
OPEN: Orthogonal Propagation with Ego-Network
Modeling

Liang Yang 1,∗, Lina Kang 1,∗, Qiuliang Zhang 1,∗, Mengzhe Li 1, Bingxin Niu 1,
Dongxiao He 2,†, Zhen Wang 3,4, Chuan Wang 5, Xiaochun Cao 6, Yuanfang Guo 7

1School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
2College of Intelligence and Computing, Tianjin University, Tianjin, China

3 School of Artificial Intelligence, OPtics and ElectroNics (iOPEN),
Northwestern Polytechnical University, Xi’an, China

4School of Cybersecurity, Northwestern Polytechnical University, Xi’an, China
5State Key Laboratory of Information Security, IIE, CAS, Beijing, China

6School of Cyber Science and Technology, Sun Yat-sen University, Shenzhen, China
7School of Computer Science and Engineering, Beihang University, Beijing, China

yangliang@vip.qq.com, itkanglina@163.com, 3463194784@qq.com
limengzhefree@foxmail.com, niubingxin666@163.com, hedongxiao@tju.du.cn

w-zhen@nwpu.edu.cn,{wangchuan,caoxiaochun}@iie.ac.cn, andyguo@buaa.edu.cn

Abstract

To alleviate the unfavorable effect of noisy topology in Graph Neural networks
(GNNs), some efforts perform the local topology refinement through the pairwise
propagation weight learning and the multi-channel extension. Unfortunately, most
of them suffer a common and fatal drawback: irrelevant propagation to one node
and in multi-channels. These two kinds of irrelevances make propagation weights
in multi-channels free to be determined by the labeled data, and thus the GNNs
are exposed to overfitting. To tackle this issue, a novel Orthogonal Propagation
with Ego-Network modeling (OPEN) is proposed by modeling relevances between
propagations. Specifically, the relevance between propagations to one node is
modeled by whole ego-network modeling, while the relevance between propaga-
tions in multi-channels is modeled via diversity requirement. By interpreting the
propagations to one node from the perspective of dimension reduction, propaga-
tion weights are inferred from principal components of the ego-network, which
are orthogonal to each other. Theoretical analysis and experimental evaluations
reveal four attractive characteristics of OPEN as modeling high-order relationships
beyond pairwise one, preventing overfitting, robustness, and high efficiency.

1 Introduction

Graph Neural Networks (GNNs) have been proven to be a powerful tool to explore irregular graph
data by seamlessly combining graph topology and node attributes for node representation learning
[1, 2]. From the perspective of spectral graph theory, GNNs, such as GCN [3] and ChebyNet [4], are
proposed from graph signal filtering, whose filters are derived from the topology of whole graph, and
their success is attributed to low-passing filtering. From the perspective of spatial propagation, GNNs,
such as GraphSage [5] and MPNN [6], are presented by following the aggregation and combination
scheme for node attributes smoothing [7]. Recent progress demonstrates the equivalence between
these two perspectives [8]. However, both the filters based on graph topology and node attribute
∗Equal contribution.
†Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

propagation between neighbourhoods take the implicit assumption that the graph topology is perfect
and creditable [9]. Consequently, the oversmoothing issue [10, 11] and the expressive power loss
[12], which are caused by overusing topology via stacking multiple layers, are identified.

Actually, the graph topology exists large amount of noises. Thus, graph topology refinement is critical
to the accuracy and robustness of GNNs [13, 14, 9, 15]. The local refinement, especially through
pairwise propagation weight learning, is widely investigated and employed due to the high accuracy
and low computation load. As a representative local refinement, Graph Attention Network (GAT) [16]
formulates the propagation weight on each edge as the attention between the two connected nodes,
and introduces multi-channel propagation via multi-head attention to stabilize the learning process.
Afterward, a number of approaches are proposed by following the scheme of propagation weight
learning and multi-channel extension. For example, GaAN [17], PGCN [18], Masked-GCN [19] and
DMP [20] extend GAT via different pairwise propagation weight learning functions. FAGCN [21]
relaxes the non-negative constraint in GAT to a real number. ADSF [22] extends GAT to incorporate
topology structure into the attention mechanism. GATv2 [23] removes the ranking irrelevance limit
in GAT.

Unfortunately, most GNNs, especially those with local refinement, suffer a common but fatal
drawback: irrelevant propagations. Firstly, the propagations to each node are irrelevant, since
propagation weights are either predefined according to the topology or learned based on the contents of
the two connected nodes. Actually, the propagations to one node should reflect global characteristics
of its ego-network. Secondly, propagations in multi-channels are irrelevant, since parameters to
channels are free to be learned without any specific constraints. Actually, to obtain stable and
complementary representations from different channels, propagation schemes in different channels
should be diverse [20]. These two kinds of irrelevances make propagation weights free to be
determined by the labelled data for the specific task, thus resulting GNNs being susceptible to
overfitting [24].

To tackle this issue, a novel Orthogonal Propagation with Ego-Network modeling (OPEN) is proposed
by modeling these two kinds of relationships between propagations. Firstly, the relevance between
propagations to one node is modeled by whole ego-network modeling. Specifically, by interpreting
the propagations to one node from the perspective of dimension reduction, propagation weights are
inferred from the principal component of ego-network, which corresponds to the mapping function
maximizing the variance and captures the characteristics of the whole ego-network. Principal compo-
nent can be obtained via the eigenvalue decomposition of the covariance matrix, which is efficient
for the ego-network. Secondly, the propagations in multi-channels are implemented by employing
all principal components, each of which corresponds to one channel. Since principal components
are orthogonal to each other, the propagations in multi-channel are diverse. The proposed OPEN
possesses some attractive characteristics: modeling high-order relationships beyond pairwise one,
robustness, and high efficiency. Finally, theoretical analysis demonstrates that the two components of
OPEN, i.e., Ego-Network modeling and Orthogonal Propagation in multi-channel, can prevent the
over-smoothing issue.

The main contributions of this paper are summarized as follows:

• We investigate the common but fatal issue in GNNs, i.e., irrelevant propagation.

• We propose a novel Orthogonal Propagation with Ego-Network modeling (OPEN) by
interpreting propagations in the ego-network from the perspective of dimension reduction.

• We provide a theoretical analysis of OPEN’s capability on preventing oversmoothing issue.

• We experimentally verify the effectiveness and robustness of the proposed OPEN.

2 Preliminaries and Analysis

Notations: Let G = (V, E) denote a graph with node set V = {v1, v2, · · · , vN} and edge set E ,
where N is the number of nodes. The topology of graph G can be represented by its adjacency matrix
A = [aij] ∈ {0, 1}N×N , where aij = 1 if and only if there exists an edge eij = (vi, vj) between
nodes vi and vj . The degree matrix D is a diagonal matrix with diagonal element di =

∑N
i=1 aij

as the degree of node vi. N (vi) = {vj |(vi, vj) ∈ E} stands for the neighbourhoods of node vi.
X ∈ RN×F and H ∈ RN×F ′

denote the collection of node attribute and representation with the ith

2

row, i.e., xi ∈ RF and hi ∈ RF ′
, corresponding to node vi, where F and F ′ stand for the dimensions

of attribute and representation.

Preliminaries: Most Graph Neural Networks (GNNs) follow an aggregation-combination strategy
[6], where each node representation is iteratively updated by aggregating node representations of
neighbourhoods and combining the aggregated representation with the node representation itself as
follows

h̄k
v = AGGREGATEk

({
hk−1
u |u ∈ N (v)

})
, hk

v = COMBINATEk
(
hk−1
v , h̄k

v

)
, (1)

where h̄k
v stands for the aggregated representation from neighbourhoods. The aggregation operation

is the most critical part of the message passing framework, and most GNNs utilize summarization or
average function as the implementation of AGGREGATEk. Therefore, most GNNs can be unified
under the following formula

hk
v = σ

(∑
u∈N (v)

ckuvh
k−1
u Wk

)
, (2)

where Wk is the learnable parameter and the σ(·) is the nonlinear mapping function. The scalar
cuv is the averaging weight, which determines the scheme of aggregation. GNNs can be divided
into two categories according to the design of cuv. The methods in the first category fix cuv
by regarding topology information as perfect.For example, GCN [3] and SGC [25] set ckuv =

1/(
√

(du + 1)(dv + 1), while GIN [26] sets ckuv = 1 for u 6= v and ckvv = 1 + εk. The methods in
the second category tend to learn cuv by considering topology as noisy. For example, GPRGNN [27]
sets ckuv = γk/(

√
(du + 1)(dv + 1) with γk as learnable real number. Graph Attention Network

(GAT) [16], Gated Attention Network (GaAN) [17] and Probabilistic GCN [18] model the propagation
weights as the function of the attributes of connecting nodes via normalized attention mechanism as

cuv = softmax(euv) = exp(euv)/
∑

k∈N (u)

exp(euk). (3)

where euv denotes the similarity between nodes v and u. The similarity function of attributes can
be specified as eGAT

uv = LeakyReLU(bk[Whk−1
u ||Whk−1

v]), eGaAN
uv = (Whk−1

u)TOk(Whk−1
v)

and ePGCN
uv = −(Whk−1

u −Whk−1
v)TΣ(Whk−1

u −Whk−1
v) where bk, Ok and Σk are learnable

parameters. Some efforts have been paid to simplify them, such as setting Ok as identity matrix, i.e.,
Ok = I or constraining Σk as diagonal matrix. FAGCN [21] relaxes the non-negative constraint in
GAT to real number by employing tanh(·) instead of softmax.

GAT [16] proposes to improve the stability by employing multi-head attentions as in Transformer [28].
The multi-head attention essentially performs multi-channel propagation. DMP [20] formates multi-
channel propagation as diverse message passing by enhancing Eq. (2) via feature-wise propagation
weights as

hk
v = σ

(∑
u∈N (v)

ckuv � hk−1
u Wk

)
, (4)

where � denotes the element-wise product of vectors and the learnable propagation weight vector
ckvu has the same length as the node representation hk−1

u . To reduce the model complexity, DMP
presents two schemes to efficiently learn ckvu’s.

Analysis: By analyzing the single-channel propagation in Eq. (4) and the multi-channel propagation
in Eq. (4), it can be observed that existing methods possess two serious drawbacks as shown in the
blue dashed box in Fig. 1:

• Propagations to each node are irrelevant. As shown in Eq. (3), the propagation weight,
which is based on the contents of the two connected nodes, models pairwise relationship.
Thus, the different propagations to each node are irrelevant to each other. However, the
node representation, which is obtained from aggregation over neighbourhood, should reflect
global characteristics of its neighbourhood, such as high-order relationship.

• Propagations in multi-channels are irrelevant. As shown in Eq. (4), propagations in
different channels are free to learn without any specific constraints. Thus, the propagation

3

1

2

3
4

5
6

C

3 5
6

x

Ego-network Extraction

=
XH

=
x
x
x

+
+

Propagation Perspective

Dimension Reduction Perspective

x=

Propagation
Weight

Node
Embedding

Mapping
Function

Data
Point

x

XC

Le
ar
na
bl
e

Multi-channels

Original Graph

Pairwise Learning

Inter-channel Irrelevant

In
tr
a-
ch
an
ne
l

Ir
re
le
va
nt

Mapping viaWhole Ego-Network

O
rt
ho
go
na
l

u1u2
Whole Ego-network

u1

u2

Ex
is

tin
g

G
N

N
sw

ith
Ir

re
le

va
nt

Pr
op

ag
at

io
ns

Pr
op

os
ed
O
PE
N

:
O

rth
og

on
al

Pr

op
ag

at
io

n
w

ith

Eg
o-

N
et

w
or

k

Figure 1: Comparisons between existing GNNs with irrelevant propagations and the proposed
OPEN (Orthogonal Propagation with Ego-Network modeling). The essential difference between
them is the different perspectives on ego-network modeling. Upper Part: Existing GNNs are from
the perspective of propagation with pairwise propagation weights learning, and thus both inter-
channel and intra-channel propagations are irrelevant. Lower Part: The proposed OPEN is from
the perspective of dimension reduction of data points, and thus mapping functions are from whole
ego-network modeling and orthogonal between different channels.

weights in different channels may be similar and redundant. However, to obtain stable and
complementary representations from different channels, propagation schemes in different
channels should be diverse enough.

In summary, neither the relationship between the propagations to each node nor the relationship
between propagations in different channels is considered. Thus, propagation weights are free to be
determined by the labelled and the specific task, and thus the models tend to be overfitting [24].

3 Methodology

To tackle the issues mentioned above, Orthogonal Propagation with Ego-Network modeling (OPEN)
is proposed by modeling these two kinds of relationships between propagations in subsections 3.1
and 3.2, respectively. Section 3.3 provides implementation details. Finally, section 3.4 theoretically
analyzes its capability on preventing over-smoothing issue.

3.1 Ego-Network Modeling

Firstly, the relationship between propagations to one node is modeled. By ignoring the layer k and
considering the first layer, the propagation component in Eq. (2) can be reformulated as

hv =
∑

u∈N (v)

cuvhu = cvHv, (5)

where Hv ∈ R|Nv|×F stands for the matrix containing the representations of nodes in Nv and
cv ∈ R|Nv| represents the propagation weights from nodes in Nv to node v. Eq. (5) can be
interpreted from two perspectives as shown in Fig. 1. From the perspective of message passing, the
representation of node v, i.e., hv is the aggregation of embeddings of its neighbourhood, which are
the rows of Hv , and propagation weights often model pairwise relationship as shown in the blue solid
box in Fig. 1. This perspective induces the propagations to each node irrelevant as shown in the blue
dashed box in Fig. 1.

From another perspective, hv ∈ R1×F can be regarded as the one-dimensional representations of F
data points, each of which corresponds to a Nv-dimensional column vector of Hv . And, cv ∈ R|Nv|

can be seen as the mapping function, which reduces the dimension from R|Nv| to R as shown in the
orange solid box in Fig. 1. From the perspective of dimension reduction, the F representations in hv

should preserve the discriminative information in original |Nv|-dimensional space of Hv . Therefore,
learning the propagation weights cv in ego-network of node v is converted to the problem of seeking
dimension reduction mapping function.

4

Among the existing dimension reduction methods, principal component analysis (PCA) is the widely-
adopted unsupervised one. The principal components correspond to the mapping functions. To
facilitate the description, the subscripts of Hv and cv are removed, and H is represented as the
collection of column vectors as H = {h·,1,h·,2, ...,h·,F }, each of which is an |Nv|-dimensional
vector. By denoting the mean and covariance matrix of data matrix H as h̄ = 1

F

∑F
j=1 h·,j and

S = 1
F

∑F
j=1(h·,j − h̄)(h·,j − h̄)T , respectively, the principal components are the eigenvectors of

covariance matrix S, i.e.
Suj = λjuj , j = 1, 2, ..., |Nv| (6)

where uj is the eigenvector corresponding to the eigenvalue λj as shown in the orange dashed box in
Fig. 1. By sorting λj in descending order, the eigenvector u1 corresponding to largest eigenvalue λ1 is
the first principal component. By using the u1 as the mapping function c, the obtained 1-dimensional
representation possesses the largest variance, and thus preserves the discriminative ability.

Ego-network of Hub Nodes: The computational complexity, which consists of construction of S
and EVD, is O(|Nv|2F). Thus, it is efficient for most nodes with small neigbourhood. However,
it may be inefficient for nodes with large neighbourhood, such as hub nodes. Thus, we present the
treatment for them. By denoting H̃ = {h·,1 − h̄,h·,2 − h̄, ...,h·,F − h̄}, Eq (6) can be written as
1
N H̃H̃Tuj = λjuj . By multiplying both sides by H̃T , it holds

1

N
H̃T H̃H̃Tuj = λjH̃

Tuj . (7)

By denoting zj = H̃Tuj , Eq. (7) and uj can be respectively reformulated as(
1

N
H̃T H̃

)
zj = λjzj , uj =

1

(Fλj)2
H̃zj . (8)

Since 1
N H̃T H̃ ∈ RF×F , its construction and EVD are efficient. Thus, the complexity of ego-network

modeling for hub nodes, which possess a large number of neighbourhoods, i.e., |Nv|, is reduced from
O(|Nv|2F) to O(|Nv|F 2). Therefore, ego-network for hub node can be efficiently modeled.

This new perspective and corresponding ego-network modeling provide following three attractive
characteristics:

• Beyond pairwise modeling: Since the covariance matrix S ∈ R|Nv|×|Nv| essentially
models the correlation between nodes in the ego-network Nv, its eigenvector represents
the high-order characteristics of ego-network, which is beyond the pairwise relationship
between two connected nodes. Therefore, the propagations to each node are jointly modeled.

• Preventing overfitting issue: The mapping function, i.e., the propagation weights, is
inferred from the ego-network instead of learning from labelled nodes for specific task. The
model parameters of propagation weight learning are omitted, and thus it prevent overfitting.

• Hight efficiency: The eigenvalue decomposition (EVD) is performed over the ego-networks
whose sizes are much smaller than that of whole network, and thus the EVD is efficient.

3.2 Orthogonal Propagations in Multi-channels

Since multi-channel introduces multiple groups of trainable parameters, it tends to be more serious
overfitting than the single-channel case. To tackle this issue and enhance the robustness, an intuitive
strategy is to boost the diversities of different channels to provide complementary effects. GNNs
may implement this requirement by designing diverse propagation scheme. However, it is difficult to
constrain pairwise weight learning to be diverse in an efficient manner, since diversity often requires
to impose computationally expensive orthogonality constraints.

Fortunately, the employed PCA in ego-network modeling in section 3.1 simultaneously produces
|Nv| orthogonal components {u1,u2, ...,u|Nv|}, which corresponds to different mapping functions.
Note that the PCA is efficient on ego-networks with a small number of nodes. Thus, these |Nv|
orthogonal components {u1,u2, ...,u|Nv|} can be employed as the propagation weights in |Nv|
different channels to realize the diversity requirement. By letting cjv = uj as the propagation weights
over the ego-network of node v on jth channel, Eq. (5) can be extended to multi-channel form as

hj
v = cjvHv, j = 1, 2, ..., |Nv| (9)

5

Discussion: Ortho-GConv [29] also introduces the orthogonality in GNNs. However, it is very
different from the proposed OPEN on both motivation and methodology. From the perspective of
motivation, Ortho-GConv tends to alleviate oversmoothing issue, while OPEN aims at overfitting issue.
From the perspective of methodology, Ortho-GConv imposes orthogonality on feature transformation
Wk, while OPEN presents orthogonal propagation, which is more challenging and essential in GNNs.

3.3 Model Details

Subsections 3.1 and 3.2 provide the basic ideas of ego-network modeling and extension to multi-
channels with orthogonal propagations. This section presents the details on implementation.

Firstly, the number of channels is set as J in advance. Since the number of principal components for
each ego-network is the same as the number of neighbourhood of the center node, i.e., |N |v, these
numbers varies over nodes. To make representations of nodes comparable, the number of channels
is set as a hyper-parameter. For the nodes, whose number of neighboood is less than J , the lacking
components are set as zero vector, i.e., cjv = 0 for j = |N |v + 1, ..., J . The tuning experiments on J
are shown in subsection 4.5.

Secondly, the final representation of node can be obtained by combing representations in multi-
channels from Eq. (9), such as summarization or concatenation. To boost the expressive capability,
attention mechanism is employed to combine different representations with shared learnable parameter
b, i.e.

hv =

J∑
j=1

αj
vh

j
v, αj

v =
exp(bThj

v)∑J
i=1 exp(bThi

v)
. (10)

Similar to existing GNNs, OPEN is trained by feeding the final representation hv’s into the cross-
entropy between predicted and ground-truth labels on labelled nodes for semi-supervised task.

Thirdly, propagation weights inferred from the original node attributes are fixed for all layers.
Although it can obtain optimal solution by inferring propagation weights for the next layer from the
representations obtained in last layer, the inference process and the back-propagation process can’t
be seamlessly combined. For the consideration of computational complexity, propagation weights
inferred from the original node attributes are employed for all layers.

3.4 Theory Analysis on Preventing Over-smoothing

Over-smoothing issue [10, 11], i.e., representations of all nodes converge to points independent from
their original attributes, has been identified as the most serious issue to prevent GNNs from being deep.
The over-smoothing also leads to the exponential loss of expressive power for node classification
[12]. According to [11], over-smoothing issues is caused by that the eigenvector corresponding to the
largest eigenvalue of normalized adjacency matrix (λ1 = 1) is determined by degree, i.e., u1 = De

for asymmetric normalization or u1 = D
1
2 e for symmetric normalization, where e is the vector of

ones. Thus, the node representations after infinite layers are

H∞ = lim
l→∞

ÃlX = u1u
T
1 X = u1

(
uT
1 X
)

= u1w
T , (11)

where w = XTu1 is the weighted combination of attributes from all nodes, and thus it is shared by
all nodes. Therefore, the final representation H∞ is determined by node degree D. To alleviate this
issue, many efforts have been paid. Some of them modify the topology, such as DropEdge [30] and
GRAND [31], while others revise the outputs from layers, such as PairNorm [32] and Inflation [33].

Different from existing methods, the proposed OPEN essentially refines the topology A according to
the attributes of nodes in ego-network Xv, i.e., Â = f(A,X). Therefore, it is intuitive that the û1

corresponding Â is the composition of D and X. According to Eq. (11), the final representation is
relevant to X, i.e. preventing over-smoothing issue. The following theorem is proved in Appendix.

Theorem 1. The representation of each node from OPEN is relevant to the principal components of
its corresponding ego-network’s attribute.

6

Table 1: Statistics of datasets used for node-level tasks.

Dataset #Nodes #Edges #Features #Classes

Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Pubmed 19,717 44,338 500 3

Amazon-Computers 13,752 245,861 767 10
Amazon-Photo 7,650 119,081 745 8

Coauthor-CS 18,333 81,894 6,805 15
Coauthor-Physics 34,493 247,962 8,415 5

Table 2: Node classification performance in terms of micro-f1 scores.

dataset Cora Pubmed Citeseer Computer Photo CS Physics

MLP 74.82±2.22 63.76±0.78 74.05±2.10 70.48±0.28 78.69±0.30 88.30±0.70 88.90±1.10
LogReg 70.10±2.30 61.00±2.20 71.10±3.10 76.80±5.70 79.20±6.50 86.40±0.90 86.70±1.50

LP 78.00±0.20 75.30±0.20 69.00±0.50 70.80±0.00 67.80±0.00 74.30±0.00 90.20±0.50
Chebyshev 82.20±0.50 81.80±0.50 73.40±0.30 72.60±0.00 84.30±0.00 91.50±0.00 92.10±0.30

MoNet 82.30±1.30 80.20±2.00 74.60±2.30 88.60±2.20 91.20±1.30 90.80±0.60 92.50±0.90
GCN 85.77±0.25 88.13±0.28 73.68±0.31 86.51±0.54 92.42±0.22 94.55±0.24 95.58±0.20
GAT 87.37±0.30 87.62±0.26 74.32±0.27 86.93±0.39 92.56±0.35 93.98±0.22 95.63±0.18

GraphSAGE 87.77±1.04 88.42±0.50 71.09±1.30 83.11±0.23 90.51±0.25 OOM 95.52±0.54
SGC 86.20±0.12 87.50±0.25 78.10±0.13 80.09±0.16 88.25±0.52 89.62±0.42 90.05±0.50

GCNII 88.49±2.78 89.57±1.56 77.08±1.21 86.13±0.51 90.98±0.93 93.88±0.40 96.02±0.15
APPNP 87.87±0.85 89.40±0.61 76.53±1.33 81.99±0.26 91.11±0.26 94.92±0.20 95.84±0.22
JKNet 88.93±1.35 87.68±0.30 74.37±1.53 77.80±0.97 87.70±0.70 92.32±0.72 95.71±0.21
C-GAT 88.40±0.30 87.60±0.30 79.90±0.30 OOM OOM OOM OOM

GPRGNN 88.37±1.33 89.05±0.52 78.88±1.70 89.43±0.86 94.34±0.35 94.76±0.20 96.39±0.20
DMP 86.68±1.13 89.67±0.58 76.48±1.73 87.62±0.81 94.06±0.45 95.02±0.29 94.74±0.20

OPEN 89.31±0.53 90.05±0.23 80.42±0.72 90.93±0.29 95.43±0.27 94.99±0.13 96.92±0.05

4 Evaluations

Firstly, this section provides experimental setups, including dataset, baselines and implementation
details. Then, the node classification results are analyzed followed by hyper-parameter tuning. Finally,
the capabilities on preventing over-smoothing and overfitting are verified.

4.1 Datasets

To comprehensively evaluate the proposed OPEN, 7 widely used datasets are employed. Statistics of
datasets are shown in Table 1. These datasets can be divided into three categories.

• Citation Networks. Cora, Citeseer, and Pubmed, which are widely used to verify GNNs,
are standard citation network benchmark datasets [34, 35]. In these networks, nodes and
edge represent papers and citations between them, respectively. Words in the paper are
employed to represent the node feature in bag-of-word form. The academic topic of paper is
taken as the label of node.

• Co-purchase Networks. Amazon-Computers (Computers) and Amazon-Photo (Photo) are
two networks of co-purchase relationships [36]. In these networks nodes represent goods
and edges stand for the connected two goods being frequently bought together. Each node
owns a bag-of-words feature extracted from product reviews. The categories of the goods
are employed as the label of node.

• Coauthor Networks. Coauthor-CS (CS) and Coauthor-Physics (Physics) are two co-author
networks based on the Microsoft Academic Graph from the KDD Cup 2016 challenge [36].
In these networks nodes represent authors and edges stand for that the connected two authors
have co-authored a paper. Each node owns a bag-of-words feature based on paper keywords.
The most active research fields of the authors are employed as the label.

7

Cora Citeseer Pubmed

Figure 2: The impact of the number of channels on the performance on Cora, Citeseer and Pubmed.

4.2 Baselines

To verify the superiority of the proposed OPEN, 15 baseline methods are employed for performance
comparison. These methods are divided into two categories. The first category consists of basic
methods for graph data, including the multiple layer perception (MLP), Logistic Regression (LogReg)
and Label Propagation (LP) [37], Chebyshev [4], Graph Convolutional Network (GCN) [3], Graph
Attention Network (GAT) [16], GraphSAGE [5], Simple Graph Convolution (SGC) [25], MoNet [38].
The methods in the second category possess some attractive characteristics, such as preventing over-
smoothing issue and high accuracy, etc This category contains Personalized Propagation of Neural
Predictions (APPNP) [39], Jumping Knowledge Networks (JKNet) [40], GCN with Initial residual
and Identity mapping (GCNII) [41], Generalized PageRank GNN (GPRGNN) [27], Diverse Message
Passing (DMP) [20] and Constrained GAT (C-GAT) [24]. We employ the authors’ implementations
for all baseline methods with the default hyper-parameters.

4.3 Implementation Details

The proposed OPEN employs 2-layers network with K = 5 channels except for the hyper-parameter
tuning (Sec. 4.5) and over-smoothing investigation (Sct 4.6). The whole network is trained in an
end-to-end manner using the Adam optimizer with an initial learning rate of 0.001. The maximum
number of epochs is set up to 1000. Besides, early stopping with a patience of 50 is also utilized. For
all datasets, we randomly split nodes of each class in to 60%, 20% and 20% for training validation
and testing, and run on test sets over 10 random splits, as suggested in [42]. For fair comparison, the
performance of all the methods, including baseline methods, are obtained on the same splits.

4.4 Result Analysis

The node classification results are shown in Tab. 2. The proposed OPEN achieves the new SOTA on
6 networks in all 7 networks. Note that the proposed OPEN not only outperforms all basic GNNs,
such as GCN and GraphSAGE, but also significantly beats almost all SOTA methods, such as GCNII,
GPRGNN and DMP. These demonstrate the superiority of the proposed OPEN on classification
accuracy. This can be attributed to both the effectiveness of ego-network modeling on capturing
high-order semantic information and the high diversity representations obtained from orthogonal
propagation in multi-channels. Besides, the proposed OPEN also outperforms other extensions to
GAT, such as C-GAT and DMP. This indicates that compared to other enhancements to the propagation
weights learning and multi-channel learning, ego-network modeling and orthogonal propagation are
more effective. In summary, these effectivenesses show that the modeling the irrelevance between
propagations is important and necessary for GNNs.

4.5 Hyper-parameter Tuning and Ablation Study

The only hyper-parameter in the proposed OPEN is the number of principal components, K, which is
also corresponds to the number of channels. This section investigates the impact ofK on classification
accuracy. To exclude the influences from different datasets, the impact of the number of channels in
GAT, i.e., the number of attention heads, is also investigated. Fig.2 shows that OPEN consistently
outperforms GAT on all the number of channels. However, the trends with different number of
channels are different on different datasets. In most cases, the superiority of OPEN is more remarkable

8

Cora Citeseer Pubmed

Figure 3: Node classification results with various model depths on Cora, Citeseer and Pubmed.

Cora Citeseer Pubmed

Figure 4: Node classification performance on graphs with randomly adding noisy edges.

with largeK compared to GAT. Thus, theK is set as 5 for other experiments by balancing the accuracy
and running time.

Ablation Study: The hyper-parameter tuning experiments also enable the ablation study. 1) When
K = 1, only the ego-network modeling component works. The significant outperformance compared
to GAT demonstrates that the relevant propagation in OPEN is more superior than irrelevant propa-
gations in GAT. 2) The consistent outperformances on all K’s reveal the importance of orthogonal
propagations in multi-channels, which are also relevant. The ablation study illustrates that both
relevance modelings are critical and necessary.

4.6 Preventing Over-smoothing Issue

Section 3.4 theoretically analyzes the capability of OPEN on preventing oversmoothing issue. This
section provides experimental evaluations. The node classification performance changes of GCN,
GAT and OPEN with various model depths are shown in Fig. 3. GCN tends to be over-smoothing via
only a few layers, since it employs topology-induced single-channel propagation. GAT alleviates the
overmoothing issue by introducing irrelevant multi-channel propagations. Unfortunately, it also be
oversmoothing after few layers. By enhancing the GAT with relevant multi-channel propagations,
OPEN significantly prevents the over-smoothing issue. After many layers, the performances of OPEN
do not remarkably drop. This matches the theoretical results in Section 3.4, and verifies the capability
of relevant propagation on preventing oversmoothing issue.

4.7 Robustness

This section investigates the robustness of the proposed OPEN, which indicates whether the OPEN
is able to overcome the overfitting problem, as in [24]. To this end, experiments are conducted
by randomly perturbing the edges in the testing graph. Specifically, a set of nodes are randomly
selected according to a given sampling ratio, and then one edge is randomly added on these nodes.
Fig. 4 reports the classification performance on testing graphs with different ratios of nodes. The
performances of GAT significantly drop as the ratios of nodes increase, which indicate it tends
to be overfitting to the given data. In contrary, the performance drops of the proposed OPEN are
very slight. It indicates the robustness of OPEN. This robustness may be attributed to two aspects.

9

Firstly, the propagation weights of OPEN are inferred from neighbourhoods instead of learning from
labelled data. Secondly, the orthogonal propagations in multi-channels promote the diversity, and thus
enhance the robustness. This investigation shows that relevant propagation modeling can promote the
robustness of the GNNs.

5 Conclusions

This paper identifies the irrelevant propagations issue in Graph Neural Networks (GNNs), which
makes models exposed to overfitting to the labelled data. The propagation irrelevance includes 1) the
propagations to one node are irrelevant, 2) propagations in multi-channels are irrelevant. This paper
presents a novel Orthogonal Propagation with Ego-Network modeling (OPEN) to model these two
kinds of relevances between propagations. By interpreting the propagations to one node from the
perspective of dimension reduction, propagation weights are inferred from the principal components of
ego-network, which are orthogonal to each other. Theoretical analysis and experimental evaluations
reveal four attractive characteristics of the proposed OPEN as modeling high-order relationship
beyond pairwise one, preventing overfitting issue, robustness, and high efficiency. These attractive
characteristics reveal the importance of modeling propagation relevance.

Acknowledgments and Disclosure of Funding

This work was supported in part by the National Science Fund for Distinguished Young Scholars under
Grant 62025602, in part by the National Natural Science Foundation of China under Grant 61972442,
Grant 62102413, Grant U1936210, Grants U1803263, Grant 11931015 and Grant 62276187, in part
by the Key Research and Development Project of Hebei Province of China under Grant 20350802D
and 20310802D; in part by the Natural Science Foundation of Hebei Province of China under
Grant F2020202040, in part by the Natural Science Foundation of Tianjin of China under Grant
20JCYBJC00650, in part by the China Postdoctoral Science Foundation under Grant 2021M703472,
in part by the XPLORER PRIZE, and in part by the Fundamental Research Funds for Central
Universities.

References
[1] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A

comprehensive survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst.,
32(1):4–24, 2021.

[2] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI Open, 1:57–81, 2020.

[3] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, 2017.

[4] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, pages 3837–3845, 2016.

[5] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 1024–1034, 2017.

[6] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
pages 1263–1272, 2017.

10

[7] Liang Yang, Chuan Wang, Junhua Gu, Xiaochun Cao, and Bingxin Niu. Why do attributes
propagate in graph convolutional neural networks? In AAAI, pages 4590–4598. AAAI Press,
2021.

[8] Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam,
and Paul Honeine. Analyzing the expressive power of graph neural networks in a spectral
perspective. In International Conference on Learning Representations, 2021.

[9] Liang Yang, Zesheng Kang, Xiaochun Cao, Di Jin, Bo Yang, and Yuanfang Guo. Topology
optimization based graph convolutional network. In Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16,
2019, pages 4054–4061, 2019.

[10] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 3538–3545,
2018.

[11] Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In KDD
’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual
Event, CA, USA, August 23-27, 2020, pages 338–348, 2020.

[12] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for
node classification. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[13] Ruijia Wang, Shuai Mou, Xiao Wang, Wanpeng Xiao, Qi Ju, Chuan Shi, and Xing Xie. Graph
structure estimation neural networks. In WWW, pages 342–353, 2021.

[14] Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan. Towards
unsupervised deep graph structure learning. In WWW, pages 1392–1403, 2022.

[15] Liang Yang, Fan Wu, Junhua Gu, Chuan Wang, Xiaochun Cao, Di Jin, and Yuanfang Guo.
Graph attention topic modeling network. In Yennun Huang, Irwin King, Tie-Yan Liu, and
Maarten van Steen, editors, WWW, pages 144–154. ACM / IW3C2, 2020.

[16] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings,
2018.

[17] Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. Gaan: Gated
attention networks for learning on large and spatiotemporal graphs. In UAI, pages 339–349,
2018.

[18] Liang Yang, Yuanfang Guo, Junhua Gu, Di Jin, Bo Yang, and Xiaochun Cao. Probabilistic
graph convolutional network via topology-constrained latent space model. IEEE Trans. Cybern.,
52(4):2123–2136, 2022.

[19] Liang Yang, Fan Wu, Yingkui Wang, Junhua Gu, and Yuanfang Guo. Masked graph convolu-
tional network. In Sarit Kraus, editor, IJCAI, pages 4070–4077. ijcai.org, 2019.

[20] Liang Yang, Mengzhe Li, Liyang Liu, Bingxin Niu, Chuan Wang, Xiaochun Cao, and Yuanfang
Guo. Diverse message passing for attribute with heterophily. In NeurIPS, pages 4751–4763,
2021.

[21] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in
graph convolutional networks. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2021, Virtual Event, February 2-9, 2021, pages 3950–3957, 2021.

[22] Kai Zhang, Yaokang Zhu, Jun Wang, and Jie Zhang. Adaptive structural fingerprints for graph
attention networks. In ICLR, 2020.

11

[23] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In ICLR,
2022.

[24] Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Improving graph attention networks
with large margin-based constraints. arXiv preprint arXiv:1910.11945, 2019.

[25] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Wein-
berger. Simplifying graph convolutional networks. In Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
pages 6861–6871, 2019.

[26] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2019.

[27] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. In International Conference on Learning Representations,
2021.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pages 5998–6008,
2017.

[29] Kai Guo, Kaixiong Zhou, Xia Hu, Yu Li, Yi Chang, and Xin Wang. Orthogonal graph neural
networks. In AAAI, volume abs/2112.14438, 2022.

[30] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[31] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning
on graphs. In Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020.

[32] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020, 2020.

[33] Dongxiao He, Rui Guo, Xiaobao Wang, Di Jin, Yuxiao Huang, and Wenjun Wang. Inflation
improves graph neural networks. In WWW ’22: The ACM Web Conference 2022, Virtual Event,
Lyon, France, April 25 - 29, 2022, pages 1466–1474, 2022.

[34] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[35] Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active surveying for
collective classification. In International Workshop on Mining and Learning with Graphs, 2012.

[36] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of graph neural network evaluation, 2019.

[37] Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty. Semi-supervised learning using
gaussian fields and harmonic functions. In Machine Learning, Proceedings of the Twentieth
International Conference (ICML 2003), August 21-24, 2003, Washington, DC, USA, pages
912–919, 2003.

[38] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, and
Michael M. Bronstein. Geometric deep learning on graphs and manifolds using mixture
model cnns. In CVPR, pages 5425–5434, 2017.

[39] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

12

[40] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, pages 5449–5458, 2018.

[41] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks. In Proceedings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event, pages 1725–1735, 2020.

[42] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [No]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

Table 3: Node classification results in terms of micro-f1 (20 labelled nodes per class for training).

dataset Cora Citeseer Pubmed Computer Photo CS Physics

MLP 58.20±2.10 59.10±2.30 70.0±2.10 44.90±5.80 69.60±3.80 88.30±0.70 88.90±1.10
LogReg 57.10±2.30 61.00±2.20 64.10±3.10 64.10±5.70 73.00±6.50 86.40±0.90 86.70±1.50

LP 68.00±0.20 45.30±0.20 63.00±0.50 70.80±0.00 67.80±0.00 74.30±0.00 90.20±0.50
Chebyshev 81.20±0.50 69.80±0.50 74.40±0.30 62.60±0.00 74.30±0.00 91.50±0.00 92.10±0.30

MoNet 81.30±1.30 71.20±2.00 78.60±2.30 83.50±2.20 91.20±1.30 90.80±0.60 92.50±0.90
GCN 81.50±1.30 70.30±0.28 77.80±2.90 76.30±2.40 87.30±1.20 91.10±0.50 92.60±0.70
GAT 81.80±1.30 70.80±0.26 78.50±0.27 78.00±1.90 85.70±1.70 90.50±0.22 91.30±0.60
SGC 81.00±0.00 71.90±0.10 78.90±0.00 74.40±0.01 86.40±0.00 91.00±0.00 90.20±0.40

GCNII 85.50±0.50 73.40±0.60 80.20±0.40 57.11±13.92 63.03±4.43 88.30±1.25 OOM
APPNP 83.30±0.00 71.80±0.00 80.10±0.00 71.69±4.67 83.62±3.73 91.41±0.44 93.38±0.67
JKNet 81.10±0.00 69.80±0.00 78.10±0.00 64.08±2.10 78.10±7.07 87.07±1.34 92.69±0.73
C-GAT 80.60±0.45 70.99±0.37 79.60±0.11 OOM OOM OOM OOM

GPRGNN 80.55±1.05 68.57±1.22 77.02±2.59 81.71±2.84 91.58±0.87 92.42±0.47 93.51±0.59
DMP 80.41±1.48 71.08±1.21 76.29±2.44 71.90±1.84 82.37±1.86 90.44±0.40 90.42±0.55

OPEN 81.68±0.44 78.37±0.21 79.35±0.25 86.01±0.26 91.64±0.51 94.98±0.11 92.17±0.56

A Proof of Theorem 1

In this section, the proof to Theorem 1 is given. To this end, some additional notations are defined
in advance. Firstly, matrix Iv ∈ RN×N is defined as the diagonal indicator matrix to indicate the
neighbourhood of node v. It ith diagonal element is 1, i.e., (Iv)ii = 1, if and only if node i is the
neighbourhood of node v, i.e., avi = 1. Thus, the relationship between the vth row of adjacency
matrix A, i.e., av , and indicator matrix Iv ∈ RN×N is

(1 · av)� I = Iv, (12)

where � denotes the element-wise product, 1 denotes vector of ones, and I stands for identity matrix.
Thus, Ĥv = IvH only remains the rows corresponding to v’s neighbourhoods and set other rows
as zeros. In other word, Ĥv ∈ RN×F is the padding version of Hv ∈ R|Nv|×F with rows of zeros.
Thus, the EVD in Eq. (6) can be extended to

Ŝûj = λjûj , j = 1, 2, ..., N (13)

where Ŝ = ĤvĤ
T
v ∈ RN×N and ûj ∈ RN are the padding versions of S ∈ R|Nv|×|Nv| and

uj ∈ R|Nv|, respectively. Thus, the obtained embedding for node v from our proposed OPEN can be
written as

hOPEN
v = uT

1 Hv = ûT
1 Ĥv = ûT

1 IvH =
(
ûT
1 � av

)
H. (14)

According to PCA, the mapping u1 and û1 can be expressed as the combination of the columns of
Hv and Ĥv , i.e.,

u1 =

F∑
f=1

αf (Hv)·,f û1 =

F∑
f=1

αf

(
Ĥv

)
·,f
. (15)

It indicates that the propagation weights u1 and û1 are not fully determined by the graph topology,
but are mainly impacted by node attribute. Note that different from GAT, where propagation weights
are determined by attributes of connected nodes and labels, the propagation weights in OPEN are
not impacted by labels any more. Similar to Eq. (14), the embedding obtained from asymmetric
adjacency matrix, such as GraphSAGE [5], can be written as

htopology
v =

1

dv
1THv =

1

dv
1T Ĥv =

1

dv
1T IvH =

(
1

dv
1T � av

)
H. (16)

Comparing Eqs. (14) and (16), the main difference between OPEN and propagation based on
asymmetric adjacency matrix is that the topology-based propagation weight 1

dv
1 in propagation based

on asymmetric adjacency matrix is replaced by attribute-based propagation weight u1 (Eq. 15) in the
proposed OPEN. Therefore, the representation of node v, i.e., hOPEN

v , is relevant to the principal
components of node v’s ego-network’s attribute, i.e., ûT

1 .

14

Cora Citeseer Pubmed

O
PE
N

G
A
T

G
C
N

Figure 5: The visualizations of the embeddings obtained from GCN, GAT and OPEN.

B Additional Experimental Results

This section provides additional experimental results to verify some statements and the superiority of
the proposed OPEN.

B.1 Node Classification on Another Split

Firstly, to demonstrate the superior performance of the proposed OPEN. Node classification results
based on another split, where 20 labelled nodes per class are employed as the training as in GPRGNN
[27]. The results are given in Tab. 3. We obtain the similar conclusion as in the main body.
Especially, OPEN achieves remarkable improvements on large networks, such as Amazon-Computer
and Coauthor-CS. Since the overfitting issue may be more serious on large networks with little nodes
labelled, this demonstratesx the capability of OPEN on preventing over-smoothing issue.

B.2 Embedding Visualization

To provide intuitive interpretation, the t-SNE visualizations of node embeddings obtained from GCN,
GAT and OPEN are given in Fig. 5. The regions of embeddings of nodes from different classes are
with different colors. The shapes of these regions reflect the characteristics of the corresponding
methods. The GCN’s regions of the embeddings for different classes are overlapped. Thus, the GCN
model tends to be under-fitting. The GAT’s and OPEN’s regions of the embeddings for different
classes are distinct. The regions of the embeddings from GAT are very sharp. It indicates that labelled
data plays a very essential rule on the embedding, which tends to be overfitting. In contrary, the
regions of the embeddings from OPEN are regular. It indicates that the graph topology, which induces
smoothing effect, play more important role than the labels., and thus can prevent overfitting. Besides,
the results from OPEN are much better than those from GAT on pubmed dataset. GAT’s embeddings
of nodes with pink color are overlapped from nodes of other colors, while OPEN’s embeddings of
nodes with pink color are distinct from nodes of other colors. This illustrates the effectiveness of the
proposed OPEN compared to GCN and GAT.

15

Cora Citeseer Pubmed

Figure 6: Node classification performances with different numbers of both channels and layers

Table 4: Running Time Comparison (in seconds).

dataset Cora Citeseer Pubmed Computer Photo CS Physics

GCN 9.89 6.23 5.32 16.8 6.59 19.2 21.58
GAT 10.45 49.31 12.85 95.23 42.11 106.06 201.79

OPEN-Weight 2.61 8.93 3.05 18.46 9.22 18.39 52.94
OPEN-Propagation 10.11 36.09 12.8 65.36 35.62 88.81 149.37

OPEN-layer 271.11 929.09 317.8 1911.36 957.62 1927.81 5443.37
OPEN 12.72 45.02 15.85 83.82 44.84 107.2 202.31

B.3 Ablation Study on Prevent Over-smoothing Issue

Section 4.6 demonstrates the capability of OPEN on preventing over-smoothing issue. DMP [20]
proves that the diverse multi-channel propagations provide potentials to prevent over-smoothing issue
To investigate which component is more important, Ego-Network modeling or Orthogonal Propaga-
tion, ablation study is performed in this section. To this end, the node classification performances
with different numbers of channels K and different numbers of layers are given in Fig. 6. It can be
observed that OPEN with different K can prevent oversmoothing issue. Thus, ego-network modeling
component, which is equivalent to OPEN with K = 1, can prevent over-smoothing issue. Note that
it is hard to only employ orthogonal propagation without ego-network modeling. Thus, we do not
experimentally evaluate the effectiveness of this component. DMP [20] shows that the diversity of
the channels promote the ability on preventing over-smoothing issue. Essentially, the orthogonality
in multi-channels in OPEN realize the requirement on diversity. Therefore, both two components can
prevent over-smoothing issue.

B.4 Running Time Comparisons

To demonstrate the efficiency of the proposed OPEN, the running time comparisons are given in
Table. 4. OPEN-Weight and OPEN-Propagation are the weight calculation and propagation parts
of the OPEN. Compared to OPEN, where weights are fixed, OPEN-layer denote the variant which
learns weights in each layer. The results show that OPEN has the similar running time as GAT. The
running time of GAT and OPEN is similar. Note that the running time of GAT and OPEN is longer
than that of GCN, due to their multiple-channel propagations and combinations. Besides, while the
weight calculation is efficient compared to propagation, the afford of layer-wise weight calculation,
i.e., OPEN-layer, is too high. These meet our complexity analysis in Section 3.1.

C Algorithm Description of OPEN

To make the OPEN easy to follow, algorithms description are given. Table. 5 provides the ego-
network modeling algorithm, whose output is the propagation weights. Table. 6 is the algorithm of
OPEN-layer, which performs the ego-network modeling in each layer. Table. 7 is the final OPEN
algorithm, where the ego-network modeling is only performed once.

16

Table 5: Algorithm-1: Ego-network modeling via PCA

Algorithm-1: Ego-network modeling via PCA

Input: Ego-network of node v: Hv = {h.,1,h.,2, . . . ,h.,F } ∈ R|Nv|×F

Output: J eigenvectors of the ego-network of node v: {u1,v,u2,v, . . . ,uJ,v}

Step1: Calculate covariance matrix of Hv:Sv = 1/F
∑F

j=1(h.,j − h)(h.,j − h)T ;
Step2: Calculate eigenvectors of covariance matrix Sv via Eq. 6;
Step3: Generate top J eigenvectors:{u1,v,u2,v, . . . ,uJ,v} via sorting λj in descending order;
return {u1,v,u2,v, . . . ,uJ,v}.

Table 6: OPEN-layer

Algorithm-2: OPEN-layer

Input: Feature matrix X ∈ RN×F , Adjacency matrix A ∈ RN×N

Output: Node representations: H

for l=1 to L do
for v=1 to N do

% Ego-network modeling %
Generate ego-network of v from {H(l−1),A}: H

(l−1)
v ;

% Generate propagation weights for l-th layer %
Generate propagation weights of v:{u(l−1)

1,v ,u
(l−1)
2,v , . . . ,u

(l−1)
J,v } via Algorithm-1 on H

(l−1)
v ;

% Orthogonal propagations in multi-channels %

Update representation of v of channel j: h
(l)
j,v

T
= u

(l−1)
j,v

T
H

(l−1)
v , j = 1, 2, . . . , J ;

Update representation of v from different channels via Eq. 10;
end for

end for
return H(L) = {h(L)

1 ,h
(L)
2 , . . . ,h

(L)
N }.

Table 7: OPEN

Algorithm-3: OPEN

Input: Feature matrix X ∈ RN×F , Adjacency matrix A ∈ RN×N

Output: Node representations: H

for v=1 to N do
% Ego-network modeling %
Generate ego-network of v from {X,A}: Hv;
% Generate propagation weights for all layers %
Generate propagation weights of v: {u1,v,u2,v, . . . ,uJ,v} via Algorithm-1 on Hv;

end for
for l=1 to L do

for v=1 to N do
% Ego-network modeling %
Generate ego-network of v from {H(l−1),A}: H

(l−1)
v ;

% Orthogonal propagations in multi-channels %

Update representation of v of channel j: h
(l)
j,v

T
= uT

j,vH
(l−1)
v , j = 1, 2, . . . , J ;

Update representation of v from different channels via Eq. 10;
end for

end for
return H(L) = {h(L)

1 ,h
(L)
2 , . . . ,h

(L)
N }.

17

	Introduction
	Preliminaries and Analysis
	Methodology
	Ego-Network Modeling
	Orthogonal Propagations in Multi-channels
	Model Details
	Theory Analysis on Preventing Over-smoothing

	Evaluations
	Datasets
	Baselines
	Implementation Details
	Result Analysis
	Hyper-parameter Tuning and Ablation Study
	Preventing Over-smoothing Issue
	Robustness

	Conclusions
	Proof of Theorem 1
	Additional Experimental Results
	Node Classification on Another Split
	Embedding Visualization
	Ablation Study on Prevent Over-smoothing Issue
	Running Time Comparisons

	Algorithm Description of OPEN

