the autoencoder to obtain a low-

dimensional encoding which can best reconstruct the joint

matrix consisting of the modularity matrix and the Markov

matrix, and treats this encoding as the graph representations

for community detection. The important point is to propose an

autoencoder-based method that can achieve the joint optimiza-

tion of modularity model and normalized-cut without a seam. 

• Second, this encoding supplies a nonlinear way to integrate

the linkage and content information. This helps to further

improve the performance of community detection, when using

both those two types of information. The autoencoder not only

encodes the important factors of the data in the process of re-

ducing the dimension, but also automatically learns the weight

of the relationship among the various factors to obtain the

minimum of reconstruction error. In this framework, therefore,

the performance improvement of our method is realized by its

self-tuning characteristic, but not depend on adjusting balance

factor. 
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• Furthermore, by stacking a series of autoencoders, we built a

multi-layer autoencoder in favor of enhancing better general-

ization ability of the encoding in the hidden layer. Benefitting

from the deep structure, we get a powerful encoding with both

topological and content information, which can effectively aid

network community detection. 

The rest of the paper is organized as follows. In Section 2 ,

e give a brief review of the related work. The proposed frame-

ork and the relevant algorithms are introduced in Section 3 . Next,

atasets and experimental setting are described in Section 4 , and

ollowed experimental evaluation and the analysis of the balance

actor in this Section demonstrate the effectiveness of the proposed

ew method. The paper is then concluded in Section 5 . 

. Related work 

There exist three aspects of relevant works regarding the topic

ere, which are community detection with topological structure

r content information alone, and the combination of links and

ode contents. As described above, it is not appropriate that node

ommunity memberships are denoted by using the network topol-

gy or content information alone. Combining topology and con-

ent achieves an improvement for community detection, as showed

n studies [1,2,3,17,19,20] . However, they utilized those two types

f information while did not take into account of their nonlin-

ar combination. Besides, although those studies considered both

inkage and content information, they usually modeled two differ-

nt types of information separately, and then balanced these types

f information by using a manually adjusted hyper-parameter. This

ay keep them from the optimal improvement. 

As well-known, the conventional paradigm for generating fea-

ures for vertices is based on feature extraction techniques which

ypically involve some features based on network properties.

mong them, spectral approaches such as normalized cut [4] and

odularity maximization model [10] exploit the spectral prop-

rties of various matrix representations of graphs, especially the

aplacian and adjacency matrices. These methods can be taken as

he dimensionality reduction techniques under linear perspective,

hile they suffer from both nonlinear computation and statisti-

al performance drawbacks. In terms of the collaborative optimiza-

ion, spectral methods are deemed to as eigenvalue decomposition

EVD) of a data matrix, however, it is hard to design a unified

ramework or a general model fusing the different objective func-

ions of the spectral methods without a seam. 

As for deep learning, it has achieved great success in many

pplications. This may because deep neural network (DNN) can

escribe a complicated object using a huge nonlinear space and

lso have better generalization. Recently, there are several stud-

es on community detection using deep learning methods, such

s research works described in [21,34] . Although they improve

he performance via DNN, only the structural or node content

nformation was taken into account in their studies. They did

ot utilize the most important advantage of the DNN, which can

ombine the different modalities altogether. For this reason, we

ocus on incorporating those two kinds of information together for

ommunity detection via the DNN framework. 

. Framework of community detection using deep learning 

To fully utilize the advantages of deep neural network (DNN)

or combining network topology and content information, we

e-examine the properties of the modularity maximization model

nd normalized cut, which are the leading models for community

etection, and re-search the DNN framework to find out a certain

pproach appropriate to realize a seamless combination of the

ifferent modalities. These two models seek for a low-rank em-

edding to represent of the community structure and reconstruct
he network topology and node contents respectively. In the DNN

ramework, we found that autoencoder has similar properties to

pectral clustering in low-rank matrix reconstruction. Based on

his property, we proposed a new approach to seamlessly combine

he models of modularity and normalized-cut via the autoencoder.

he autoencoder-based method is able to take the advantages of

pectral methods and deep representation of the DNN, so that

chieves the joint optimization of modularity and normalized-cut

or community detection based on both links and node contents. 

.1. Spectral methods for community detection 

Many community detection methods have been proposed.

mong them, one type of the most popular methods are the spec-

ral methods. Here, we explain two spectral approaches: modular-

ty maximization and normalized cut. 

.1.1. Modularity maximization model 

The topological structure of a network can be treated as a graph

 = ( V, E ), where V is the collection of vertices containing n nodes

 v 1 ,…, v N }, and E the set of the edges in which each edge connects

wo vertices in V . We treat a nonnegative symmetric binary ma-

rix A = { a i j } ∈ R 

N×N 
+ as the adjacency matrix of G , and set a ij = 1 if

here is an edge between vertex v i and v j , and a ij = 0 otherwise. 

Here, we make use of the modularity model to deal with com-

unity detection with network topology alone. This model is op-

imized through maximizing modularity, which means the division

etween the number of edges in the original graph and the ex-

ected number of edges in a random graph without community

tructure. We can define modularity matrix as B ∈ R 

N×N 
R with el-

ments b ij = a ij – k i k j /2 m , in which k i is the degree of vertex v i and

 the number of edges. Newman [10] also relaxed this problem

hen considering a network with C communities, and then modu-

arity maximization can be transformed to the follow optimization

roblem: 

min 

X ∈ R N×C 
tr 

(
X 

T BX 

)
s.t. tr 

(
X 

T X 

)
= N 

(1) 

here tr ( �) denotes the trace of a matrix, and X = { x i j } ∈ R 

N×C is

n indicator matrix. Based on Rayleigh Quotient [34] , the above

roblem can be solved by extracting the largest C eigenvectors of

he modularity matrix B . In this way, the optimization of modular-

ty is taken as the eigenvalue decomposition of modularity matrix

n terms of the spectral methods. 

.1.2. Normalized-cut 

As to the content information of the network, we portray the

ontent on vertex v i by using a multi-dimensional word vector. We

se S = { s i j } ∈ R 

N×N to represent the similarity matrix of the graph

 , and s ij is measured by using the cosine similarity between the

ord vector of the vertex v i and that of the vertex v j . Also, we have

aken into account of the manifold structure of node content space,

nd dealt with the original similarity matrix by using k - near neigh-

or consistency method in [11] . It preserves the similarity value s ij 
etween vertex v i and each of its k -near neighbor vertices and 0

therwise. 

By now, we got a similarity graph G in the form of similar-

ty matrix S in which s ij denotes the weight of the edge between

ertices v i and v j . So the normalized-cut is defined so that, we

ant to cut the least edges to achieve that vertices belonging to

he same partition have a high similarity while the vertices be-

ween different partitions have a low similarity. In this process, we

easure the degree of vertices in a subset g of graph G by using

 ol(g) = 

∑ 

v i ∈ c s i j . When considering to divide the graph G into C
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groups, the normalized-cut (n-cut) is treated as the optimization

problem in the following: 

min 

Y ∈ R N×C 
tr 

(
Y 

T LY 

)
s.t. Y 

T DY = I 

y i j = 

⎧ ⎨ 

⎩ 

1 √ 

v ol 
(
g j 

) , i f v i ∈ g j 

0 , otherwise 

(2)

Here, let s i = 

∑ 

j s i j be the diagonal elements of the diagonal

matrix D , and the graph Laplacian matrix is set to D 

−1 L . Like the

optimization of modularity model, by relaxing the optimization

problem, the indication matrix Y = { y i j } ∈ R 

N×C can be produced

by eigenvalue decomposition of the Laplacian matrix D 

−1 L . Notice

that D 

−1 L = D 

−1 ( D – S ) = I – D 

−1 S . According to eigenvalue decom-

position of the matrix D 

−1 S , the matrix Y is represented by the

eigenvectors corresponding to the top C eigenvalues of the matrix

D 

−1 S . Here, we set M = D 

−1 S which is the so-called Markov matrix.

3.2. Community detection via autoencoder reconstruction 

As described in Section 3.1 , both modularity maximization

model and normalized cut can be converted into eigenvalue

decomposition of their corresponding matrices. The Eckart-Young-

Mirsky Theorem [9] illustrates this point that the eigenvalue

decomposition of spectral matrix is referred to the low-rank

approximation of a matrix. 

Theorem 1. (Eckart-Young-Mirsky) Given a matrix � ∈ R 

m ×n with a

rank- κ , let the singular value decomposition (SVD) of � be �= P �Q 

T 

where P 

T P = I and Q 

T Q = I . We can optimize this problem 

arg min 

�∈ R m ×n 
‖ 

� − �∗‖ 

2 
F 

s.t. rank ( �∗) = κ
(3)

by using �∗ = P �∗Q 

T . Here, the singular value matrix � only con-

tains the κ largest singular values and 0 otherwise. 

It explains that the SVD of a matrix aims to obtain the best

low-rank approximation of the original matrix. In special, the mod-

ularity matrix B is symmetric. The SVD of B is accomplished by

B = P �P 

T , regarded as the orthogonal decomposition of B where

P 

T P = I and the diagonal elements of the diagonal matrix � are

corresponding to the eigenvalues of B though the eigenvalue de-

composition (EVD) of B . Thus, the indicator matrix X can be ob-

tained by constructing the best rank- k approximation of the matrix

B under the Frobenuis norm. 

As mentioned above, the eigenvalue decomposition is highly re-

lated to autoencoder in terms of matrix reconstruction. And thus,

here we introduce an autoencoder with three layers to obtain a

low-dimensional encoding that often leads to the best reconstruc-

tion of the modularity matrix B . In this autoencoder, from the first

layer to the hidden layer, the encoder is responsible to map the in-

put B into a low-dimensional encoding H 

l = { h l 
i j 
} ∈ R 

r×N in which

the i th column h 

l 
i 

denotes a representation corresponding to vertex

v i in the latent space. 

h 

l 
i = φ( b i ) = sig ( W · b i + d ) (4)

From the hidden layer to the third layer, the decoder maps the

latent representation H 

l to the reconstruction of the input data, 

b 

∗
i = ϕ 

(
h 

l 
i 

)
= sig 

(
W 

∗ · h 

l 
i + d 

∗) (5)

where b i and b 

∗
i 

means the i th column of the modularity matrix B

and that of the reconstruction matrix B 

∗ respectively, and sig ( �) is

an nonlinear mapping function (we adopt sig(x ) = 

1 
1+ e −x in this ar-

ticle). The weight matrices W ∈ R 

r×N , W 

∗ ∈ R 

N×r and the bias vec-

tors d ∈ R 

r×1 , d 

∗ ∈ R 

N×1 are all to be learned in the autoencoder,
here r is the number of nodes in the hidden layer and N the

umber of nodes in the first or the third layer. The autoencoder

an find the low-dimensional representation of a matrix by mini-

izing the reconstruction error between the data in the first layer

nd that in the third layer. 

� 

B = arg min 

� 

δB 

O 

( B , B 

∗) = arg min 

� 

δB 

N ∑ 

i =1 

O 

( b i , ϕ ( φ( b i ) ) ) (6)

here 
� 

δB = { W , d , W 

∗, d 

∗} is the parameter of the autoencoder-

ased model, and N the number of nodes in the first layer. After

raining the autoencoder, one can obtain the parameters W and d ,

nd then get a low-dimensional encoding based on Eq. (4) which

s regarded as the graph representation of this network. 

On the other hand, we can also utilize Markov matrix M as the

nput of autoencoder that achieves community detection with con-

ent information. In this autoencoder, the corresponding loss func-

ion of this reconstruction can be written as 

� 

M 

= arg min 

� 

δM 

O 

( M , M 

∗) = arg min 

� 

δM 

N ∑ 

i =1 

O 

( m i , ϕ ( φ( m i ) ) ) (7)

here 
� 

δM 

= { W , d , W 

∗, d 

∗} denotes the parameter of the

utoencoder-based model to be learned. 

.3. Combination of links and node contents for community detection

ia autoencoder reconstruction 

As described above, either modularity maximization or normal-

zed cut aims to find the low-dimensional representation as the

raph representation in the latent space. Their optimization prob-

ems are as follows: 

rg min 

B ∗∈ R N×N 
‖ 

B − B 

∗‖ 

2 
F (8)

rg min 

M 

∗∈ R N×N 
‖ 

M − M 

∗‖ 

2 
F (9)

So we can adopt the orthogonal decomposition B 

∗ = X �B X 

T and

 

∗ = Y �M 

Y 

T to solve ( 8 ) and ( 9 ), respectively. 

For community detection with both network topology and node

ontents, we design a combination matrix Z = [ B, M ] T which con-

ists of the modularity matrix B for linkage information as well

s Markov matrix M for content information, and then get a low-

imensional encoding that can best lead to approximation of the

ombination matrix for the network representation. 

rg min 

Z ∗∈ R 2 N×N 
‖ 

Z − Z 

∗‖ 

2 
F = arg min 

[ B ∗, M 

∗] 
T 

∥∥[ B , M ] 
T − [ B 

∗, M 

∗] 
T 
∥∥2 

F 
(10)

According to the explanation in [36] , we can construct approxi-

ation in terms of matrix factorization Z 

∗ = PH where all columns

f matrix P are denoted as the basis features and all columns of H

ean the low-dimensional representation for data Z . And thus, we

onvert the optimization problem in ( 10 ) into 

rg min 

H ∈ R r×N 
+ 

‖ 

Z − PH ‖ 

2 
F 

By now, we got a new matrix reconstruction problem for com-

unity detection using the rich data consisting of both network

opology and node contents. 

Based on the above discussions, we first adopt an autoencoder

o obtain a low-dimensional encoding of the combination matrix Z

hile we achieve collective optimization of those two different ob-

ectives. We then deal with each column of the combination matrix

 by fusing the topology-based and the content-based “features”,

nd thus the obtained representation H 

a provides a good way of

ombination of those two types of information. 
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Fig. 2. Construction of a multiple layer deep autoencoder framework for obtaining the deep representation of the graph. The input matrix Z consists of two parts, modularity 

matrix B and Markov matrix M , where the low-dimensional encoding in the hidden layer of an autoencoder block is treated as a community-oriented graph representation. 

The deep autoencoder structure used here does not necessarily consist of only two stacked autoencoders. It can adopt three or more stacked autoencoders. In the experiment, 

the detailed information of the structure of the deep autoencoders is shown in Section 4.5 . 

 

t  

e  

a  

o  

e

h

w  

a  

t  

i

z  

 

l  

b  

p

δ

w  

i  

p

3

 

i  

a

W

W

 

a  

p

w  

n  

b  

c

ρ

 

s

ρ

w  

s

3

 

t  

r  

l  

c  

fi  

g  

t  

t  

d  

l  

o  

c  

S

 

t  

w  

t  
So we use the combination matrix Z as the input of our au-

oencoder. The encoder maps the input data to a low-dimensional

ncoding H 

a = { h 

a 
i 
} ∈ R 

r×N in which its i -th column h 

a 
i 

represents

 representation related to vertex v i . In particular, the i th column

f the combination matrix is denoted as z i = [ b 

T 
i 
, m 

T 
i 

] T . And the

ncoding can be written as 

 

a 
i = φ( z i ) = sig ( W · z i + d ) (11) 

here W ∈ R 

r×2 N is the weight matrix, d ∈ R 

r×1 the bias vector,

nd sig ( �) nonlinear mapping function sig(x ) = 

1 
1+ e −x . Otherwise,

he decoder maps a representation H 

a to the reconstruction of the

nput matrix Z , as follows: 

 

∗
i = ϕ 

(
h 

a 
i 

)
= sig ( W 

∗ · h + d 

∗) (12)

And the parameters W 

∗ ∈ R 

2 N×r and d 

∗ ∈ R 

2 N×1 need to be

earned in the decoder. So in the autoencoder, we can obtain the

est low-dimensional representation by optimizing the following

roblem 

= arg min 

δ
O 

( Z , Z 

∗) = arg min 

δ

N ∑ 

i =1 

O 

( z i , ϕ ( φ( z i ) ) ) (13) 

here δ = { W , d , W 

∗, d 

∗} is the set of the parameters to be learned

n the optimization of this proposed model. The workflow of the

roposed framework is as follows. 

.4. Optimization of the autoencoder-based model 

We apply stochastic gradient descent [35] to solve the problem

n ( 13 ). To be specific, the parameters { W, d, W 

∗, d 

∗} of the model

re updated in each iteration according to: 

 i j = W i j − η · ∂ 

∂ W i j 
O 

( Z , Z 

∗) , d i = d i − η · ∂ 

∂ d i 
O 

( Z , Z 

∗) , 

 

∗
i j 

= W 

∗
i j 

− η · ∂ 

∂W 

∗
i j 

O 

( Z , Z 

∗) , d ∗
i 

= d ∗
i 

− η · ∂ 

∂d ∗
i 

O 

( Z , Z 

∗) , 

Because of the similarity in the inference processing of W, d

nd W 

∗, d 

∗ we only show the inference of the update rules for the

arameters W, d as follows: 

∂ 

∂ W i j 
O 

( Z , Z 

∗) = 

N ∑ 

i =1 

∂ 

∂ W i j 
O 

( z i , ϕ ( φ( z i ) ) ) 

= 

N ∑ 

i =1 

∂ 

∂h 

a 
i 

O 

( z i , ϕ ( φ( z i ) ) ) 
∂ 

∂ W i j 

h 

a 
i = 

N ∑ 

i =1 

ρi z 
T 
i , 
∂ 

∂ d i 
O 

( Z , Z 

∗) = 

N ∑ 

i =1 

∂ 

∂ d i 
O 

( z i , ϕ ( φ( z i ) ) ) 

= 

N ∑ 

i =1 

∂ 

∂h 

a 
i 

O 

( z i , ϕ ( φ( z i ) ) ) 
∂ 

∂ d i 
h 

a 
i = 

N ∑ 

i =1 

ρi , 

here h 

a = W �z i + d , and ρi = 

∂ 
∂h a 

i 
O 

( z i , ϕ ( φ( z i ) ) ) denotes each

ode “responsible” for the whole error. To measure the difference

etween the input data Z and the reconstruction Z 

∗, ρ i in the en-

oder is written as 

i = 

∂ 

∂h 

a 
i 

O 

( z i , ϕ ( φ( z i ) ) ) = −
N ∑ 

i =1 

∂ 

∂h 

a 
i 

O 

(
Z i j − Z ∗i j 

)
· sig ′ 

(
h 

a 
i 

)
, 

While, in the decoder, we have ω i = W 

∗�h + d and the “respon-

ibility” ρ∗
i 

is 

∗
i = 

( 

r ∑ 

i =1 

W 

∗
i j · ρi 

) 

· sig ′ ( z i ) , 

here sig’ ( �) is obtained by taking the derivative of the function

ig ( �). 

.5. Construction of deep autoencoder 

Deep learning is well known for its powerful data representa-

ion capability. By training the neural network layer by layer, the

epresentation produced by each layer will better act on the next

ayer. To benefit from the deep structure, we build a deep autoen-

oder with a series of autoencoders, and train the model in the

rst autoencoder by reconstructing the input matrix Z , and then

et a best latent representation H 

1 ∈ R 

r 1 ×N . And finally, we train

he next autoencoder by reconstructing the H 

1 from the above au-

oencoder, and get a new latent representation H 

2 ∈ R 

r 2 ×N . In this

eep architecture, the number of nodes in the next autoencoder is

ess than that in the above autoencoder, i.e. r 2 > r 1 . The workflow

f this deep framework is shown as Table 1 . Besides, we show the

onfiguration of the number of nodes in the deep autoencoder in

ection 4.5 . 

In the following, we analyze the computational complexity of

he proposed new algorithm. For a standard multilayer perceptron,

hich is the key component of the autoencoder, matrix multiplica-

ions occupy most of the computational time. In a single layer with
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Table 1 

Our algorithm framework. 

Algorithm 

Input 

B = { b i j } ∈ R N×N : Modularity matrix. 

M = D 

−1 S : Markov matrix. 

Output 

H 


 ∈ R r 
×N : The network representation. 

1. Set 
: DNN layers number, r 1 = 2 N, r σ : The number of nodes in layer σ , H 

1 = Z = [ B , M ] T , H 

σ ∈ R r σ ×N is the input to layer σ . 

2. Put the data matrix H 

1 into the deep autoencoder. 

For σ = 1 to 


Build an autoencoder block with three layers, and put the data H 

σ into it. 

Train the autoencoder and obtain the hidden layer u σ using the function ( 13 ). 

Set H 

σ = u σ . 

End 

Table 2 

Real-world datasets. “undirected” means that this is an undirected graph, and “0/1 ′′ 
denotes that the node content information is described by the d -dimensions binary 

vector. V denotes the number of nodes, E the number of edges, and C the number 

of communities. Here we applied all datasets uniformly in form of the undirected 

and unweighted graph. 

Dataset V E Type of G F Type of F C 

Twitter629863 171 796 directed 578 0/1 9 

Texas 187 328 undirected 1,703 0/1 5 

Washington 230 446 undirected 1,703 0/1 5 

Wisconsin 265 530 undirected 1,703 0/1 5 

Facebook107 1045 26,749 directed 576 0/1 7 

Cora 2708 5,429 undirected 1433 0/1 7 

Citeseer 3312 4,732 undirected 3703 0/1 6 

Uai2010 3363 45,006 directed 4972 0/1 19 

PubMed 19,729 44,338 directed 500 0/1 3 
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N input dimensions and N /2 output dimensions, back-propagation

algorithm requires O( N 

2 d /2) floating-point calculations, where d

( d < < N ) is the number of mini-batchs. Besides, when the nodes

are sparsely connected, the time complexity of back-propagation is

reduced to be O( NMd /2), in which M ( M < < N ) is the number of

links. And thus this step needs O( N ) time. Since the output func-

tions of neurons are in general very simple to compute, one can

assume that those costs are constant per neuron. Also, because

the given neural network has N neurons, this step needs O( N )

time. Finally, the proposed new algorithm has the computational

complexity O( N ) which is linear to the number of nodes in large

graphs. 

4. Experiments 

Here we give the comparisons between our algorithm and some

state-of-the-art community detection algorithms on a wealth of

real-world networks. There are also some detailed descriptions

on the baseline methods, networked datasets and experimental

setups. 

4.1. Datasets description 

We test the performance of our method on nine publicly-

available datasets in which each dataset is described as fol-

lows, and the key information of those datasets are listed in

Table 2 . 

Citeseer [22] : This is a citation network of computer science

publications that are labeled as six sub-fields, and thus we set the

number of communities 6. In our predefined graph, nodes stand

for publications and undirected edges indicate the citation rela-

tionships. Content information on each node is stemmed words

from the research paper, which is represented as a 3703 dimen-

sions’ binary vector for a document. To be specific, in the word
ector f ( v i ) of node v i , f ( v i ) = 1 means the j th word in the content

n vertex v i occurred, and f ( v i ) = 1 otherwise. 

Cora [22] : It is also a citation type dataset which includes sci-

nce publications from 7 subfields of machine learning, so the

umber of clusters is set to 7 in the experiments. 

PubMed [22] : The PubMed Diabetes dataset consists of 19,729

cientific publications from three classes. Each publication in this

ataset is described by a tf/idf word vector with 500 unique words.

n this paper, for the unification of dataset format, we adopt 500

imensions’ binary content feature vectors instead of tf/idf word

ector, and set an element to 1 in the content feature vector cor-

esponding to non-zero value of the tf/idf word vector. 

Texas , Washington , Wisconsin [22] : These three subsets are all

escribed by a lot of webpages and links are “generated” by some

ollege students from those 3 Universities. These webpages are

epresented by vertices while the links among the webpages rep-

esent the edges. Vertices are labeled by webpages belonging to

ser’s class. Here, each webpage in those three datasets is de-

cribed by a 1703 dimensions’ binary vector respectively. 

Uai2010 [22] : This is a Wikipedia dataset of Wikipedia articles

hat appeared in the featured list. This dataset includes 3363 docu-

ents and 45,006 links. The documents are from 19 distinct cate-

ories and are represented by the tf/idf weighted vectors. Here, we

ake use of 4972 dimensions’ binary feature vectors instead of the

f/idf vectors. 

Facebook107 , Twitter629863 [23] : Those two datasets are ex-

racted to form ego-networks. The ground-truth of communities

s set up in accordance with the protocol as in [23] . Circles in

hose two datasets are defined as ground-truth. Thus, the number

f groups on those two datasets is set to 7 and 9, respectively. 

.2. Baselines for comparison 

The baselines can be divided into three types: (1) make use of

etwork structural information alone, (2) consider node contents

lone, and (3) utilize both those two types of information. 

In the first class, CNM [24] and Louvian [25] , which adopt

he same greedy optimization as did by modularity maximization

odel, are used to partition network structure. Besides, Infomap

26] , Linkcommn [27] , Clique [13] and BigCLAM [28] are popu-

ar overlapping community detection methods also using network

tructure. 

The second type focuses on modeling the contents on nodes, ig-

oring the network structure. In this class, we chose four methods

hich have their own characteristics, i.e., Affinity Propagation (AP)

29] and DP [30] are state-of-the-art non-parameter clustering al-

orithms, LDA [31] is a well-known topic model for data clustering

lgorithm, and MAC [14] is an overlapping community detection

pproach. 

The third class of methods uses both network structure and

ode contents. They consist of two different types, this is the
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c  
verlapping and non-overlapping methods respectively. There are

wo overlapping algorithms which are CESNA [19] and DCM [32] .

e also consider PCL-DC [33] and Block-LDA [12] , which are non-

verlapping approaches. 

Finally, we also consider some autoencoder-based methods for

omparison. We chose AE-link approach which is our method but

sing links alone, and AE-content approach which is also our ap-

roach but using node contents alone. To be specific, for AE-link

e only set the modularity matrix as the input of the autoencoder,

hile AE-content is a normalized cut-based method optimized via

utoencoder. 

.3. Description for metrics 

In this paper, we focus on community detection with the pre-

efined number of communities. We assume that there are C com-

unities. So the community detection problem is simplified to di-

ide the vertices into C different groups based on the network

opology as well as content information. And thus, the community

etection results are evaluated by measuring the degree of how the

etected labels are consistent with the ground-truth communities.

n the experiments, two sets of labels which are the ground-truth

artitions C ∗ and the detected partitions C̄ are considered. Because

oth overlapping and non-overlapping approaches exist in the

aselines, we quantify the performance of the algorithms by us-

ng two types of performance metrics. One type includes normal-

zed mutual information ( NMI ) and the accuracy ( AC ) for evaluating

isjoint communities, and another type contains Jaccard similarity

 Jaccard ) and F-scores for evaluating overlapping communities. 

1) NMI [15] : there are two sets of labels which are the ground-

truth labels C ∗ and the detected labels C̄ respectively. The enti-

ties c ij of the matrix C denote the number of nodes belonging

to group i of set C ∗, which are also treated as the size of group

j of set C̄ . So, the measure NMI( C ∗, C̄ ) can be written as 

NMI 
(
C ∗, C̄ 

)
= 

−2 · ∑ c C ∗
i =1 

∑ c C̄ 
j=1 

c i j · log 

(
c i j 

c i ·c · j 

)
∑ c C ∗

i =1 
c i · · log 

(
c i ·
N 

)
+ 

∑ c C̄ 
j=1 

c · j · log 
( c · j 

N 

) (14) 

where the set C ∗( ̄C ) includes c C ∗ ( c C̄ ) communities. The value

of NMI( C ∗, C̄ ) gets 1, when the detected labels C̄ are

agreement with the ground-truth labels C ∗. Conversely, we ob-

tain NMI( C ∗, C̄ ) = 0 . 

2) AC [15] : we also introduce a simple measure for evaluate the

performance of algorithms: 

AC 
(
C ∗, C̄ 

)
= 1 −

∣∣| C ∗| − ∣∣C̄ ∣∣∣∣
| C ∗| (15) 

which is the relative error in predicting the number of commu-

nities. 

3) F-scores [16] : we quantify the F-scores between C ∗ and C̄ in term

of measuring the error produced by using the partition C̄ to

predict the partition C ∗. So the F-scores is: 

F − scores 
(
C ∗, C̄ 

)
= 2 ·

precesion 

(
C ∗, C̄ 

)
· recal l 

(
C ∗, C̄ 

)
precesion 

(
C ∗, C̄ 

)
+ recal l 

(
C ∗, C̄ 

) (16) 

Like the text classification tasks, here we treat C ∗ as a set of

relevant” partitions, and C̄ as a set of “retrieved” partitions, so the

recision and recall are defined as: 

pr ecision 

(
C ∗, C̄ 

)
= 

∣∣C ∗ ∩ C̄ 
∣∣

| C ∗| , r ecal l 
(
C ∗, C̄ 

)
= 

∣∣C ∗ ∩ C̄ 
∣∣∣∣C̄ ∣∣ . 

Jaccard [18] : considering the expensive computation, we esti-

ate it as did in [19] . An unbiased estimator of Jaccard similarity
f sets C ∗ and C̄ can be obtained by 

accard 
(
C ∗, C̄ 

)
= 

1 

τ

τ∑ 

i =1 

I 
(
min ( πi ( C 

∗) ) = min 

(
πi 

(
C̄ 
)))

(17) 

here π1 , π2 ,…, πτ are τ permutations drawn randomly from a

amily of min-wise independent permutations defined on the uni-

erse C ∗ and C̄ belong to, and I is the identity function. 

.4. Parameters setting 

Many proposed methods considering both the topological and

ontent information often rely on a balance factor to control the

ffectiveness of incorporating those two kinds of information.

n our input matrix [ M, B ] T , we have a parameter λ, which is

et to 0 < λ< 1, to balance the proportion of those two types of

nformation, i.e. [(1- λ) �M , λ �B ] T . With different values of λ, we

un 10 groups of the experiments on three datasets mentioned

bove, and get the accuracy curve with error bar. The results are

hown in Fig. 3 . 

As we can see, when λ is set up to 0 or 1, the performance of

ur method gets a much lower accuracy than that of our method

ith λ∈ (0, 1). This confirms that, considering both topological

nd content information we can give a clearer view of commu-

ity structure and help to achieve a big improvement for commu-

ity detection. Furthermore, with the variation of λ in the area of

0.1, 0.9], the ratio between topological and content information is

lways variable, but the accuracy curve shows very small fluctu-

tions. This also suggests that, the deep autoencoder provides a

owerful capability for automatically tuning the balance factor. It

ay further mean that the encoding of the hidden layer in an au-

oencoder block can capture the most important information from

he topological and content information, instead of collecting all

nformation on the whole data. Thus, our method, different from

thers also using those two types of information, obtains better

erformance without adjusting the balance factor, and realizes the

alance factor self-tuning. For this reason, we set λ= 0.5 in our ex-

eriments in general. 

As shown in Fig. 2 , we run Kmeans algorithm on the low-

imensional encoding H to perform community detection. In gen-

ral, many existing community detection approaches (especially

hose in the machine learning area) make the automatic determi-

ation of the number of communities as a separately solved prob-

em, i.e. model selection, which has been discussed in many re-

earches [37,38,39] . And also they require a given number ( C ) for

he communities, so did the proposed new method in this work. 

.5. Setups in DNN structure 

We implement the deep autoencoder structure with 2, 3, 4 and

 layers on all datasets for detecting communities. The perfor-

ance is shown in Fig. 4 . In generally, the encoding of the deep

utoencoder structure with 3 layers obtains a better performance

f community detection than that of the deep autoencoder struc-

ure with 2 layers. This means that the deep structure plays an im-

ortant role in yielding a good encoding for clustering. However,

e also found that, in the Washington dataset, the encoding of

he deep autoencoder structure with more layers got a lower NMI

alue. This may because, when the dimension of data decreases

ith the increase of the deep level of this structure, some impor-

ant information hold in the data will be lost, causing the perfor-

ance decrease. And thus, the deep autoencoder structure in this

ork utilize different number of stacked autoencoders for different

eal-world networks. 

Table 3 demonstrates, on all datasets, the node number in each

onfiguration in the deep autoencoders. There are 2 ∼ 4 layers
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Fig. 3. The performance of community detection with variation of the parameter λ for our algorithms on three real-world networks (averaged over 10 repeated experiments). 

Fig. 4. Community detection performance in the deep autoencoder structure with 2, 3, 4 and 5 layers on the nine real-world networks. 

Table 3 

Neural network structures. 

Datasets Layer configuration 

Texas 374–256 

Wisconsin 530–256 

Twitter629863 342–256–128 

Facebook107 2090–1024–512 

Cora 5416–4096–2,048 

Uai2010 6726–4096–2048 

Washington 460–256–128–64 

Citeseer 6624–4096–2048–1024 

PubMed 39458–8192–8192–4096 
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stacked autoencoders in the build-in deep framework, and the

number of nodes in each hidden layer is set to half of that of its in-

put or output layer. Besides, we set sigmoid function as activations

of each layer in the deep autoencoders. For training the model, we

adopted 10 random initializations in the deep autoencoders, and
reated the low-dimensional representation in the hidden layer of

 deep autoencoder as the output. 

.6. Experimental results 

On the datasets, the results measured by four types of eval-

ation metrics are listed in Tables 4–9 . The overlapping results

n Tables 4 and 5 show the comparison of our method and oth-

rs in terms of the overlapping communities, and comparison in

erms of non-overlapping results are listed in Tables 6–9 . In addi-

ion, the average performance of methods is also shown in these

ables. 

As we all know, neural networks with the deep structure have

 powerful learning ability. In Tables 5 and 6 , MAC method has

etter results in most cases than those obtained by AE-link or

E-content methods. This may because, the clustering results, ob-

ained by the non-overlapping community detection methods (e.g.,

E-link or AE-content), got bad accuracy when using the overlap-

ing evaluation metrics. Our methods did not outperform all other
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Table 4 

Comparison of our method and some overlapping methods in terms of F-scores on the nine datasets. Here, bold means the best result, and asterisk corresponds to 

the second-best result. 

Algorithm \ datasets Citeseer Cora Facebook107 PubMed Texas Twitter629863 Uai2010 Washington Wisconsin Avg. 

Link Infomap 0.066 0.3058 0.3565 0.3148 0.1852 0.3761 0.2261 0.1583 0.1859 0.2416 

Linkcomm 0.0492 0.0389 0.1103 0.0689 0.1633 0.242 0.0483 0.135 0.1087 0.1072 

Clique 0.0454 0.1115 0.23 0.0857 0.1201 0.1925 0.0776 0.1432 0.1487 0.1283 

BigCLAM 0.0755 0.1429 0.2915 0.0464 0.1288 0.3382 0.1555 0.1334 0.1185 0.159 

Content MAC 0.4248 0.2385 0.2432 0.5893 0.4997 0.2577 0.2529 0.5798 0.4402 0.3918 

Link + content CESNA 0.176 0.406 0.3386 0.1947 0.2327 0.4082 0.2852 0.1882 0.1921 0.2691 

DCM 0.017 0.0231 0.1246 0.0023 0.14 4 4 0.1874 0.0953 0.1612 0.107 0.0958 

Autoencoder AE-link 0.2866 0.3055 0.2634 0.036 0.2631 0.4622 0.2356 0.1699 0.1022 0.2361 

AE-content 0.3267 0.2864 0.023 0.5633 0.1533 0.3626 0.0346 0.1289 0.1521 0.2257 

Ours 0.3933 ∗ 0.4526 0.4633 0.6621 0.4399 ∗ 0.4055 0.3655 0.5533 ∗ 0.4225 ∗ 0.462 

Table 5 

The comparison of our method and some overlapping methods in terms of Jaccard scores. 

Algorithm \ datasets Citeseer Cora Facebook107 PubMed Texas Twitter629863 Uai2010 Washington Wisconsin Avg. 

Link Infomap 0.035 0.2227 0.271 0.2118 0.1063 0.2504 0.1489 0.0874 0.1075 0.1601 

Linkcomm 0.0744 0.0722 0.0797 0.1668 0.1654 0.1668 0.0474 0.1315 0.3288 0.137 

Clique 0.0242 0.0656 0.23 0.0476 0.0654 0.1116 0.042 0.0783 0.0826 0.083 

BigCLAM 0.0404 0.0797 0.197 0.0238 0.0713 0.2132 0.0896 0.0732 0.0645 0.0947 

Content MAC 0.2768 0.2066 0.1561 0.4184 0.3547 0.2355 0.1511 0.4564 0.2136 0.2744 

Link + content CESNA 0.1066 0.2754 0.2452 0.1082 0.1379 0.2751 0.1738 0.1041 0.1081 0.1705 

DCM 0.0086 0.0117 0.0684 0.0012 0.0838 0.1044 0.0552 0.0898 0.0572 0.0534 

Autoencoder AE-link 0.036 0.3254 0.2966 0.2566 0.0362 0.2239 0.1325 0.0985 0.0023 0.1564 

AE-content 0.2535 0.1189 0.0465 0.3956 0.3455 0.1569 0.1056 0.0685 0.3522 0.2048 

Ours 0.2489 0.4122 0.3024 0.3922 0.3388 0.2725 0.2566 0.3989 ∗ 0.31 ∗ 0.3258 

Table 6 

Comparison of our method and some non-overlapping methods in terms of NMI . 

Algorithm \ datasets Citeseer Cora Facebook107 PubMed Texas Twitter629863 Uai2010 Washington Wisconsin Avg. 

Link Louvain 0.3474 0.3976 0.5582 0.1766 0.2129 0.5464 0.2967 0.2069 0.1914 0.326 

CNM 0.3406 0.4709 0.3884 0.2184 0.0726 0.5305 0.214 0.0791 0.0927 0.2675 

Content AP 0.3169 0.3234 0.2624 0.138 0.284 0.5051 0.3375 ∗ 0.3096 0.2731 0.3016 

DP 0.0197 0.0146 0.1834 0.0136 0.172 0.0514 0.1227 0.2632 0.2157 0.1174 

LDA 0.0257 0.0272 0.1357 0.0265 0.1066 0.3322 0.1104 0.1274 0.1873 0.1199 

Link + content PCL-DC 0.0295 0.195 0.4265 0.2684 0.066 0.5436 0.2692 0.0931 0.0407 0.2147 

Block-LDA 0.0058 0.0158 0.0563 0.007936 0.0353 0.1091 0.0387 0.1187 0.0459 0.0482 

Autoencoder AE-link 0.3043 0.3544 0.4587 0.3421 0.309 0.4467 0.2644 0.2185 0.2518 0.3278 

AE-content 0.222 0.2422 0.2743 0.2184 0.212 0.4045 0.2118 0.3152 0.222 0.258 

Ours 0.3642 0.4177 ∗ 0.5096 ∗ 0.3192 ∗ 0.372 0.5491 0.3197 ∗ 0.315 ∗ 0.3422 0.3899 

Table 7 

Comparison of our method and some non-overlapping methods in AC . 

Algorithm \ datasets Citeseer Cora Facebook107 PubMed Texas Twitter629863 Uai2010 Washington Wisconsin Avg. 

Link Louvain 0.0457 0.0716 0.5774 0.0746 0.1967 0.4938 0.2237 0.1244 0.1489 0.2174 

CNM 0.1907 0.4328 0.6004 0.4067 0.2568 0.6296 0.2449 0.2581 0.2176 0.3597 

Content AP 0.0059 0.0066 0.0418 0.002 0.0656 0.1358 0.0375 0.0737 0.0534 0.0469 

DP 0.1645 0.1935 0.0774 0.1889 0.1202 0.358 0.0506 0.0968 0.1718 0.158 

LDA 0.1118 0.1193 0.4289 0.1232 0.1858 0.2222 0.1704 0.2359 0.3282 0.214 

Link + Content PCL-DC 0.247 0.3778 0.4184 0.6355 0.3825 0.5679 0.2882 0.3917 0.3092 0.402 

Block-LDA 0.2024 0.2574 0.2664 0.3957 0.3989 0.2469 0.1474 0.447 0.3321 0.2994 

Autoencoder AE-link 0.0623 0.2755 0.5069 0.4533 0.4099 0.5213 0.1244 0.1355 0.3675 0.3174 

AE-content 0.1852 0.3266 0.3324 0.3133 0.0212 0.4655 0.2954 0.3655 0.1998 0.2783 

Ours 0.3896 0.452 0.6013 0.2299 0.6543 0.6321 0.4699 0.4962 0.4852 0.4901 

b  

B  

f  

s  

m  

o  

c  

a

 

b  

t  

t  

d  

p  

1  

6  
aselines, such as MAC got better performance on some datasets.

ut actually, by comparing with MAC in terms of the average per-

ormance, our method achieved a gain of 18.73% in terms of Jaccard

cores and a gain of 11.62% in terms of F-scores . Furthermore, our

ethod beats AE-content, AE-link and other baselines using link

r content alone. This observably verifies that our assertions (in-

orporating the topology and content) can indeed help to obtain

n improvement for community detection. 
b  
In general, Tables 6–9 show that our method outperforms all

aselines. On one hand, our method gets a better performance

han that of AE-link and AE-content. It validates that the fusion of

hose two types of information can be very useful for community

etection. On the other hand, with the comparison of the average

erformance of the methods, our method outperforms PDL-DC

0.99% and Block-LDA 28.34% on average. Because in Tables 5 and

 there are the non-overlapping clustering results, they may get a

etter qualification comparison using non-overlapping evaluation
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Table 8 

Comparison of our method and some non-overlapping methods in F-scores . 

Algorithm \ datasets Citeseer Cora Facebook107 PubMed Texas Twitter629863 Uai2010 Washington Wisconsin Avg. 

Link Louvain 0.0453 0.0857 0.353 0.0634 0.1873 0.3704 0.1718 0.133 0.157 0.1741 

CNM 0.1411 0.3286 0.2216 0.2818 0.2083 0.4007 0.1741 0.2062 0.2027 0.2406 

Content AP 0.0089 0.0105 0.0811 0.0022 0.1859 0.2418 0.0529 0.1118 0.0896 0.0872 

DP 0.1251 0.1245 0.0895 0.1445 0.1355 0.1826 0.0549 0.1232 0.151 0.1256 

LDA 0.1347 0.1397 0.1525 0.1628 0.188 0.2294 0.1605 0.2074 0.2415 0.1796 

Link + content PCL-DC 0.2474 0.3891 0.2933 0.6305 0.5071 0.4019 0.2971 0.3366 0.3021 0.3786 

Block-LDA 0.1476 0.155 0.096 0.0147 0.1405 0.0638 0.0607 0.1964 0.1907 0.1184 

Autoencoder AE-link 0.2866 0.3055 0.2634 0.036 0.2631 0.4622 0.2356 0.1699 0.1022 0.2361 

AE-content 0.3267 0.2864 0.023 0.5633 0.1533 0.3626 0.0346 0.1289 0.1521 0.2257 

Ours 0.3933 0.4526 0.4633 0.6621 0.4399 ∗ 0.4055 ∗ 0.3655 0.5533 0.4225 0.4732 

Table 9 

Comparison of our method and some non-overlapping methods in Jaccard . 

Algorithm \ datasets Citeseer Cora Facebook107 PubMed Texas Twitter629863 Uai2010 Washington Wisconsin Avg. 

Link Louvain 0.0239 0.0528 0.2648 0.0341 0.1121 0.2429 0.1085 0.0733 0.0894 0.1113 

CNM 0.0841 0.2455 0.1783 0.1912 0.1212 0.2782 0.1031 0.1198 0.1151 0.1596 

Content AP 0.0045 0.0053 0.0437 0.0011 0.1479 0.1743 0.0278 0.0617 0.0478 0.0571 

DP 0.0697 0.0697 0.0488 0.0845 0.0754 0.1077 0.0285 0.0668 0.0872 0.0709 

LDA 0.0731 0.0759 0.0885 0.0897 0.1059 0.1307 0.0897 0.1185 0.1504 0.1025 

Link + content PCL-DC 0.1437 0.2561 0.1877 0.4613 0.1926 0.2702 0.1917 0.212 0.1826 0.2331 

Block-LDA 0.0809 0.0868 0.0514 0.0074 0.0839 0.0332 0.0328 0.122 0.1134 0.068 

Autoencoder AE-link 0.036 0.3254 0.2966 0.2566 0.0362 0.2239 0.1325 0.0985 0.0023 0.1564 

AE-content 0.2535 0.1189 0.0465 0.3956 0.3455 0.1569 0.1056 0.0685 0.3522 0.2048 

Ours 0.2489 ∗ 0.4122 0.3024 0.3922 0.3388 ∗ 0.2725 ∗ 0.2566 0.3989 0.31 ∗ 0.3355 
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metrics. So this may further validate that, our method, by incorpo-

rating those two kinds of information in terms of the nonlinearity,

obtains a powerful graph representation which really helps to aid

to find communities. 

5. Conclusion 

In this paper, we proposed a new method that fuses the topo-

logical and content information for community detection using the

deep learning framework. This study is inspired by the similarity

between autoencoder and spectral methods in terms of a low-

dimensional approximation of the spectral matrix. The proposed

method provides a nice approach for finding a low-dimensional

encoding of the community structure and achieving collective op-

timization of modularity and normalized-cut without a seam. This

encoding supplies a nonlinear way to integrate the linkage and

content information. As a result, the proposed method has better

performance than the existing methods, also considers network

structure and node contents. Experimental results demonstrate

that the proposed new method provides better representation for

community detection. 

There are several questions to be further investigated in our

method. For example, it would be very interesting to explore the

other approaches of finding the manifold structure of the node

content information space. In the future, we may also develop bet-

ter strategies to apply the autoencoder to incorporate the linkage

and content information, or explore some other ways of incorpo-

rating the topology and node contents from different but better

viewpoints. 
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