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ABSTRACT
Graph Neural Networks (GNNs) have been the standard toolkit for
processing non-euclidean spatial data since their powerful capabil-
ity in graph representation learning. Unfortunately, their training
strategy for network parameters is inefficient since it is directly in-
herited from classic Neural Networks (NNs), ignoring the charac-
teristic of GNNs. To alleviate this issue, experimental analyses are
performed to investigate the knowledge captured in classifier pa-
rameters during network training.We conclude that the parameter
features, i.e., the column vectors of the classifier parameter matrix,
are cluster representations with high discriminability. And after a
theoretical analysis, we conclude that the discriminability of these
features is obtained from the feature propagation from nodes to pa-
rameters. Furthermore, an experiment verifies that compared with
cluster centroids, the parameter features are more potential for
augmenting the feature propagation between nodes. Accordingly,
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a novel GNN-specific training framework is proposed by simulta-
neously updating node representations and classifier parameters
via a unified feature propagation scheme. Moreover, two augmen-
tation schemes are implemented for the framework, named Full
Propagation Augmentation (FPA) and Simplified Full Propagation
Augmentation (SFPA). Specifically, FPA augmentates the feature
propagation of each node with the updated classifier parameters.
SFPA only augments nodes with the classifier parameters corre-
sponding to their clusters. Theoretically, FPA is equivalent to opti-
mizing a novel graph learning objective, which demonstrates the
universality of the proposed framework to existing GNNs. Exten-
sive experiments demonstrate the superior performance and the
universality of the proposed framework.
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Figure 1: T-SNE visualization of node and parameter fea-
tures at four stages. (a) Before training, (b) After 5 iterations,
(c) After 20 iterations, (d) After 100 iterations. The embed-
dings show clear clusters where each parameter embedding
(large dot) is further away from the cluster boundary than
node embeddings (small dots) in the same cluster.

1 INTRODUCTION
GraphNeural Networks (GNNs), which follow themessage-passing
mechanism, have shown promising results in various graph-based
tasks, including link prediction [30], node classification [10, 22,
25], graph classification [31] and ranking [9, 13, 14]. Compared
with classic Neural Networks (NNs), e.g., Multilayer Perceptron
(MLP) [18], the superiority of GNNs is that they collectively uti-
lize graph topology and node attributes in a feature propagation1
manner. Nevertheless, the training scheme for network parame-
ters has been underemphasized in prior research. Specifically, pa-
rameter matrices are often treated solely as dimension reduction
components, and their training strategy in GraphNeural Networks
(GNNs) is directly inherited from Neural Networks (NNs).The lack
of a specific understanding and in-depth exploration of these learn-
able parameters may impose substantial limitations on developing
more robust and efficient GNN architectures.

To alleviate this issue, the node features and parameter features
collected at several stages are first visualized in Figure 1, where
parameter features are the column vectors of the classifier param-
eter matrix. The result shows that parameter embeddings, i.e., low-
dimensional representations of the parameter features, have a sig-
nificant separation from the cluster boundary compared to node
embeddings. Based on this phenomenon, a conjecture is introduced
that the parameter features are more distinguishable than the clus-
ter centroids, which are the mean of a class of node features. Subse-
quently, the distinguishability of pairs of cluster representations is
measured and visualized in Figure 2, and the result confirms the
above conjecture. Moreover, after theoretical analysis, it is con-
cluded that the discriminability of the parameter features is em-
powered by a feature propagation2 on the class-awarematrix, which
is composed of node labels and the above two types of features.

1It denotes the propagation between nodes.
2It denotes the propagation to update the parameter.

Inspired by HP-GMN [26], which utilizes cluster centroids to
augment the propagation between nodes, the superiority of pa-
rameter features over these centroids under this scheme is verified
experimentally, as shown in Figure 3. Accordingly, a full propaga-
tion training framework for GNNs is presented by simultaneously
updating node and parameter features via a unified feature propa-
gation scheme. Furthermore, two implementations of the proposed
framework are introduced, named Full Propagation Augmentation
(FPA) and Simplified Full Propagation Augmentation (SFPA), as
shown in Figure 4. FPA augments the feature propagation of each
node with the updated classifier parameters, ensuring seamless
connectivity throughout the graph. In contrast, SFPA only aug-
ments nodes with the classifier parameters corresponding to their
clusters, promoting an efficient propagation pattern.

Theoretically, by proving the equivalence of FPA and the opti-
mization of a graph learning objective, which consists of Graph
Learning object [15, 24, 28, 33] and Cross-Entropy loss, the uni-
versality of the proposed framework to existing GNNs is demon-
strated. Finally, numerous experiments on nine homophilic and
heterophilic benchmarks, including performance evaluation, label
efficiency, over-smoothing analysis, and complexity analysis, pro-
vide evidence of the effectiveness and universality of this frame-
work.

Themain contributions of this paper are summarized as follows:

• We experimentally investigate the knowledge captured in
classifier parameters and provide an interpretation for their
discriminability from a feature propagation perspective.

• We propose a novel framework for training GNNs and two
augmentation schemes for implementing it, where node and
parameter features are updated in a propagation manner.

• We provide a novel optimization objective for extending the
proposed framework and demonstrate the universality of
the proposed framework to existing GNNs.

• We experimentally verify the effectiveness and the univer-
sality of the proposed framework on both homophilic and
heterophilic benchmarks.

2 RELATEDWORK
The Graph Convolutional Network (GCN) [10] pioneers message-
passing mechanisms for various graph-based tasks. Building on
GCN, several variants have been introduced, including Simplified
GraphConvolution (SGC) [25] andGraphAttentionNetworks (GAT)
[22], which employ efficient convolution operations and attention
mechanisms to selectively aggregate neighboring information. Ad-
dressing over-smoothing issues, APPNP [11] combines graph prop-
agation and neural networks for capturing long-range dependen-
cies using Personalized PageRank. Similarly, the GCNII [4] method
utilizes identity mapping to enhance information propagation ef-
ficiency. For handling heterophily issues, several techniques have
been developed, such as FAGCN[1], which incorporate beyond low-
pass filters, and Geom-GCN[16], and HP-GMN [26], which supple-
ment information by considering neighborhoods on a latent space
and the features in a memory block. Furthermore, GPR-GNN [5]
underlines positive or negative messages through learnable aggre-
gation weights, while H2GCN [32] emphasizes the separation of
the different orders. Recently, [3] has successfully extended the
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AUC optimization framework to deal with classification tasks on
Graph.

3 PRELIMINARIES
This section presents the concise notations used in this paper, fol-
lowed by the preliminaries on graph neural networks.

3.1 Notations
Given an undirected graph G = (E,V), where E denotes the edge
set and V means the node-set, 𝑁 is the number of nodes. Graph
G is described by the adjacency matrix A ∈ 𝑅𝑁×𝑁 . D denotes the
diagonal degree matrix, D𝑖,𝑖 =

∑
𝑗 A𝑖, 𝑗 . L denotes the symmetric

positive semidefinite laplacian matrix, L = D − A. Generally, one
common normalization is Ã = (D + I𝑁 )− 1

2 (A + I𝑁 )(D + I𝑁 )− 1
2 ,

and hence L̃ = I𝑁 − Ã, where I𝑁 is an all-one diagonal matrix.
X ∈ 𝑅𝑁×𝐹 represents the node attribute matrix, where 𝐹 is the
dimension of attributes. Y ∈ 𝑅𝑁×𝐶 denotes the label matrix. 𝐶 is
the number of classes. 𝑁𝐿 is the number of the labeled nodes.

3.2 Message Passing Graph Neural Networks
Most current GraphNeural Networks (GNNs) follows a propagation-
transformation strategy. The propagation operator, supported by
the Message-Passing paradigm [6, 21], iteratively updates the fea-
tures of each node by aggregating these of their neighbors. The
transformation operator encodes input features into a low dimen-
sional space, typically a learnable network, e.g., MLP [18]. For the
𝑖-th node, the update scheme of its feature in the 𝑘-th layer can be
formulated as

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 H𝑘+1
𝑖: = P𝑘𝑖,𝑖Z

𝑘
𝑖: +

∑
𝑗∈𝑁𝑖

P𝑘𝑖,𝑗Z
𝑘
𝑗 : (1)

𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 Z𝑘+1𝑖: = 𝜎 (H𝑘+1
𝑖: W𝑘 ) (2)

where H and Z denote the node feature and the actual output, re-
spectively, the scalar P𝑖, 𝑗 denotes the aggregation weight, 𝜎 terms
the nonlinear activation functions, W terms the network parame-
ters, 𝑁𝑖 is the neighbor set. The first and second terms represent
the node and neighbors’ messages.

Themain difference between variousGNNmodels is that it adopts
different propagation-transformation schemes. For example, GCN
[10] applies propagation and transformation at each layer, whereas
SGC only performs transformation at the final layer. Additionally,
APPNP [11] combines the initial feature, the output of the trans-
formation layers, at each layer using Skip Connection [8].

𝐺𝐶𝑁 H𝑘+1 = ÃH𝑘W𝑘 (3)

𝑆𝐺𝐶 H𝑘+1 = ÃH𝑘 (4)

𝐴𝑃𝑃𝑁𝑃 H𝑘+1 = (1 − 𝛼)ÃH𝑘 + 𝛼H0 (5)

where 𝛼 denotes the balance hyperparameter.
Objectives. A particular set of parameters of GNN networks

is computed by optimizing objectives, which minimizes an error
between the actual and desired output vectors for every node in the
training set. Actually, in GNNs [10, 11, 22, 25], the actual vectors
Z is the product of the node feature matrix H ∈ 𝑅𝑁×𝐷 and the
parameter matrix W ∈ 𝑅𝐷×𝐶 , that is Z = HW. Hence, the total

error is presented by Cross-Entropy loss as

𝐸 =
∑
𝑖

Y𝑖,: 𝑙𝑛 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (Z𝑖,:)) (6)

where 𝑙𝑛 is the natural logarithm, 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 is an activation func-
tion, which is often employed for multi-class classification, Z is the
actual state of an output unit, and Y is its desired state. To optimize
the objective by Gradient Descent, it is necessary to compute the
partial derivative of E with respect to the network parameters.

3.3 Graph Learning Objective
Several works have demonstrated the equivalence between the ex-
isting GNNs and the optimization objectives [15, 24, 28, 33]. One
of the most commonly utilized objectives can be formulated as

argmin
H

∥H − H0∥2𝐹 + 𝜆 𝑡𝑟 (H𝑇 L̃H ) (7)

where 𝑡𝑟 terms the matrix trace, H0 denotes the initial feature, 𝜆
is the balance coefficient between the above two terms. By mini-
mizing the first term, the updated feature H is guaranteed to be
similar to H0. The second term has the same mathematical form
as Spectral Clustering, which follows the smoothness assumption
on graph [23]. Therefore, minimizing it forces connected nodes to
have similar features. Ultimately, by optimizing Equation 7 with
Gradient Descent, a batch of GNNs can be induced[15, 24, 28, 33],
including GCN[10], SGC[25], GAT[22], APPNP[11] and JKNet[27].

4 ANALYSIS
This section begins by introducing the setups and critical findings
of two experiments. Subsequently, a theoretical analysis of the con-
jecture of the experimental findings is provided.

4.1 Experimental Discovery
Thenode and parameter features are first collected at several stages
and visualised to investigate the knowledge captured by classifier
parameters during network training.

Experimental setup. Precisely, to match the dimension of the
node features, the parameter features are first depicted as the D-
dimensional row vectors of W̄, where W̄ ∈ 𝑅𝐷×𝐶 represents the
matrix transpose of the classifier parameter matrix W. Next, the
node and parameter features in four states are saved during the
GCN [10] network training on the Cora dataset. Using the visual
tool t-SNE [20], the low-dimensional embeddings of these two types
of features are generated and visualized, where the category of
nodes is the node label, and the category of parameter features
is its row index in the matrix W̄. In Figure 1, each color represents
a category, and small light and large dark dots stand for node and
parameter embeddings, respectively.

As shown in Figure 1, each cluster consists of small dots and a
large dot, all of which are of the same color. From this, it can be
inferred that the parameter features may represent a cluster. Mean-
while, Figure 1 shows that each large dot is further away from the
cluster boundary than the small dots. As of now, the reason be-
hind this occurrence is not ensured. We conjecture that the farther
the embedding is from the cluster boundary, the more discrimina-
tive power their features possess. This means parameter features
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Figure 2: Comparison of the discriminability 𝑝 of cluster cen-
troidsM and parameter feature W̄. Eachheatmap grid stands
for the cosine similarity of a cluster pair. Parameter features
have higher discriminability than cluster centroids.

are more effective in distinguishing between classes than node fea-
tures.

Definition 4.1. (Discriminability of cluster representation) Given
a cluster representation matrix U, its discriminability is defined as

𝑝U = 1 − 1
𝐶 (𝐶 − 1)

𝐶−1∑
𝑖=0

𝐶−1∑
𝑗=0,
𝑗≠𝑖

𝑠𝑖𝑚(U𝑖,:,U𝑗,:) (8)

where 𝑠𝑖𝑚 is the cosine similarity, 𝐶 is the number of categories.

As per Definition 4.1, an excellent cluster representation ought
to possess high discriminability, leading to a precise indication for
the node clustering task. Based on this metric, the discriminability
of two kinds of cluster representations, i.e., node and parameter
features, are measured and visualized.

Experimental setup. To simplify the process of comparing pa-
rameter features with the node features in the same class, the cen-
troid, a widely-used cluster representation [7, 26], is employed to
stand for the node features. Each centroid represents the average
of the feature of the nodes in the same cluster. Then, the cosine
similarity between all pairs of clusters, e.g., centroids, is computed
and represented as 𝑠𝑖𝑚(M𝑖,:,M𝑗,:). To visually compare the discrim-
inability of parameter features W̄ and cluster centroidsM, heatmaps
on various datasets are provided, where each cell represents a co-
sine similarity value. The node and parameter features are the ac-
tual output of the SGC model after 100 training iterations.

When comparing the upper and lower heatmaps shown in Fig-
ure 2, it is evident that the cosine similarities between any two
parameter features are not lower than those of the cluster centroid
counterpart. Here, the comparison only considers different clus-
ters. Therefore, it can be easily deduced that 𝑝W̄ > 𝑝M. In con-
clusion, the results confirm the conjecture that parameter features
are more effective in discriminating between different classes than
node features.

4.2 Theoretical Explanation
To further examine the conclusion stated above, a comprehensive
analysis is conducted on the updating process of the parameter

H!"" H!"" +M

(a) The case on the homophilic dataset
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(b) The case on the heterophilic dataset
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Figure 3: Performance improvement by using cluster rep-
resentations to augment feature propagation among nodes.
The green, blue, and orange bars stand for SGC, the variant
with M, and the variant with W̄. Parameter features have
a stronger ability to augment feature propagation among
nodes than cluster centroids.

features. Then, an interpretation of the above phenomenon is pre-
sented from a feature propagation perspective.

PRoposition 4.2. The scheme of updating parameter features W̄,
which is induced by the optimization of Equation 6, is equivalent to
a feature propagation from nodes H to parameters W̄.

To prove this proposition, Lemma 4.3 is first introduced.

Lemma 4.3. Given the 𝑗-th parameter features, i.e., the column
vector with index 𝑗 , its solution with Equation 6 satisfies:

W̄𝑗,: = W̄𝑗,: + 𝜖
𝑁𝐿−1∑
𝑖=0

O𝑗,𝑖 H𝑖,: (9)

whereO ∈ 𝑅𝐶×𝑁 represents the matrix (Y−𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (HW̄𝑇 ))𝑇 , and
𝜖 terms the learning rate of the model optimizer.

PRoof. To begin with, the partial derivative of E with respect
to the parameter features W̄ is calculated as

𝜕𝐸

𝜕W̄
= −2(Y − 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (HW̄𝑇 ))𝑇H (10)

Secondly, with the Gradient Descent method, that is W̄ = W̄ − 𝜖 ∗
𝜕𝐸
𝜕W̄

, the solution of W̄ can be formulated as

W̄ = W̄ + 𝜖 (Y − 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (HW̄𝑇 ))𝑇H (11)
Finally, by expanding the Equation 11 row by row and substituting
(Y − 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (HW̄𝑇 ))𝑇 with O, the proof of Lemma 4.3 ends. □

Consequently, the first two terms of Equation 9 indicate the
combination of the parameter features themself and their neigh-
bor features, respectively. The above operator is the same as the
GNN propagation operator, formulated as Equation 1. Thus, the
proof of Proposition 4.2 concludes.

Proposition 4.2 demonstrates that when the classifier is con-
sidered separately, the updating process of its parameters can be
viewed as a feature aggregation over all labeled nodes using a class-
aware weight matrix.

Lemma 4.4. Consider the matrix O = (Y − 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (HW̄𝑇 ))𝑇 ,
derived from the optimization of Equation 6, if 𝑖-th node belongs to
class 𝑗 , that is 𝑌𝑖, 𝑗 = 1, there is the weight O𝑗,𝑖 ≥ 0, or if 𝑌𝑖, 𝑗 = 0,
there is the weight O𝑗,𝑖 ≤ 0.
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PRoof. Let S represents the matrix 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (HW), where each
value satisfies S𝑖, 𝑗 ∈ [0, 1]. It can be deduced from matrix op-
erations, O𝑗,𝑖 = O𝑇

𝑖,𝑗 = Y𝑖, 𝑗 − S𝑖, 𝑗 . Thus, if Y𝑖, 𝑗 = 1, there is
O𝑗,𝑖 = 1 − S𝑖, 𝑗 ≥ 0, or if Y𝑖, 𝑗 = 0, there is O𝑗,𝑖 = 0 − S𝑖, 𝑗 ≤ 0. □

PRoposition 4.5. Based on Lemma 4.4, given a parameter fea-
tures W̄𝑖:, the propagation mechanism, which is described in Propo-
sition 4.2, increases its similarity with the same-class nodes while
reduces its similarity with the different-class nodes.

Considering that the entire propagation process operates on a
one-hot node label matrix, it manifests as a piecewise function
with two components. The first component involves feature propa-
gationwithin the same class, while the second component involves
feature propagation across different classes, as

W̄𝑗,: =


W̄𝑗,: − 𝜖

𝑁𝐿−1∑
𝑖=0

S𝑖, 𝑗 H𝑖,: , Y𝑖, 𝑗 = 0

W̄𝑗,: + 𝜖
𝑁𝐿−1∑
𝑖=0

(1 − S𝑖, 𝑗 )H𝑖,: , Y𝑖, 𝑗 = 1

(12)

Through this propagationmechanism, the features of each parame-
ter are combinedwith features fromnodes of the same class using a
positive weight.This results in a significant increase in feature sim-
ilarity among nodes within the same class. Conversely, it reduces
the feature similarities between the parameter and nodes from dif-
ferent classes because of the presence of the negative weight.

Proposition 4.5 demonstrates that the scheme of training param-
eters, which performs intra-class smoothing (to increase similar-
ity) and inter-class sharpening (to decrease similarity), empowers
the parameter features with high discriminability.

5 METHODOLOGY
This section first verifies the effectiveness of parameter features in
augmenting the feature propagation between nodes. Next, a train-
ing framework for GNNs is proposed by simultaneously updating
node and parameter features.Moreover, two augmentation schemes
are implemented for the framework. Finally, from an optimization
perspective, the universality of the framework is demonstrated.

5.1 Augmentation of the classifier parameters
As discussed in previous section, parameter features have higher
discriminability than the centroids of the same class. And inspired
by HP-GMN [26], which utilizes cluster centroids obtained from
unsupervised K-Means [7] to augment the feature propagation be-
tween nodes, a conjecture is proposed, namely the parameter fea-
tures performs better than the cluster centroids in augment-
ing topological propagation.

Two variant models H𝐺𝑁𝑁 +M and H𝐺𝑁𝑁 + W̄, were first pro-
posed to represent the feature propagation between augmenting
the cluster centroid and parameter features. Next, these networks,
whose backbone model is SGC, are trained on the homophilic Cora
dataset, and heterophilic Chameleon dataset, and the node classi-
fication performance for each class is reported in Figure 3. In the
experiment, each node combines not only the feature of its topol-
ogy neighbors but also that of two kinds of its non-local neighbors,

i.e., cluster centroids M and classifier parameters W̄, respectively.
The combination weights are the inner product of features.

A significant observation in Figure 3, H𝐺𝑁𝑁 + M, namely the
augmentation with the cluster centroids, realizes performance im-
provement on almost all classes, while H𝐺𝑁𝑁 + W̄, namely the
augmentation with the classifier parameters, achieve a more re-
markable improvement, which confirms the speculation.

The feature propagationmechanism,which is formulated as Equa-
tion 1, exhibits several inherent drawbacks. First, the receptive
field is seriously restricted by graph topology, making GNNs prone
to over-smoothing problems while capturing long-range depen-
dencies. Second, the propagation process lacks sufficient class aware-
ness, rendering GNNs less effective in handling non-homophilic
graphs. However, by integrating these parameters during the prop-
agation, nodes can effectively acquire long-range information and
enhance their ability to discriminate among local neighbors.

5.2 A Full Propagation Training Framework
Based on Proposition 4.2 and experimental findings in Subsection
5.1, we propose a novel GNN training framework. This framework
leverages themutual propagation of classifier parameters and node
features, enhancing the quality of node representations.The overview
of the framework is in Figure 4. It’s worth noting that the node
set is extended with classifier parameters as another type of node,
called Cluster Anchor nodes (CA nodes).

The feature updating of each node can be described as the combi-
nation of the node itself and its neighbors on the augmented graph.

𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔𝐶𝐴𝑛𝑜𝑑𝑒𝑠 W̄𝑖,: = W̄𝑖,: +
∑
𝑗∈Q𝑖

A𝑖, 𝑗 H𝑗,: (13)

𝑈𝑝𝑑𝑎𝑡𝑖𝑛𝑔 𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑛𝑜𝑑𝑒𝑠 H𝑖,: = (HGNN)𝑖,: +
∑
𝑗∈ Q̂𝑖

Â𝑖, 𝑗 W̄𝑗,: (14)

where W̄ and H denote the features of CA nodes and ordinary
nodes, respectively. Q𝑖 and Q̂𝑖 are the neighbor set of 𝑖-th CA node
and 𝑖-th ordinary node, respectively, HGNN stands for the GNN
feature, which is obtained by the propagation between ordinary
nodes, A ∈ 𝑅𝐶×𝑁𝐿 and Â ∈ 𝑅𝑁𝐿×𝐶 denotes two weight matrices,
which can be constructed through heuristics or learning.

The proposed framework has several advantages. Firstly, it uni-
fies the mutual propagation of two types of nodes. Secondly, it
is compatible with most existing GNNs since the propagation in
GNNs can be viewed as an inner-layer update in Equation 14. Lastly,
it helps surpass the previous limit of GNNs’ expressive power by
considering long-range dependencies [17].

5.3 Implementations
Two augmentation scheme are implemented for the framework,
named Full PropagationAugmention (FPA) and Simplified FPA (SFPA).
They correspond to the updating process of the feature of CAnodes,
i.e., the classifier parameter, and the features of ordinary nodes,
shown in Figure 4 (b) and 4 (c), respectively.

Updating the features of CA nodes. As discussed in Section
4 and Subsection 5.1, training with Cross-Entropy loss enhances
the classifier parameter’s discriminative power, which can aug-
ment topological propagation.Thus, FPA and SFPA both follow this
scheme as their initial step. For Equation 13, the matrix A is set to
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Figure 4: Overview of the Full Propagation Training Framework. (a) Augmenting graph with the classifier parameters. (b)
Updating the parameter features with a class-aware matrix, which incorporates label and feature similarity, achieving intra-
cluster smoothing and inter-cluster sharpening among the labeled nodes. (c) FPA updates the features of all labeled nodes,
while SFPA only performs among the same cluster.

the following form, which is released from Equation 9.

A = 𝜖 (Y𝐿 − 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (H𝐿 W̄
𝑇 ))𝑇 (15)

where 𝜖 denotes a combination coefficient, Y𝐿 and H𝐿 term the la-
bel and feature of the labeled nodes, respectively. Finally, thanks
to the class-awareness of matrix A, the CA node performs intra-
cluster smoothing and inter-cluster sharpening in the feature space,
as presented in Section 4.

Full Propagation Augmentation (FPA). Especially consider-
ing the class-aware capabilities of matrix A, FPA set its transpose
as the propagation matrix Â for updating node features.

Â = Y𝐿 − 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (H𝐿 W̄
𝑇 ) (16)

The module is shown in the upper part of Figure 4 (c), where each
node receives all CA nodes’ features using the class-aware weights,
which distinguish between inside and outside the cluster.

Simplified Full PropagationAugmentation (SFPA).As shown
in the lower part of figure 4(c), the feature propagation of Simpli-
fied Full Propagation Augmentation (SFPA) occurs only within the
cluster. The matrix Â for Equation 14 is represented as:

Â = Y𝐿 ⊙ 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (H𝐿 W̄
𝑇 ) (17)

where ⊙ represents the Hadamard product, i.e., element-wise mul-
tiplication. It is worth noting that extending the scope of the action
using pseudo labels is suboptimal for the proposed implementa-
tions. Since their low accuracy inevitably leads to an error propa-
gation augmentation.

The advantages of the two schemes are as follows. Firstly, nei-
ther of them increases space complexity since no additional param-
eters are introduced. Secondly, FPA is easy to understand with a
straightforward derivation process. Concretely, it is obtained from
the joint optimization of graph regularization and classification
loss, which have been widely explored. Thirdly, compared to FPA,
SFPA is more efficient without losing discriminability. The propa-
gation of SFPA retains the intra-class part of that of FPA but with
a sparser propagation matrix.

5.4 The Unified Optimization Perspective
To extend the proposed framework, a novel optimization objec-
tive is introduced, which collectively targets classifier training and
node representation learning. The objective 𝐸𝐺 includes initial fea-
ture constraint, laplacian graph regularization, and classification
error. 𝐸𝐺 can be formulated as

𝐸𝐺 = ∥H − H0∥2𝐹 + 𝜆 𝑡𝑟 (H𝑇 L̃H) + 𝛾 D(Y, 𝜎 (HW̄𝑇 )) (18)
where D(, ) denotes the distance measure, 𝜎 terms the nonlinear
activation function, 𝜆 and 𝛾 are hyperparameters.

TheoRem 5.1. The optimization scheme of 𝐸𝐺 for node feature H
is equivalent to the implementation of FPA with the backbone model
APPNP, where D and 𝜎 are the same as their settings in Equation 6.

PRoof. Based on these conditions, Equation 18 can be reformu-
lated as combining conventional graph learning object and cross-
entropy loss for classification.

𝐸𝐺 = ∥H − H0∥2𝐹 + 𝜆 𝑡𝑟 (H𝑇 L̃H) + 𝛾 Y 𝑙𝑛 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (HW̄𝑇 )) (19)
The partial derivative of 𝐸𝐺 with respect to node feature H is
𝜕𝐸𝐺
𝜕H

= (H − H0) + 𝜆 L̃H + 𝛾 (Y − 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (HW̄𝑇 ))W̄ (20)

Next, let 𝜕𝐸𝐺
𝜕H = 0, the iterative solution of H is

H𝑘 = (1 − 𝛼)ÃH𝑘−1 + 𝛼H0 + 𝛾 (Y − 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (H𝑘−1W̄𝑇 ))W̄ (21)
where 𝛼 = 1

1+𝜆 and 𝛾 = 𝛾
1+𝜆 are hyperparameters. It can be ob-

served that the first two terms in Equation 21 correspond to the
feature updating process in APPNP. Moreover, the propagation,
formulated by the third term in Equation 21, is the same as the
function of FPA. □

Illustrated byTheorem 5.1, the universality of the proposed frame-
work is validated from an optimization perspective. The overall
performance could gain by replacing the first two terms in Equa-
tion 18with the newobjectives for graph learning, e.g., GNN-LF/HF
[33] and tsGCN [24].
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Table 1: Statistics of nine graph datasets. #Edge Hom is the
edge homophily raised in H2GCN [32].

Dataset Nodes Edges Features Classes #Edge Hom
Cora 2,708 5,278 1,433 7 0.81
Citeseer 3,327 4,552 3,703 6 0.74
Pubmed 19,717 44,324 500 3 0.80
Penn94 41,554 1,362,229 5 2 0.47
Cornell5 18,660 790,777 5 2 0.48
Genius 421,961 984,979 12 2 0.62
Chameleon 2,277 36,101 2,325 5 0.23
Squirrel 5,201 217,073 2,089 5 0.22
Actor 7,600 33,544 931 5 0.22

6 EXPERIMENTS
This section first provides experimental setups, including datasets,
baselines, and implementation details.Then, the node classification
results are analyzed, followed by hyper-parameter tuning. Finally,
the capabilities of preventing over-smoothing and the low compu-
tational cost are verified.

6.1 Experimental Setup
Datasets.To exhaustively evaluate the proposedmodels, ninewidely
used benchmark datasets with various homophily are employed.
They can be categorized into four types, and their statistics are
shown in Table 1. Cora, Pubmed, and Citeseer are citation net-
works [29]. Penn94, Cornell5, and Genius are social networks [12].
Chameleon and Squirrel are Wikipedia page-page networks [19].
Actor is a Co-occurrence network [16] . In this study, the datasets
with edge homophily [32] greater than 0.5 are homophily datasets,
and otherwise, heterophilic datasets. For Cora, Citeseer, and Pubmed,
20 nodes per class for training, 500 nodes for validation, and 1000
nodes for testing are randomly sampled. For Penn94, Cornell5, and
Genius, the nodes are randomly split into 2.5%, 2.5%, and 95% for
training, validation, and testing, respectively. For Chameleon, Squir-
rel, and Actor, the widely used split provided in Geom-GCN [16]
is utilized, where the training, validation, and testing proportions
are 60%, 20% and 20%, respectively.

Baselines. To verify the superiority of the proposedmodels, ten
baseline models are employed for performance comparison. These
methods are divided into two categories.The first category consists
of the basic models for homophilic graph data, including GCN [10],
SGC [25], APPNP [11], GAT [22], JKNet [27], GCNII [4]. The meth-
ods in the second category possess the adaptability of heterophilic
graph data, including FAGCN [1], GPRGNN [5], Geom-GCN [16]
and H2GCN [32]. It is nothing that both the proposed implemen-
tations are based on GPRGNN.

Implementation Details. For the network training of each
model, the Adam optimizer is selected, the learning rate is among
the set {0.005, 0.01, 0.05, 0.1}, the weight decay is among the set
{0, 0.0001, 0.001, 0.005, 0.01}, the dimensions of hidden layers are
64, and the dropout rate is among the set {0, 0.2, 0.5}. The remain-
ing hyperparameter is consistent with the original paper. For the
unique hyperparameter of the proposed framework, i.e.,𝛾 , its value
is among the set {0.2, 0.4, 0.6, 0.8}. Node classification is the pri-
mary task of performance verification of the proposed framework,
and accuracy is the key evaluation metric. All experiments are run

Table 2:Mean classification accuracy and standard deviation
on heterophilic datasets (Bold indicates the best.)

Model Cornell5 Chameleon Squirrel Actor
SGC 61.63±2.55 56.97±3.77 41.44±2.39 28.71±1.22
GCN 63.80±3.21 59.82±2.58 36.89±1.34 30.64±1.49
APPNP 63.41±2.59 52.57±1.82 33.29±1.72 29.94±0.70
GAT 62.45±2.17 60.26±2.50 40.72±1.55 28.62±0.68
JKNet 59.42±2.58 62.31±2.76 44.24±2.11 36.47±0.51
GCNII 57.19±4.64 63.02±1.37 41.17±2.80 36.18±0.61

FAGCN 65.39±2.33 61.12±1.95 40.88±2.02 36.81±0.26
GPRGCN 64.74±1.90 63.43±1.77 47.29±2.43 36.58±1.04
Geom-GCN 63.58±1.62 60.31±1.53 38.32±1.59 31.63±0.98
H2GCN 66.16±2.24 58.79±1.93 37.90±2.02 36.45±1.16

FPA(ours) 68.02±1.33 65.02±1.49 49.39±1.04 36.81±1.09
SFPA(ours) 68.75±0.94 66.16±1.52 50.93±1.16 36.72±0.79

Table 3:Mean classification accuracy and standard deviation
on homophilic datasets (Bold indicates the best.)

Model Cora Citeseer Pubmed Genius
SGC 81.81±0.27 71.04±0.45 78.41±0.24 79.77±1.35
GCN 81.71±0.74 72.10±0.58 79.80±0.11 77.29±3.59
APPNP 83.21±0.23 71.78±0.38 80.14±0.22 80.89±0.43
GAT 82.88±0.44 71.03±0.88 78.61±0.38 78.61±0.38
JKNet 81.10±0.13 69.80±0.36 78.10±0.24 79.54±0.21
GCNII 84.71±0.59 72.57±0.74 79.96±0.32 80.28±1.68

FAGCN 83.18±0.70 71.67±1.01 80.08±0.18 80.92±0.98
GPRGCN 83.61±0.31 72.59±0.52 80.10±0.29 80.94±0.31
Geom-GCN 82.31±1.13 72.44±1.50 80.03±0.91 79.92±0.85
H2GCN 82.08±0.60 70.70±0.37 80.26±0.22 80.02±0.26

FPA(ours) 84.20±0.34 72.67±0.70 80.46±0.24 81.34±0.29
SFPA(ours) 84.33±0.32 72.91±0.53 80.25±0.36 81.42±0.33

Table 4: Comparison of mean classification accuracy (%) and
standard deviation for GNNs equipped with FPA and SFPA.
𝑁𝑜𝑛𝑒 denotes the unprocessed backbone models. The bold
indicates the best result for each model on each dataset.

Model Dataset
Backbone Strategy Cora Penn94 Chameleon Squirrel

GCN
𝑁𝑜𝑛𝑒 81.71±0.74 63.55±1.30 59.82±2.58 36.89±1.34
FPA 81.93±0.33 68.69±1.07 62.73±1.82 40.80±1.12
SFPA 81.89±0.69 69.38±0.89 62.43±1.78 41.31±1.44

APPNP
𝑁𝑜𝑛𝑒 83.21±0.23 63.56±3.51 52.57±1.82 33.29±1.72
FPA 83.79±0.32 69.61±1.75 54.21±1.75 35.77±1.20
SFPA 83.49±0.43 69.09±1.24 53.95±1.98 36.20±1.53

FAGCN
𝑁𝑜𝑛𝑒 83.18±0.70 69.03±1.32 61.12±1.95 40.88±2.02
FPA 83.53±0.46 70.62±1.61 61.74±1.56 47.06±1.31
SFPA 83.42±0.48 69.67±1.28 61.58±2.15 47.87±1.16

ten times, and the average value and standard deviation are re-
ported.
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Figure 5: Impact of the number of nodes per class.

6.2 Performance Evaluation
HeterophilicDatasets.As shown in Table 2, the proposedmodels
performs better than others on heterophilic datasets. In line with
the results from previous studies, GNNs broadly received struc-
tural inductive bias using feature aggregating operation. However,
their node embeddings are poorly performed on heterophilic graphs
since their class distribution is inconsistent with homophilic graph-
based inductive bias. By considering global classifier parameters in
aggregation operation, the node representations obtained by the
proposed models can receive task-related positive influences, im-
proving the expressibility of nodes.

Homophilic Datasets. Table 3 shows that the proposed mod-
els demonstrate superior performance compared to the basic mod-
els for homophilic graph data on homophilic datasets. The results
suggest that the proposed augmentationmodels may providemore
accurate information for absorbing the features of different-class
neighbors than traditional aggregations with positive weights.

FPA and SFPA with Different Backbones. Table 4 mainly
shows the performance improvement of backbone models after be-
ing equipped with FPA and SFPA. It is worth noting that almost all
GNN models directly profited by equipping the proposed global
augmentation strategies, whether applied to graphs with higher
or lower edge homophily. This is due to the fact that nodes ag-
gregate the information of CA nodes which perform intra-cluster
smoothing and inter-cluster sharpening on the feature space.

6.3 Model Analysis
Limited labeled Training Data. The label efficiency experiment
is conducted to evaluate the impact of the number of training nodes
on the performance, where SGC is chosen as the backbone model,
and the training nodes per class are selected among {1, 3, 5, 10, 15}.
As illustrated in Figure 5, the accuracy of the SGCmodel decreases
with a reduction in the number of usable labels while the accuracy
variances increase on each dataset. However, our proposed frame-
work leverages the classifier parameter matrix to function both as
a classifier and a feature propagation corrector using the label ma-
trix, leading to a more stable outcome.

Over-smoothing Analysis. The experiment analyzes the abil-
ity of the proposed models to alleviate the over-smoothing prob-
lem, a drawback found in GCN and SGC models presented in [2].
As shown in Figure 6, the proposed implementation models con-
sistently outperform the backbone models across all datasets and
layers. Moreover, the performance of the proposedmodels for each
dataset does not drop significantly as some baselines.The reason is
that the messages of nodes are complemented by propagating the
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Figure 6: Influence of model depth (number of layers).

Table 5: Time of model training and quantity of network pa-
rameters onCora, where time is the total time of 500 epochs.

SGC GCNII
𝑁𝑜𝑛𝑒 FPA SFPA 𝑁𝑜𝑛𝑒 FPA SFPA

Time (sec) 1.13 1.42 1.41 2.7 3.38 2.95
Space (byte) 92,231 92,231 92,231 133,191 133,191 133,191

parameter features, and the false propagation coefficient between
nodes is corrected.

Complexity Analysis. The experiment analyzes the time and
space complexity of the proposed framework, whose results are
shown in Table 5. The complexities of the proposed augmentation
scheme, FPA, and SFPA, are 𝑂 (𝑁𝐿𝐷𝐶). Compared to the complex-
ity of the simplest baseline SGC, i.e., 𝑂 (|𝐸 |𝐷 + 𝑁𝐷2), where |𝐸 |is
the number of edges, the complexity of the proposed schemes is
lower since the number of training nodes is small. Equipping with
FPA and SFPA slightly increases the total times for run times since
a few matrix operations are employed to compute the propagation
weights.

7 CONCLUSION
This study explores the training scheme for network parameters in
Graph Neural Networks (GNNs), an area that has been underem-
phasized in previous research. By visualizing node and parameter
features, the study observes the distinguishability of parameter em-
beddings compared to node embeddings. Inspired by this finding,
a full propagation training framework for GNNs is proposed, up-
dating both node and parameter features through a unified feature
propagation scheme. The universality of the proposed framework
is demonstrated theoretically, showcasing its potential to enhance
the efficiency and robustness of GNN architectures. The following
research is to investigate the training scheme for GNN network
parameters in unsupervised scenarios.
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