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Abstract

Self-supervised learning is introduced to train graph neural networks (GNNs) by
employing propagation-based GNNs designed for semi-supervised learning tasks.
Unfortunately, this common choice tends to cause two serious issues. Firstly, global
parameters cause the model lack the ability to capture the local property. Secondly,
it is difficult to handle networks beyond homophily without label information. This
paper tends to break through the common choice of employing propagation-based
GNNs, which aggregate representations of nodes belonging to different classes and
tend to lose discriminative information. If the propagation in each ego-network
is just between the nodes from the same class, the obtained representation ma-
trix should follow the low-rank characteristic. To meet this requirement, this
paper proposes the Low-Rank Decomposition-based GNNs (LRD-GNN-Matrix)
by employing Low-Rank Decomposition to the attribute matrix. Furthermore, to
incorporate long-distance information, Low-Rank Tensor Decomposition-based
GNN (LRD-GNN-Tensor) is proposed by constructing the node attribute tensor
from selected similar ego-networks and performing Low-Rank Tensor Decomposi-
tion. The employed tensor nuclear norm facilitates the capture of the long-distance
relationship between original and selected similar ego-networks. Extensive experi-
ments demonstrate the superior performance and the robustness of LRD-GNNs.

1 Introduction

Graph Neural Networks (GNNs) have been successfully employed by many fields including computer
vision (CV), natural language processing (NLP), information retrieval (IR), etc [1, 2, 3]. Vanilla
GNNs, such as Graph Convolutional Network (GCN) [4] and Graph Attention Network (GAT) [5],
are designed for semi-supervised node classification task, where part of nodes are labeled. To make
models adaptive to networks beyond hompohily, flexible GNNs with more trainable parameters are
proposed, such as JKNet [6], GCNII [7], H2GCN [8], FAGCN [9] and GPRGNN [10]. The role of
label information is more critical for these flexible GNNs.

Inspired by the superior performance in CV and NLP, self-supervised learning, especially contrastive
learning, is introduced to training GNNs. While a large number of methods are proposed, they can
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be divided into two categories, i.e., contrastive and predictive models. The predictive models, such
as Graph AutoEncoder (GAE) and its variational version (VAGE), MGAE [11], GALA [12] and
GROVER, require data-label pairs, where the labels are self-generated from the data and significantly
different for different tasks. Without the sensitive generated labels, contrastive models, which only
require data-data pairs, attract more attention. The representative graph contrastive learning methods
include DGI [13], GMI [14], MVGRL [15], GRACE [16], GCA [17] and BGRL [18].

Most existing graph self-supervised learning models employ vanilla GNNs designed for semi-
supervised learning with global parameters as encoders. Especially, GCN with one or two layers,
where only the feature mappings are trainable, is the most familiar choice. Unfortunately, this
common choice tends to cause two serious issues. Firstly, global parameters cause the model lack
the ability to capture the local property. For example, the mapping functions in GCN are shared by
all nodes. Without the supervision from labels, the reliability of global parameters is weaker than
that of the local ones. Secondly, it is difficult to handle networks beyond homophily. Most universal
GNNs for networks beyond homophily introduce additional trainable parameters to distinguish
neighbourhoods from different classes with the help of labels, such as GPRGNN and FAGNN.
Without the label information, this process becomes complicated and fallible.

This paper tends to break through the common choice of employing propagation-based GNNs in
self-supervised graph learning. Propagation-based GNNs seek node representation by averaging the
representations of nodes, which may belong to different classes, from neighbourhoods, and thus tends
to lose discriminative information. To overcome this issue, an intuitive and ideal way is to make
the propagation in each ego-network just between the nodes from the same class. By this way, the
obtained representation matrix for ego-network should follow the low-rank characteristic. To meet
this requirement, this paper proposes the Low-Rank Decomposition-based GNNs (LRD-GNN) by
employing Low-Rank Decomposition to the attribute matrix. By directly applying Low-Rank Matrix
Decomposition to the attribute matrix of the ego-network, Low-Rank Matrix Decomposition-based
GNN (LRD-GNN-Matrix) is given.

Furthermore, to incorporate long-distance information, Low-Rank Tensor Decomposition-based
GNN (LRD-GNN-Tensor) is proposed by extending LRD-GNN-Matrix to tensor version. LRD-
GNN-Tensor constructs the node attribute tensor by selecting similar ego-networks and splicing the
attribute matrices of similar ego-networks into 3-way tensor. Motivated by the Tensor RPCA, tensor
nuclear norm is defined as the average of the nuclear norm of all the frontal slices of discrete Fourier
transformation of tensor along the 3-rd dimension. This tensor nuclear norm is equivalent to the
matrix nuclear norm of the block circulant matrix of the tensor, which facilitates the capture of the
long-distance relationship between original ego-network and selected similar ego-networks.

The main contributions of this paper are summarized as follows:

• We point out the necessity of designing specific encoder for self-supervised graph learning.
• We theoretically analyze the low-rank property of the representation matrix in ego-network.
• We proposed Low-Rank Decomposition-based GNNs (LRD-GNN) and its two instances,

LRD-GNN-Matrix and LRD-GNN-Tensor.
• We experimentally evaluate the superior performance and the robustness of LRD-GNN.

2 Notations and Preliminaries

Notations: In this paper, boldface Euler script letters, e.g., A, are utilized to denote tensors. Matrices
are denoted by boldface capital letters, e.g., A; vectors are denoted by boldface lowercase letters, e.g.,
a, and scalars are denoted by lowercase letters, e.g., a. For a 3-way tensor A, its (i, j, k)-th entry is
represented as Aijk or aijk and use A(i, :, :), A(:, i, :) and A(:, :, i) to denote respectively the i-th
horizontal, lateral and frontal slice. The frontal slice A(:, :, i) is denoted compactly as A(i).

Let G = (V, E) denote a graph with node set V = {v1, v2, · · · , vN} and edge set E , where N
is the number of nodes. The topology of graph G can be represented by its adjacency matrix
A = [aij ] ∈ {0, 1}N×N , where aij = 1 if and only if there exists an edge eij = (vi, vj) between
nodes vi and vj . The degree matrix D is a diagonal matrix with diagonal element di =

∑N
i=1 aij

as the degree of node vi. N (vi) = {vj |(vi, vj) ∈ E} stands for the neighbourhoods of node vi. Let
Gi = (Vi, Ei) represents the ego-network around node vi, where Vi = N (vi) ∪ vi and Ei denotes
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Figure 1: Framework of the proposed Low-Rank Decomposition-based GNNs (LRD-GNNs) and
comparison with existing GNNs. (a) One ego-network example. Colors of nodes stand for categories,
while center node, i.e. node 1, is highlight with purple dashed border. (b) Existing propagation-
based GNNs are equivalent to weighted averaging of neighbourhood nodes. (c) Low-Rank Matrix
Decomposition-based GNN (LRD-GNN-Matrix). The propagations between nodes in the same class
tend to make the embedding matrix of node is the ego-network be low-rank. To this end, low-rank
matrix decomposition is applied to the feature matrix of nodes in the ego-network. (d) Low-Rank
Tensor Decomposition-based GNN (LRD-GNN-Tensor). LRD-GNN-Tensor firstly selects ego-
networks, which are similar to the ego-network example. Then, the low-rank tensor decomposition is
applied to the tensor, which consists of the feature matrices from above selected ego-networks.

edges between nodes in Vi. X ∈ RN×F and H ∈ RN×F ′ denote the collections of node attributes
and representations with the ith rows, i.e., xi ∈ RF and hi ∈ RF ′ , corresponding to node vi, where
F and F ′ stand for the dimensions of attribute and representation. For convenience, Xi ∈ R(di+1)×F

and Hi ∈ R(di+1)×F ′ denote collections of attributes and representations of ego-network around vi.

Graph Neural Networks: Most of the Graph Neural Networks (GNNs) follow an aggregation-
combination strategy [3], where each node representation is iteratively updated by aggregating node
representations in the local neighbourhoods and combining the aggregated representations with the
node representation itself as

h̄kv = AGGREGATEk
({

hk−1u |u ∈ N (v)
})
, hkv = COMBINATEk

(
hk−1v , h̄kv

)
, (1)

where h̄kv stands for the aggregated representation from local neighbourhoods. Besides of the
concatenation based implementation, such as GraphSAGE [19] and H2GCN [8], averaging (or
summation) has been widely adopted to implement COMBINATEk(·, ·), such as GCN [4], GAT [5],
GIN [20], etc. Except for the MAX and LSTM implementations in GraphSAGE [19], most of the
GNNs utilize averaging function to implement AGGREGATEk. Therefore, they can be unified as

hkv = σ

((
ckvvh

k−1
v +

∑
u∈N (v)

ckuvh
k−1
u

)
Wk

)
, (2)

where Wk represents the learnable parameters and σ(·) denotes the nonlinear mapping function.

3 Low-Rank Decomposition-based GNN

3.1 Motivations

Existing propagation-based GNNs tend to lose discriminative information. As shown in Figure 1(b)
and Eq. (2), propagation-based GNNs seek node representation by averaging the representations of
nodes from neighbourhoods. Unfortunately, neighbourhoods may belong to different classes from the
center node. Thus, averaging representations of neighbourhood nodes may mix the representation
of center node with representations of nodes from other classes. Especially, this issue is serious
on networks with heterophily. The performance degradation of existing GNNs on networks with
heterophily demonstrates the loss of discriminative information in propagation.

To alleviate this issue, an intuitive and ideal way is to make the propagation in each ego-network just
between the nodes from the same class as shown in Figure 1(c). This can be formulated as

Hi = XiPi, (3)
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where Xi ∈ R(di+1)×F and Hi ∈ R(di+1)×F denote the collections of node attributes and repre-
sentations of ego-network around node vi, i.e. Gi. Pi ∈ R(di+1)×(di+1) is the propagation matrix.
If the propagation is only between the nodes from the same classes, Pi should be block diagonal
matrix, whose rank is the same as the number of class in this ego-network. However, it is difficult to
known the propagation matrix Pi, since the classes of nodes are unknown in self-supervised learning
task. Fortunately, it can be obtain that the rank of Hi is no more than the number of class in this
ego-network, since the rank of Pi is the same as the number of class in this ego-network. Therefore,
the matrix Hi should be low-rank.

3.2 Low-Rank Matrix Decomposition-based GNN

Based on the analysis in pervious subsection, this section proposes the Low-Rank Matrix
Decomposition-based GNN (LRD-GNN-Matrix). Motivated by the Robust PCA (RPCA) [21],
LRD-GNN-Matrix decomposes the attribute matrix Xi into low-rank Hi and sparse Si, i.e.,

argmin
Hi,Si

rank(Hi) + λ||Si||0 s.t. Xi = Hi + Si (4)

where rank(H) is the rank of the matrix H, ||S||0 is the number of non-zero elements in S, i.e., `0
norm, and λ is a parameter for tradeoff between the two terms. Since the rank function and `0 norm
are nonconvex, we can alternatively minimize its convex surrogate as

argmin
Hi,Si

||Hi||∗ + λ||Si||1 s.t. Xi = Hi + Si (5)

where ||H||∗ is the trace norm of H, i.e., the sum of the singular values of H. ||S||1 is the `1 norm,
i.e. the sum of the absolute value of all elements in S. By applying the Augmented Lagrangian
Methods (ALM) [22], the constrained optimization problem in Eqs. (5) can be converted to

F(Hi,Si,Yi, µ) = ||Hi||∗ + λ||Si||1+ < Yi,Xi −Hi − Si > +
µ

2
||Xi −Hi − Si||2F , (6)

where Yi is the Lagrange multipliers for the constraint Xi = Hi + Si. < Y,X >= tr(YX′) stands
for the inner-product of matrix Y and X. This objective function can be optimized via Alternating
Direction Methods of Multipliers (ADMM) [23]. ADMM alternatively updates Hi, Si and Yi by
fixing others. The algorithm details are shown in Appendix. After the low-rank matrix H∗i is obtained,
the row in H∗i corresponding to the node vi is extracted as h∗i as the final representation of node vi.

The proposed LRD-GNN-Matrix possesses two attractive characteristics: (1) Parameter-free: The
above low-rank matrix decomposition is parameter-free. Thus, this procedure does not need the
supervision label, and can be performed under self-supervised learning. (2) Parallelization: The
proposed Low-rank GNNs only need the information of ego-network to obtain representation, and
thus are easy to be parallelized. Thus, it is potential to be applied on large graphs.

3.3 Low-Rank Tensor Decomposition-based GNN

The proposed LRD-GNN-Matrix can partly alleviate the issue of discriminative information loss in
propagation-based GNNs by low-rank representation pursuit. Unfortunately, it is also difficult to
obtain robust and accurate node representations only using information in the ego-network, since the
small number of nodes, which belong to the same class as center node, in the ego-network. Taking
Figure 1(c) as an example, there are only 3 nodes in the ego-network, which belong to the same class
as center node. This issue may be serious on networks with heterophily.

Many recent studies demonstrate that nodes with long distances from the center node can also provide
additional information for center node representation. These distant nodes possess very different
attributes from the center node, even they belong to the same class. Therefore, propagations with
these distant nodes may benefit the robust representation of center node. To this end, this subsection
enhances the LRD-GNN-Matrix by proposing Low-Rank Tensor Decomposition-based GNN (LRD-
GNN-Tensor) as shown in 1(d). LRD-GNN-Tensor constructs the node attribute tensor by selecting
similar ego-networks and splicing the attribute matrices of similar ego-networks into 3-way tensor.
Analogous to the matrix case in Section 3.2, X i ∈ R(di+1)×F×(M+1) and Hi ∈ R(di+1)×F×(M+1)

denote the constructed node attribute tensor and representations tensor for ego-network around node
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vi, where M is the number of selected similar ego-networks. To obtain robust node representation
with the help of selected similar ego-networks, low-rank tensor decomposition is performed on X i

argmin
Hi,Si

||Hi||∗ + λ||Si||1 s.t. X i = Hi + Si (7)

The `1 norm || · ||1, which is the sum of the absolute value of all elements, can be directly extend
from matrix to tensor.

Unfortunately, it is difficult to directly extend nuclear norm from matrix to tensor. Motivated by
the Tensor RPCA (TRPCA) [24, 25], the tenor nuclear norm of a tensor A ∈ Rn1×n2×n3 , denoted
as ||A||∗, is defined as the average of the nuclear norm of all the frontal slices of discrete Fourier
transformation of A along the 3-rd dimension Ā = fft(A, [], 3), i.e.||A||∗ = 1

n3

∑n3

i=1 ||Ā(i)||∗,
where Ā(i) denotes the frontal slice Ā(:, :, i). There exist an important property that the block
circulant matrix can be mapped to a block diagonal matrix in the Fourier domain, i.e.,

(Fn3
⊗ In1

) · bcirc(A) · (F−1n3
⊗ In2

) = Ā (8)

where Fn3 denotes discrete Fourier Transform matrix ⊗ stands for Kronecker product, and

Ā = bdiag(Ā) =


Ā(1)

Ā(2)

. . .
Ā(n3)

 , bcirc(A) =


A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

 .
According to this key property, the tensor nuclear norm is essentially equivalent to the matrix nuclear
norm of the block circulant matrix, i.e.,

||A||∗ =
1

n3

n3∑
i=1

||Ā(i)||∗ =
1

n3
||Ā||∗ =

1

n3
||(Fn3

⊗ In1
) · bcirc(A) · (F−1n3

⊗ In2
)||∗ =

1

n3
||bcirc(A)||∗.

If the selected M similar ego-networks are the ego-networks around nodes vi1 , ..., viM , X i is
constructed by splicing Xi and Xi1 , ...,XiM , and Hi is constructed by splicing Hi and Hi1 , ...,HiM ,
then the tensor nuclear norm of Hi is

||Hi||∗ =
1

M + 1
||bcirc(Hi)||∗ =

1

M + 1

∥∥∥∥∥∥∥∥


Hi HiM · · · Hi1
Hi1 Hi · · · Hi2

...
...

. . .
...

HiM HiM−1
· · · Hi,


∥∥∥∥∥∥∥∥
∗

(9)

which can capture the long-distance relationship between original ego-networ Gi and selected similar
ego-networks Gi1 , ...,GiM . Therefore, compared to LRD-GNN-Matrix, LRD-GNN-Tensor can
exploit long-distance information, and thus obtain robust and accurate node representation. The
detailed algorithm to optimize Eq. (7) is given in Appendix.

4 Experiments

Datasets. Our experiments are conducted on 12 commonly used benchmark datasets, including 6
homophilic graph datasets (i.e., Cora, CiteSeer, PubMed, Wiki-CS, Amazon Computers and Amazon
Photo [26, 27, 28]) and 6 heterophilic graph datasets (i.e., Chameleon, Squirrel, Actor, Cornell, Texas,
and Wisconsin [29]). The statistics of datasets are summarized in Table 1.

Cora, CiteSeer and PubMed [26] are three citation network datasets, where nodes indicate a paper
and each edge indicates a citation relationship between two papers. The labels are the research
topic of papers. Wiki-CS [27] is a reference network constructed based on Wikipedia. The nodes
correspond to articles about computer science and edges are hyperlinks between the articles. Nodes are
labeled with ten classes each representing a branch of the field. Amazon Computers and Amazon
Photo [28] are two co-purchase networks from Amazon. In these networks, each node indicates
a good, and each edge indicates that two goods are frequently bought together. The labels are the
category of goods. Cornell, Texas and Wisconsin [29] are three web page networks from computer
science departments of diverse universities, where nodes are web pages and edges are hyperlinks
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Table 1: Statistics of datasets

Dataset Cora CiteSeer PubMed Wiki-CS Computers Photo Chameleon Squirrel Actor Cornell Texas Wisconsin

# Nodes 2,708 3,327 19,717 11,701 13,752 7,650 2,277 5,201 7,600 183 183 251
# Edges 5,429 4,732 44,338 216,123 245,861 119,081 36,101 217,073 33,544 295 309 499
# Features 1,433 3,703 500 300 767 745 2,325 2,089 932 1,703 1,703 1,703
# Classes 7 6 3 10 10 8 5 5 5 5 5 5

Table 2: Results in terms of classification accuracies (in percent ± standard deviation) on homophilic
benchmarks. The best and runner-up results are highlighted with bold and underline, respectively.

Methods Cora CiteSeer PubMed Wiki-CS Computers Photo

GCN 81.50±1.30 70.30±0.28 78.80±2.90 76.89±0.37 86.34±0.48 92.35±0.25
GAT 82.80±1.30 71.50±0.49 78.50±0.27 77.42±0.19 87.06±0.35 92.64±0.42
MLP 56.11±0.34 56.91±0.42 71.35±0.05 72.02±0.21 73.88±0.10 78.54±0.05

JKNet 81.10±0.00 69.80±0.36 78.10±0.24 79.52±0.21 85.28±0.72 92.68±0.13
H2GCN 80.23±0.20 69.97±0.66 78.79±0.30 79.73±0.13 84.32±0.52 91.86±0.27
FAGCN 77.80±0.66 69.81±0.80 76.74±0.66 74.34±0.53 83.51±1.04 92.72±0.22
GPR-GNN 80.55±1.05 68.57±1.22 77.02±2.59 79.82±0.35 86.71±1.82 92.93±0.26

DeepWalk 69.47±0.55 58.82±0.61 69.87±1.25 74.35±0.06 85.68±0.06 89.44±0.11
node2vec 71.24±0.89 47.64±0.77 66.47±1.00 71.79±0.05 84.39±0.08 89.67±0.12
GAE 71.07±0.39 65.22±0.43 71.7310.92 70.15±0.01 85.27±0.19 91.62±0.13
VGAE 79.81±0.87 66.75±0.37 77.16±0.31 76.63±0.19 86.37±0.21 92.20±0.11

DGI 82.29±0.56 71.49±0.14 77.43±0.84 75.73±0.13 84.09±0.39 91.49±0.25
GMI 82.51±1.47 71.56±0.56 79.83±0.90 75.06±0.13 81.76±0.52 90.72±0.33
MVGRL 83.03±0.27 72.75±0.46 79.63±0.38 77.97±0.18 87.09±0.27 92.01±0.13
GRACE 80.08±0.53 71.41±0.38 80.15±0.34 79.16±0.36 87.21±0.44 92.65±0.32
GCA 80.39±0.42 71.21±0.24 80.37±0.75 79.35±0.12 87.84±0.27 92.78±0.17
BGRL 81.08±0.17 71.59±0.42 79.97±0.36 78.74±0.22 88.92±0.33 93.24±0.29

LRD-GNN-Matrix 82.10±0.24 71.91±0.56 78.50±1.20 80.19±0.18 87.15±0.19 92.31±0.17
LRD-GNN-Tensor 83.74±0.61 72.05±0.69 79.71±0.75 81.43±0.13 89.60±0.18 93.26±0.15

between two web pages. The labels are types of web pages. Chameleon and Squirrel [29] are two
Wikipedia networks where nodes denote web pages in Wikipedia and edges denote links between
two pages. The labels stand for the average traffic of the web page.

For Cora, CiteSeer, and PubMed datasets, we adopt the public splits with 20 labeled nodes per class
for training, 500 nodes for validation and 1000 nodes for testing. For Wiki-CS, Computers and Photo
datasets, we randomly split all nodes into three parts, i.e., 10% nodes for training, 10% nodes for
validation and the remaining 80% nodes for testing. The performance on heterophilic datasets is
evaluated on the commonly used 48%/32%/20% training/validation/testing.

Baselines. To verify the superiority of the proposed LRD-GNN , We compare it with four groups
of baseline methods: (1) The multiple layer perception (MLP) and classic GNN models for node
classification task including vanilla GCN [4] and GAT [5]; (2) GNN models designed for alleviating
over-smoothing issue or networks with heterophily including JKNet [6], GPR-GNN [10], FAGCN [9]
and H2GCN [8]; (3) Conventional self-supervised graph representation learning methods including
DeepWalk [30], node2vec [31], GAE and VGAE [11]; (4) Contrastive self-supervised baselines
including DGI [13], GMI [14], MVGRL [15], GRACE [16], GCA [17] and BGRL [18].

Experimental details. All methods were implemented in Pytorch with Adam Optimizer. We run 10
times of experiments and report the averaged test accuracy with standard deviation. All the parameters
of baselines are tuned to get preferable performance in most situations or the same as authors’ original
implementations. The hyper-parameter search space is: learning rate in {0.1, 0.05, 0.01}, dropout
in {0.2, 0.3, 0.4}. Besides, early stopping with a patience of 200 epochs and L2 regularization with
coefficient in {1E-2, 5E-3, 1E-3} are employed to prevent overfitting.

4.1 Experimental Results

4.1.1 Evaluation on node classification task

Performance Comparison. The mean classification accuracy with the standard deviation on 6
homophilic datasets and 6 heterophilic datasets are presented in Table 2 and Table 3, respectively. We
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Table 3: Results in terms of classification accuracies (in percent ± standard deviation) on heterophilic
benchmarks. The best and runner-up results are highlighted with bold and underline, respectively.

Methods Chameleon Squirrel Actor Cornell Texas Wisconsin

GCN 59.63±2.32 36.28±1.52 30.83±0.77 57.03±3.30 60.00±4.80 56.47±6.55
GAT 56.38±2.19 32.09±3.27 28.06±1.48 59.46±3.63 61.62±3.78 54.71±6.87
MLP 46.91±2.15 29.28±1.33 35.66±0.94 81.08±7.93 81.62±5.51 84.31±3.40

JKNet 58.31±2.76 42.24±2.11 36.47±0.51 56.49±3.22 65.35±4.68 51.37±3.21
H2GCN 59.39±1.98 37.90±2.02 35.86±1.03 82.16±4.80 84.86±6.77 86.67±4.69
FAGCN 63.44±2.05 41.17±1.94 36.81±0.26 81.35±5.05 84.32±6.02 83.33±2.01
GPR-GNN 61.58±2.24 46.65±1.81 35.27±1.04 81.89±5.93 83.24±4.95 84.12±3.45

DeepWalk 47.74±2.05 32.93±1.58 22.78±0.64 39.18±5.57 46.49±6.49 33.53±4.92
node2vec 41.93±3.29 22.84±0.72 28.28±1.27 42.94±7.46 41.92±7.76 37.45±7.09
GAE 33.84±2.77 28.03±1.61 28.03±1.18 58.85±3.21 58.64±4.53 52.55±3.80
VGAE 35.22±2.71 29.48±1.48 26.99±1.56 59.19±4.09 59.20±4.26 56.67±5.51

DGI 39.95±1.75 31.80±0.77 29.82±0.69 63.35±4.61 60.59±7.56 55.41±5.96
GMI 46.97±3.43 30.11±1.92 27.82±0.90 54.76±5.06 50.49±2.21 45.98±2.76
MVGRL 51.07±2.68 35.47±1.29 30.02±0.70 64.30±5.43 62.38±5.61 62.37±4.32
GRACE 48.05±1.81 31.33±1.22 29.01±0.78 54.86±6.95 57.57±5.68 50.00±5.83
GRACE-FA 52.68±2.14 35.97±1.20 32.55±1.28 67.57±4.98 64.05±7.46 63.73±6.81
GCA 49.80±1.81 35.50±0.91 29.65±1.47 55.41±4.56 59.46±6.16 50.78±4.06
BGRL 47.46±2.74 32.64±0.78 29.86±0.75 57.30±5.51 59.19±5.85 52.35±4.12

LRD-GNN-Matrix 60.71±2.21 47.64±1.21 37.22±0.83 78.48±0.36 86.12±2.86 83.13±1.90
LRD-GNN-Tensor 66.27±1.27 55.91±0.91 37.07±0.83 84.73±2.83 87.03±3.97 86.86±3.04
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Figure 2: Node classification performance on graphs with randomly adding noisy edges.

compare the proposed LRD-GNN-Matrix and its tensor version LRD-GNN-Tensor with baselines.
First of all, we observe that LRD-GNN-Tensor outperforms all baseline methods in 10 out of 12
benchmarks and achieves competitive results on the rest 2 benchmarks.

The superior performance indicates the tensor low-rank decomposition can universally benefit
representation learning, since low-rank structure widely exists in diverse real-world graph data. And
the construction of tensors effectively captures the connections among similar nodes. Note that
LRD-GNN outperforms state-of-the-art deep model JKNet on both homophilic and heterophilic
datasets. This demonstrates that shallow-layer information is actually quite abundant for extracting
node representation as for LRD-GNN . Additionally, compared with GPR-GNN, FAGNN and
H2GCN which are all the GNNs designed for processing datasets with heterophily, we observe
that LRD-GNN achieves new state-of-the-art results on all heterophilic datasets. This verifies that
the low-rank structure remains the heterophilic information from the ego-networks instead of the
impairing heterophilic information as processing by averaging operation.

In Table 3, we find that LRD-GNN significantly outperforms conventional and contrastive self-
supervised methods. The main reason is that these self-supervised methods constantly smooth
the representations along heterophilic edges, which destroys the low-rank structure and makes the
representations indistinguishable. In contrast, our method overcomes these issues via low-rank tensor
decomposition, and learns more expressive representations. Besides, it can be observed that LRD-
GNN-Tensor outperforms LRD-GNN-Matrix in most cases, which indicates that combining global
information from distant nodes with the local is necessary. These results suggest that by adopting the
low-rank decomposition in GNNs, our proposed LRD-GNN is more effective and universal than the
previous models on processing datasets with both homophily and heterophily for node classification.

The following experiments are all based on LRD-GNN-Tensor, which is abbreviated as LRD-GNN.
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Figure 3: Node classification performance on graphs with randomly adding noisy attributes.

Table 4: Performance of LRD-GNN under different tensor construction methods

Similar Nodes Data Variants Cora CiteSeer Chameleon Cornell Texas

Attribute

X , AX , A2X 83.74±0.61 72.05±0.69 65.92±1.20 88.95±3.11 88.42±1.29
X 83.55±0.27 71.59±0.91 56.29±0.67 88.15±2.94 87.82±1.28
X , AX 83.62±0.54 71.67±0.60 53.46±1.68 87.89±2.11 87.36±3.68
AX 82.66±0.71 71.30±0.74 47.32±2.66 71.31±1.85 72.78±2.37
AX , A2X 80.32±0.49 70.06±0.65 63.07±1.09 73.05±2.36 73.68±1.66

Structure
X 81.25±0.42 71.65±0.68 55.26±1.29 84.73±1.97 85.78±1.29
X , AX 80.73±0.41 71.03±0.75 45.68±1.35 84.21±1.66 83.68±1.05
X , AX , A2X 78.20±0.65 69.21±0.64 64.27±1.39 83.15±2.68 84.73±3.06

Visualization. To provide an intuitive interpretation, we apply t-SNE to visualize the node embed-
dings obtained by GCN, GAT and LRD-GNN on four datasets. As shown in Figure 4, the clusters of
embeddings of nodes from different classes are marked with various colors. By visually analyzing
the clusters and distribution of the node classification results, we can find the characteristics of
the corresponding models. The clusters of embeddings of different classes processed by GCN are
overlapped, which demonstrates that GCN tends to be under-fitting. The clusters of embeddings
obtained by GAT are also irregular and sharp, especially the poor performance on Chameleon which
indicates that simply aggregating information does not work on homophilic graphs. While the clusters
of embedding obtained by LRD-GNN are more regular and the nodes with the same label exhibit
spatial clustering, which shows the power of LRD-GNN.

4.1.2 Robustness Analysis

In this experiment, we investigate the robustness of LRD-GNN on graph data. We perturb graph
structure and input node attributes by randomly adding noisy edges and attributes respectively, and
test the node classification accuracy on the representations learned from perturbed graphs. We
compare the performance of LRD-GNN with GCN, GAT and GRACE on Cora, CiteSeer and Pubmed
datasets. The classification results under different perturbation rates are shown in Figure 2 and
Figure 3. From Figure 2, we can see that LRD-GNN consistently outperforms the other three methods
under different perturbation rates. Specifically, the proposed LRD-GNN obtains node representations
without propagation and the graph topology is only used to form the ego-network. However, other
methods need to propagate the information based on topology, which indicates that they are more
likely to be affected by corrupted topology information. Therefore, LRD-GNN tends to be more
robust to topology noises than the existing GNNs. Figure 3 reports that LRD-GNN is also superior
to other baselines under attributes perturbation, which can be attributed to the denoising ability of
low-rank decomposition and recovery in LRD-GNN . These experimental results demonstrate the
strong robustness of LRD-GNN against random attacks on graph topology and node attributes.

4.1.3 Ablation Study

To analyze the effectiveness of different tensor construction methods in LRD-GNN , we conduct
experiments on several variants of tensor. We compare the performance of LRD-GNN under different
tensor construction methods, and node classification results with several variants are shown in Table 4.
We mainly investigate methods of constructing tensors from topology and attribute two perspectives:
(1) select nodes with similar attributes; (2) select nodes with similar local structures, and then use
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Figure 4: The visualization for node representations obtained by GCN, GAT and LRD-GNN .
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Figure 5: Node classification results with various model depths on Cora, Citeseer and Wiki-CS.

these nodes’ ego-network matrix in different orders (i.e., X , AX , A2X) to construct tensors, where
each ego-network matrix forms a slice of the target tensor.

From Table 4, we can find that under the same configuration, node embeddings obtained from tensors
constructed by nodes with similar attributes are more expressive than tensors constructed by nodes
with similar local structures, both on the homophilic graphs (Cora and CiteSeer) and heterophilic
graphs (Chameleon, Cornell and Texas). When higher-order information (i.e., A2X) is utilized, the
performance on heterophilic datasets is significantly improved. However, the variant of tensor which
contains AX is not competitive enough compared to other variants on heterophilic graphs, which
indicates that higher-order information is important for representation learning on heterophilic graphs.
In addition, we can observe that tensors that preserve the original node attributes outperform tensors
formed only by node representations obtained by propagation, which indicates that original node
attributes play a prominent role.

4.1.4 Over-smoothing Problem Analysis

To validate whether LRD-GNN can alleviate the over-smoothing problem, we compare the perfor-
mance of LRD-GNN with several representative self-supervised and semi-supervised GNNs under
different model depth. We regard the process of obtaining node representations via TensorRPCA as
a layer of LRD-GNN framework. The node classification results on Cora, CiteSeer and Wiki-CS
are shown in Figure 5. It can be seen that GCN achieves competitive performance at two layers.
As the number of layers increases, the performance of GCN drops rapidly, which indicates that
GCN suffers from over-smoothing seriously. GAT alleviates the over-smoothing issue by introducing
irrelevant multi-channel propagations. Unfortunately, it also becomes over-smoothing after few layers.
DGI and MVGRL, which adopt GCN layer as encoder, also tend to be over-smoothing as depth
increases. Instead, the results of LRD-GNN are stable and higher than other methods on different
types of networks. The reasons are two-folds: one is that the proposed LRD-GNN obtains node
representations without propagation and the graph topology is only used to form the ego-network,
which can prevent node representations from being too similar. Another is that the low-rank decom-
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position in LRD-GNN reduces the impact of noise, which further keeps node representations from
becoming indistinguishable. Through these two designs, when the model goes deep, the performance
of LRD-GNN is significantly better than the above self-supervised and semi-supervised methods,
which indicates that LRD-GNN has a good capability to alleviate over-smoothing.

5 Conclusions

This paper breaks through the common choice of employing propagation-based GNNs, which
aggregate representations of nodes belonging to different classes and tend to lose discriminative
information. Firstly, this paper theoretically shows that the obtained representation matrix should
follow the low-rank characteristic. Then, to meet this requirement, this paper proposes the Low-Rank
Decomposition-based GNNs (LRD-GNN) by employing Low-Rank Decomposition to the attribute
matrix. Furthermore, to incorporate long-distance information, Low-Rank Tensor Decomposition-
based GNN (LRD-GNN-Tensor) is proposed by constructing the node attribute tensor from selected
similar ego-networks and performing Low-Rank Tensor Decomposition. Extensive experiments
demonstrate the superior performance and the robustness to noises of the proposed LRD-GNNs.
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A Algorithm Description of ADMM

We use Alternating Direction Methods of Multipliers (ADMM) to solve convex optimization problem
in RPCA and TensorRPCA , and the details are shown in Algorithm1 and Algorithm2 which are
named Matrix ADMM and Tensor ADMM, respectively.

Algorithm 1: Matrix ADMM
Input: matrix data X , parameter λ.
Initialization: H0 = S0 = Y0 = 0, ρ = 1.1, µ0 = 1e− 3, ε = 1e− 8.
while not converged do

% Singular Value Thresholding %;
1. Update Hk+1 by Hk+1 = arg min

H
‖H‖∗ + µk

2 ‖H + Sk −X + Yk

µk
‖2F ;

% Soft-Thresholding %;
2. Update Sk+1 by Sk+1 = arg min

S
λ‖S‖1 + µk

2 ‖Hk+1 + S −X + Yk

µk
‖2F ;

3. Yk+1 = Hk + µk(Hk+1 − Sk+1 −X) ;

4. Update µk+1 by µk+1 = ρµk ;

5. Check the convergence conditions

‖Hk+1 −Hk‖∞ ≤ ε, ‖Sk+1 − Sk‖∞ ≤ ε, ‖Hk+1 − Sk+1 −X‖∞ ≤ ε;
end

Algorithm 2: Tensor ADMM
Input: tensor data X , parameter λ.
Initialization: H0 = S0 = Y0 = 0, ρ = 1.1, µ0 = 1e− 2, ε = 1e− 5.
while not converged do

% Singular Value Thresholding %;
1. UpdateHk+1 byHk+1 = arg min

H
‖H‖∗ + µk

2 ‖H+ Sk −X + Yk

µk
‖2F ;

% Soft-Thresholding %;
2. Update Sk+1 by Sk+1 = arg min

S
λ‖S‖1 + µk

2 ‖Hk+1 + S − X + Yk

µk
‖2F ;

3. Yk+1 = Hk + µk(Hk+1 − Sk+1 −X ) ;

4. Update µk+1 by µk+1 = min(ρµk, µmax) ;

5. Check the convergence conditions

‖Hk+1 −Hk‖∞ ≤ ε, ‖Sk+1 − Sk‖∞ ≤ ε, ‖Hk+1 − Sk+1 −X‖∞ ≤ ε;
end

B Select Similar Ego-networks

In section 3.3, we enhance LRD-GNN-Matrix to tensor version LRD-GNN-Tensor. The ego-networks
around nodes which are similar with target node are selected to construct tensor. We evaluate
similarity from two perspectives. (1) We select nodes which have similar attributes with target node.
For instance, the Cosine Similarity is used to measure the similarity of attributes between nodes. (2)
We select nodes which have similar local structures with target node. We use the Shannon entropy
value of ego-network to measure local structure similarity. For the ego-network Gi = (Vi, Ei) around
vi, the Shannon entropy value H(Gi) is defined as

H(Gi) = −
∑
v∈Vi

P (v) logP (v) (10)

where P (v) is the probability of the random walking visiting v in ego-network. Then, we choose
several nodes’ ego-networks that are close to the Shannon entropy value of the central node to
construct tensor.
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Besides, to combine information from different orders, we also utilize the selected nodes’ ego-
networks after propagation(i.e.,AX,A2X) as part of the tensor. The specific methods for constructing
tenosr and the performance have been presented in section 4.1.3 Ablation Study.
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