
Long Short-Term Graph Memory Against Class-imbalanced
Over-smoothing

Liang Yang∗
Jiayi Wang∗

yangliang@vip.qq.com
jayeew@qq.com

School of Artificial Intelligence
Hebei University of Technology

Tianjin, China

Tingting Zhang
101101964@seu.edu.cn

College of Command and Control
Engineering

Army Engineering University
Nanjing, China

Dongxiao He†
hedongxiao@tju.edu.cn

College of Intelligence and
Computing

Tianjin University
Tianjin, China

Chuan Wang
wangchuan@iie.ac.cn

State Key Laboratory of Information
Security

Institute of Information Engineering
Chinese Academy of Sciences

Beijing, China

Yuanfang Guo
andyguo@buaa.edu.cn

School of Computer Science and
Engineering

Beihang University
Beijing, China

Xiaochun Cao
caoxiaochun@mail.sysu.edu.cn
School of Cyber Science and

Technology, Shenzhen Campus
Sun Yat-sen University

Shenzhen, China

Bingxin Niu
niubingxin666@163.com

School of Artificial Intelligence
Hebei University of Technology

Tianjin, China

Zhen Wang
w-zhen@nwpu.edu.cn

OPtics and ElectroNics (iOPEN),
School of Cybersecurity

Northwestern Polytechnical
University
Xi’an, China

ABSTRACT
Most Graph Neural Networks (GNNs) follow the message-passing
scheme. Residual connection is an effective strategy to tackle GNNs’
over-smoothing issue and performance reduction issue on non-
homophilic networks. Unfortunately, the coarse-grained residual
connection still suffers from class-imbalanced over-smoothing issue,
due to the fixed and linear combination of topology and attribute
in node representation learning. To make the combination flexi-
ble to capture complicated relationship, this paper reveals that the
residual connection needs to be node-dependent, layer-dependent,
and related to both topology and attribute. To alleviate the diffi-
culty in specifying complicated relationship, this paper presents a
novel perspective on GNNs, i.e., the representations of one node
in different layers can be seen as a sequence of states. From this
perspective, existing residual connections are not flexible enough

∗Both authors contributed equally to this research.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0108-5/23/10. . . $15.00
https://doi.org/10.1145/3581783.3612566

for sequence modeling. Therefore, a novel node-dependent residual
connection, i.e., Long Short-TermGraphMemoryNetwork (LSTGM)
is proposed to employ Long Short-Term Memory (LSTM), to model
the sequence of node representation. To make the graph topology
fully employed, LSTGM innovatively enhances the updated mem-
ory and three gates with graph topology. A speedup version is
also proposed for effective training. Experimental evaluations on
real-world datasets demonstrate their effectiveness in preventing
over-smoothing issue and handling networks with heterophily.

CCS CONCEPTS
•Computingmethodologies→Machine learning; •Networks
→ Network algorithms.

KEYWORDS
GraphNeural Networks, Long Short-TermMemory Networks, Deep
Models

ACM Reference Format:
Liang Yang, Jiayi Wang, Tingting Zhang, Dongxiao He, Chuan Wang, Yuan-
fang Guo, Xiaochun Cao, Bingxin Niu, and Zhen Wang. 2023. Long Short-
Term Graph Memory Against Class-imbalanced Over-smoothing. In Pro-
ceedings of the 31st ACM International Conference on Multimedia (MM ’23),
October 29–November 3, 2023, Ottawa, ON, Canada. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3581783.3612566

https://doi.org/10.1145/3581783.3612566
https://doi.org/10.1145/3581783.3612566

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Liang Yang et al.

(b) Sequences of Node Representations(a) Propagation among Neighbourhoods

Layer 1

Layer 2

Layer 3

Layer 4
v1 v2 v3 v4 v5 v6 v7v1

v2

v3
v4

v5
v6

v7

Figure 1: Different perspectives of GNNs. (a) Most existing
GNNs focus on propagation among neighbourhoods. The
obtained representations in previous layer are taken as the
message to be propagated in next layer. (b) This paper alterna-
tively considers the representations of one node in different
layers as a sequence of states. Thus, the LSTM is employed
to model these sequences.

1 INTRODUCTION
Graph Neural Networks (GNNs) [32, 41], especially Graph Convo-
lutional Networks (GCNs), which originated from spectral graph
theory, have became a kind of powerful tools for modeling irregular
data in many computer vision tasks, such as sense graph generation,
skeleton-based action recognition [10], subspace clustering [15] and
multi-view clustering [35]. Many variants of GCNs are designed
from the spatial perspective by following the message-passing
scheme [7]. These models propagate messages among neighbour-
hoods to achieve local smoothing. However, vanilla GCNs [16]
posses two serious issues, i.e., over-smoothing issue [19, 34] by
stacking multiple layers and performance reduction issue [27, 42]
on non-homophilic networks.

Residual connection, which is proposed to tackle vanishing gra-
dient problem in CNNs [11], is also effective to alleviate the two
issues in GCNs [4]. Different from vanilla GCN, which takes the
obtained node representations in current layer as the message to be
propagated in next layer, residual connection enhances the message
with representations in previous layers via simple operations, such
as summation and concatenation [18, 34].

Unfortunately, the coarse-grained residual connection cannot
essentially solve the two issues mentioned above. Factually, the
over-smoothing issue remains, and tends to be class-imbalanced. In
Figure 2, the recalls of GCN with residual connection are given in
class-wise with different model depths. As the model goes deeper,
the recall of Class 1 is significantly higher than others. This can
be attributed to that many nodes are misclassified into this class.
Therefore, different nodes possess distinguishing smoothing tends,
and thus should not be handled in unified strategy.

Observations mentioned above motivate us to explore a fine-
grained residual connection. Recent progress explains this enhance-
ment as seeking representations to compromise between node at-
tribute and graph topology from the perspective of optimization
[25, 37, 43]. Actually, the relationship between topology and node
attribute is complicated. Therefore, to obtain robust node [23] repre-
sentation, the combination of them should be flexible and nonlinear.

From the optimization perspective of GNNs [25, 37, 43], this paper
reveals that the residual connection needs to be node-dependent,
layer-dependent, and related to both topology and attribute to make
the combination flexible (see Section 3 for details). Unfortunately,
it is not trivial to infer the weights for residual connection, since it
may be challenging to specify the complicated nonlinear functions
between topology and attribute.

To alleviate this difficulty, this paper presents a novel perspec-
tive on GNNs, i.e., the representations of one node in different
layers can be seen as a sequence of states as shown in Figure. 1b.
Different positions on the sequence represent different hop informa-
tion for the same node. Thus, the residual connection can be seen as
an embedding strategy that compresses past sequential information
into the current hidden state. Therefore, Long Short-Term Memory
(LSTM) [12], which is proven effective in tackling vanishing and
exploding gradient problems in sequence modeling, is employed
to model the sequence of node representation. Benefiting from the
different gates, LSTM compresses different layers of information
into the current hidden state in a nonlinear and automatic way,
which helps model the interaction relation among different hops.

However, the simple combination of LSTM and GNN can not
make graph topology fully employed. Therefore, the first two re-
quirements of residual connection are met but not the last. To tackle
this drawback, Long Short-Term Graph Memory Network (LSTGM)
is proposed by enhancing the updated memory and three gates
with graph topology. By doing so, the vanilla memory state is up-
graded to the graph memory state. Besides, the gate mechanism
can regularize the node-level optimization process, which benefits
tackling the class-imbalanced over-smoothing issue. Specifically,
based on the long short-term graph memory, topology-enhanced
gates can stop the training of nodes belonging to the tail class, i.e.
the class with fewer nodes, while keeping the training of others.

The main contributions are summarized as follows:
• Weobserved the existence of class-imbalanced over-smoothing
in GNN with vanilla residual connection.

• We theoretically reveal that the flexible combination of topol-
ogy and attribute should bemet by node- and layer-dependent
residual connection.

• We propose an efficient Long Short-Term Graph Memory
Network (LSTGM) to enhance updated memory and three
gates in LSTM with graph topology.

• We experimentally demonstrate the superiorities of the pro-
posed LSTGM.

2 PRELIMINARIES
This section presents the notations used in this paper, followed by
the preliminaries on graph neural networks.

2.1 Notations
Let G = (V, E) denote a graph with node setV = {𝑣1, 𝑣2, · · · , 𝑣𝑁 }
and edge set E, where 𝑁 is the number of nodes. The topology of
graph G can be represented by its adjacency matrix A = [𝑎𝑖 𝑗] ∈
{0, 1}𝑁×𝑁 , where 𝑎𝑖 𝑗 = 1 if and only if there exists an edge 𝑒𝑖 𝑗 =
(𝑣𝑖 , 𝑣 𝑗) between nodes 𝑣𝑖 and 𝑣 𝑗 . The degree matrix D is a diagonal
matrix with diagonal element 𝑑𝑖 =

∑𝑁
𝑖=1 𝑎𝑖 𝑗 as the degree of node

𝑣𝑖 . N(𝑣𝑖) = {𝑣 𝑗 | (𝑣𝑖 , 𝑣 𝑗) ∈ E} stands for the neighbourhoods of

Long Short-Term Graph Memory Against Class-imbalanced Over-smoothing MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

(a) Cora (b) Citeseer (c) Pubmed

(d) Computers (f) Chameleon (f) Squirrel

Figure 2: Class-wise recalls of GCN with residual connection as model goes deeper. For clarity, the categories are listed in
descending order of the number of nodes they contain, i.e., Class 1 (in red) is the largest class.

node 𝑣𝑖 . X ∈ R𝑁×𝐹 and H ∈ R𝑁×𝐹 ′
denote the collections of node

attributes and representations with the 𝑖𝑡ℎ rows, i.e., x𝑖 ∈ R𝐹 and
h𝑖 ∈ R𝐹

′
, corresponding to node 𝑣𝑖 , where 𝐹 and 𝐹 ′ stand for the

dimensions of attribute and representation.

2.2 Graph Neural Networks
Although existing graph neural networks are proposed from the
perspectives of spectral and spatial, respectively, most of them
follow the message passing scheme [7] based on the connection
between these two perspectives [1], such as GCN [16], SGC [31].
The graph convolutional layers of GCN, SGC are as follows.

GCN H(𝑡+1) = 𝜎 (ÃH(𝑡)W), H(0) = X (1)
SGC H(𝑡+1) = ÃH(𝑡) , H(0) = X (2)

where Ã = D̄− 1
2 ĀD̄− 1

2 with Ā = A + I is the symmetric normal-
ized adjacency matrix. However, these classical GNNs tend to be
over-smoothing when multiple layers are employed. It makes the
expressive ability of node representations and the performance
significantly drop. Residual Connection is a widely-used strategy
to tackle over-smoothing issue. Residual connection strategy takes
the representations of previous layers as the input for the following
layers, such as DeepGCNs [18] and JKNet [34]. Initial residual con-
nection is a specific variant of residual connection, which feeds both
representations from previous layer and original node attribute as
the input of next layer, such as APPNP [17] and GCNII [4].

APPNP H(𝑡+1) = (1 − 𝛼)P̃H(𝑡) + 𝛼X (3)

GCNII H(𝑡+1) =
(
(1 − 𝛼𝑡)𝜎 (ÃH(𝑡) + 𝛼𝑡X

)
× ((1 − 𝛽𝑡)I + 𝛽𝑡W) (4)

where P̃ = D̄−1Ā is the asymmetric normalized adjacencymatrix. 𝛽𝑡
is the weight for identity mapping to alleviate the overfitting issue.
The weights for residual connections, i.e., 𝛼 and 𝛼𝑡 , are identical
for all.

2.3 Sequential modeling
Recurrent models such as LSTM are not the first time introduced
to graph modelling. There are mainly two kinds of strategies to
combine LSTM and GNN. The first strategy modifies the network

topology to control the aggregation. GraphSAGE [9] samples and
reorders neighbour nodes, then follows an LSTM unit as informa-
tion aggregation. The second strategy keeps intermediate node
embedding and uses LSTM as a pooling method. JKNet [34] em-
ploys bidirectional LSTM to learn layer-wise attention score, while
Geniepath [22] propagates the outputs of LSTM and feeds them
to the next LSTM unit. The second strategy, more similar to the
proposed LSTGM, can be formulated as LSTM-regularized GNNs.
Furthermore, this kind of GNN is shown in Figure. 3(c). However,
the backbone GNN and the employed LSTM are two individual
components, and the graph topology can not be fully employed by
the LSTM.

3 OBSERVATIONS AND ANALYSIS
Observation: In Figure 2, the recalls of GCN with residual con-
nection are given in class-wise with different model depths. For
clarity, the categories are listed in descending order of the num-
ber of nodes they contain, i.e., Class 1 is the largest class. As the
model goes deeper, the recall of Class 1 is significantly higher than
others. At the same time, the recalls of other classes remarkably
drop. The more significant the difference in the number of nodes of
each category is, the more pronounced the class-imbalanced over-
smoothing is. This can be attributed to that many nodes from other
classes are misclassified into Class 1. This indicates that nodes in
different classes possess different smoothing trends. Therefore, dif-
ferent nodes possess distinguishing over-smoothing tends, and thus
should not be handled in unified strategy, when their categories
are unknown.

Residual connections are widely known to alleviate the over-
smoothing issue slightly. However, when the superficial problem is
deepened into a deep-seated one, i.e. from over-smoothing to class-
imbalanced over-smoothing, it is necessary to redesign the residual
connection strategy. Figure 2 reminds us that class-imbalanced
phenomenon is universal in homophily and heterophily networks.
Thus a good residual connection strategy should tackle the class-
imbalanced over-smoothing problems and perform well both in
homophily and heterophily networks. Then the direction to explore
is what properties such a residual connection should be met.

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Liang Yang et al.

LS
TM

LS
TM

LS
TM

Output
Forget
Input

Output
Forget
Input

Output
Forget
Input

Memory
Hidden
Embedding

(a) Vanilla GNNs (c) LSTM-Regularized GNNs
(d) Long Short-Term

Graph Memory Networks

LS
TG

M Output
Forget
Input

LS
TG

M Output
Forget
Input

LS
TG

M Output
Forget
Input

Memory Hidden Embedding

(b) GNNs with Residual Connections

Figure 3: Comparisons between Vanilla GNNs, GNNs with residual connections, the proposed LSTM-regularized GNNs and
Long Short-Term Graph Memory Networks. (a) Vanilla GNNs directly propagate the obtained node representations in last
layer. (b) GNNs with residual connections combine representations in previous layers as message for all nodes in a uniform
manner. (c) LSTM-regularized GNNs specify messages for different nodes from their representations in previous layers via
LSTM. LSTM-regularized GNNs are equivalent to only employing topology information in the output gate in the LSTM. (d)
Long Short-Term Graph Memory Networks (LSTGM) enhance LSTM-regularized GNNs by integrating topology information
into input gate, forget gate and output gate. Refer to Figure. 4 for the detail.

Anlysis: Recently, AUC optimization has achieved great success
on long-tailed classification [38] and obtain state-of-the-art perfor-
mance on complicated tasks such as adversarial training [13] and
performance-constrained optimization [39]. Moreover, [3] present a
first-trail to introduce topology-aware AUC optimization on Graph.
Besides, some works interpret and unify graph convolutional net-
works from the perspective of the numeral optimization [25, 37, 43].
Specifically, they show that the graph convolution with residual
connection, i.e. Eq. (3), is to minimize the following objective func-
tion via gradient descent

C = | |X − H| |2𝐹 + 𝜆tr
(
H𝑇 L̃H

)
(5)

=

𝑁∑︁
𝑖=1

| |x𝑖 − h𝑖 | |22 +
𝜆

2

𝑁∑︁
𝑖=1

∑︁
𝑗∈𝑁 (𝑖)

𝑎𝑖 𝑗 | |h𝑖 − h𝑗 | |22,

where 𝑎𝑖 𝑗 represents the element of matrix Ã, while L̃ = I − Ã
represents the Laplacian matrix of adjacency matrix Ã. The first
term stands for the distance between the node embeddings h𝑖 ’s
and attributes x𝑖 ’s, while the second term stands for the distance
between the representations of two connected nodes h𝑖 and h𝑗 . The
gradient of C with respected to h𝑖 is

𝜕C
𝜕h𝑖

=
𝜕 | |x𝑖 − h𝑖 | |22

𝜕h𝑖
+ 𝜆

2
𝜕
∑

𝑗∈𝑁 (𝑖) 𝑎𝑖 𝑗 | |h𝑖 − h𝑗 | |22
𝜕h𝑖

= (x𝑖 − h𝑖) + 𝜆
©­«

∑︁
𝑗∈𝑁 (𝑖)

𝑎𝑖 𝑗 (h𝑖 − h𝑗)ª®¬ . (6)

By setting the gradient as zero, the updating rule can be obtained
as

h(𝑡+1)
𝑖

= 𝛼
∑︁

𝑗∈𝑁 (𝑖)
𝑎𝑖 𝑗h

(𝑡)
𝑗

+ 𝛽x𝑖 , (7)

where 𝛼 and 𝛽 are the node-independent parameters to balance
the impacts from its attribute x𝑖 and representations of its neigh-
bourhods. By comparing Eq. (7) with Eq. (3), graph convolutional
operation can be seen as the gradient descent of objective function
Eq. (5), and 𝛽x𝑖 in Eq. (7) can be regarded as the initial residual
connection.

However, one remarkable drawback of the objective function in
Eq. (5) is the linear combination of the two terms. Therefore, the
widely-used graph convolutional operation also inherits this draw-
back. Actually, the combination of the impacts from topology and
attribute may be complicated. To this end, Eq. (5) can be generalized
to

F =

𝑁∑︁
𝑖=1

𝑓

(
| |x𝑖 − h𝑖 | |22

)
+ 𝜆

2

𝑁∑︁
𝑖=1

𝑔

(∑︁
𝑗∈𝑁 (𝑖)

𝑎𝑖 𝑗 | |h𝑖 − h𝑗 | |22
)
, (8)

where 𝑓 (·) and 𝑔(·) represent the nonlinear function to combine
the impacts from attribute and topology. The gradient of F with
respected to h𝑖 is

𝜕𝑓 (𝑡𝑖)
𝜕𝑡𝑖

𝜕 | |x𝑖 − h𝑖 | |22
𝜕h𝑖

+ 𝜕𝑔(𝑠𝑖)
𝜕𝑠𝑖

𝜆

2
𝜕
∑

𝑗∈𝑁 (𝑖) 𝑎𝑖 𝑗 | |h𝑖 − h𝑗 | |22
𝜕h𝑖

= 𝛾𝑖 (x𝑖 − h𝑖) + 𝜆𝜂𝑖
©­«

∑︁
𝑗∈𝑁 (𝑖)

𝑎𝑖 𝑗 (h𝑖 − h𝑗)ª®¬ ,
where 𝑡𝑖 = | |x𝑖 − h𝑖 | |22 represents the distance between node repre-
sentation and attribute, while 𝑠𝑖 =

∑
𝑗∈𝑁 (𝑖) 𝑎𝑖 𝑗 | |h𝑖 − h𝑗 | |22 stands

for the distance of representations between nodes and its neigh-
bourhoods. By comparing with Eq. (6), 𝛾𝑖 =

𝜕𝑓 (𝑡𝑖)
𝜕𝑡𝑖

and 𝜂𝑖 =
𝜕𝑔 (𝑠𝑖)
𝜕𝑠𝑖

are node-dependent weights, which balance the impacts from two
terms. Taking 𝑓 (𝑥) = 𝑔(𝑥) =

√
𝑥 as an example, 𝛾𝑖 = 1√

𝑡𝑖
and

𝜂𝑖 =
1√
𝑠𝑖

stand for the reconstruction errors of attribute and topol-
ogy from the representation of node 𝑣𝑖 , respectively. Similar to

Long Short-Term Graph Memory Against Class-imbalanced Over-smoothing MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

𝜎
X

X +
tanh

X

	𝒙𝒕"𝟏

𝒉𝒕

𝑐!"# 𝑐!

𝑢!"# 𝑢!
𝜎 𝑡𝑎𝑛ℎ 𝜎

(a) Vanilla LSTM Unit

X

X +
tanh

X

𝐶!"# 𝐶!

𝑈!"# 𝑈!

𝜎
𝐶𝑜𝑛𝑣

𝜎
𝐶𝑜𝑛𝑣

𝑡𝑎𝑛ℎ
𝐶𝑜𝑛𝑣

𝜎
𝐶𝑜𝑛𝑣

		𝑨𝒕"𝟏

𝑯𝒕

(b) LSTGM Unit

X

X +
tanh

X

		𝑨𝒕"𝟏

𝑯𝒕

𝐶!"# 𝐶!

𝑈!"#
𝑈!

𝜎
𝑡𝑎𝑛ℎ𝐶𝑜𝑛𝑣 𝜎

𝐶𝑜𝑛𝑣
𝜎

𝐶𝑜𝑛𝑣

(c) Speedup LSTGM Unit

Figure 4: From LSTM to the proposed Long Short-Term Graph Memory Networks (LSTGM). (a) The vanilla LSTM. (b) The
proposed Long Short-Term Graph Memory Networks (LSTGM). LSTGM enhances input, forget and output gates with graph
topology information. (c) The LSTGM speedup. Two convolutional operations are combined.

updating rule in Eq. (7), the updating rule for Eq. (8) is

h(𝑡+1)
𝑖

= 𝛼
(𝑡)
𝑖

∑︁
𝑗∈𝑁 (𝑖)

𝑎𝑖 𝑗h
(𝑡)
𝑗

+ 𝛽
(𝑡)
𝑖

x𝑖 , (9)

where 𝛼 (𝑡)
𝑖

and 𝛽
(𝑡)
𝑖

are node- and iteration-dependent weights,
which is related to reconstruction errors of 𝑡 (𝑡)

𝑖
= | |x𝑖 − h(𝑡)

𝑖
| |22 and

𝑠
(𝑡)
𝑖

=
∑

𝑗∈𝑁 (𝑖) 𝑎𝑖 𝑗 | |h
(𝑡)
𝑖

− h(𝑡)
𝑗

| |22. Note that the iteration in updat-
ing rule (Eq. (9)) is the layer in GNNs (Eqs. (1)-(4)). Especially, the
weight 𝛽 (𝑡)

𝑖
for residual connection should possess three demanded

properties.
• The weights should be node-dependent instead of identity
for all nodes.

• The weights should be layer-dependent, since it is the func-
tion of representations in the previous layers.

• The weights should be related to both graph topology and
node attributes.

Unfortunately, it is not trivial to infer the weights 𝛼 (𝑡)
𝑖

and 𝛽
(𝑡)
𝑖

as shown above, since it may be difficult to specify the complicated
nonlinear functions 𝑓 (·) and 𝑔(·). To alleviate this issue, this paper
tends to learn them via a highly expressive and robust model in
next section.

4 METHODOLOGY
As discussed in previous section, flexible weights for residual con-
nectionmay benefit modeling the complicated relationship between
topology and attribute on node representation learning. To this end,
this section combines Long Short-Term Memory (LSTM) in GNNs
to learn the flexible residual connection.

4.1 Long Short-Term Graph Memory Network
As shown in Figure. 3(b), vanilla residual connection often com-
bines representations from previous layers for propagation in next
layer in a uniform manner, such as summation and concatenation.
Note that the representations of one node in different layers,
i.e., {h(𝑡)

𝑖
}𝑇
𝑡=1, can be seen as a sequence of states. From this

perspective, vanilla residual connection can be regarded as a simple
sequence model, which predicts next state with previous states via
a fixed simple strategy. Unfortunately, existing simple strategies,
such as summation and concatenation, are not flexible and robust
[24] for sequence modeling. Thus, this section employs LSTM to

model the sequence of node representation. LSTM is proved to be
effective in tackling vanishing and exploding gradient problems in
long range dependence modeling.

However, simple combination of LSTM and GNN is imperfect. As
shown in Figure.3(c), the backbone GNN and the employed LSTM
are two individual components, which are bridged by the node
representations. This causes the specific residual connections to be
only based on the node representations in previous layers, and the
graph topology can not be fully employed by the LSTM. Therefore,
the first two requirements for the residual connection are met but
not the third.

To alleviate this issue, Long Short-Term Graph Memory Network
(LSTGM) is proposed by enhancing the updated memory and three
gates with graph topology as shown in Figure.3(d). The vanilla
LSTM unit shown in Figure. 4a consists of a memory component
c(𝑡) and a hidden component u(𝑡) . Then the architecture of LSTGM
unit is shown in Figure. 4b. Different from LSTM, which models
i.i.d. sequences, the proposed LSTGM tends to model the sequence
of graph data. To this end, LSTGM takes adjacency matrices from
different orders, i.e., A𝑡 , as input. Thus, the three gates and updated
memory can be enhanced with these adjacency matrices as

F(𝑡) = 𝜎 (A𝑡U(𝑡−1)W𝑓), (10)

I(𝑡) = 𝜎 (A𝑡U(𝑡−1)W𝑖), (11)
O(𝑡) = 𝜎 (A𝑡U(𝑡−1)W𝑜), (12)
C̃(𝑡) = tanh(A𝑡U(𝑡−1)W𝑐), (13)

where F(𝑡) , I(𝑡) , O(𝑡) are the three gates for all nodes, while C̃(𝑡)

is the updated memory for all nodes. Based on this, the memory
and hidden state can be formulated as

C(𝑡) = F(𝑡) ⊗ C(𝑡−1) + I(𝑡) ⊗ C̃(𝑡) , (14)
U(𝑡) = O(𝑡) ⊗ C(𝑡) , (15)

where ⊗ denotes element-wise product. LSTGM needs four graph
convolution operations and some of them are redundancy. There-
fore, we give a speedup version for efficient.

Speedup: To update the memory, both I(𝑡) and C̃(𝑡) needs per-
form graph convolution. Therefore, by exchanging the order of
nonlinear mapping and graph convolution, Eqs. (11), (13) and (14)

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Liang Yang et al.

Table 1: Datasets statistics

Dataset Cora Citeseer Pubmed Computers Photo Chameleon Squirrel Actor Texas Cornell

Nodes 2,708 3,327 19,717 13,752 7650 2,277 5,201 7,600 183 183
Edges 5,429 4,732 44,338 245,861 119,081 36,101 217,073 33,544 309 295
Features 1,433 3,703 500 767 745 2,325 2,089 931 1,703 1,703
Classes 7 6 3 10 8 5 5 5 5 5
Homphily Rate 0.83 0.71 0.79 0.79 0.84 0.25 0.22 0.24 0.06 0.11

Table 2: Large-scale graph statistics

Dataset Ogbn-products Ogbn-mag

Nodes 2,449,029 1,939,743
Edges 61,859,140 21,111,007
Features 100 128
Classes 47 349
Train/Val/Test 10%/2%/88% 85%/9%/6%

can be reformulated as

I(𝑡) = 𝜎 (U(𝑡−1)W𝑖), (16)
C̃(𝑡) = tanh(U(𝑡−1)W𝑐), (17)
C(𝑡) = F(𝑡) ⊗ C(𝑡−1) + A𝑡 (I(𝑡) ⊗ C̃(𝑡)) . (18)

The architecture for speedup LSTGM is shown in Figure. 4c. It
only needs three graph convolution operations. In practice, the first
and third convolution operation from left to right have the same
input, hence the convolution operation can be further reduced to
two. Furthermore, the feature transformation in convolution can
be removed for simplicity.
Remark: The proposed LSTGM is very different from Spatial Tem-
poral Graph Neural Networks (STGNNs), such as Graph-WaveNet
[33], CGCN [40], ST-GCN [36], TSSRGCN [5] and ASTGCN [8]
from both solved problem and date structure. LSTGM focuses on
static graph and tends to alleviate the weakness in residual con-
nection, while STGNNs focus on dynamic graph and model spatial
temporal changes. To the best of our knowledge, LSTGM is the first
to model representation in layers via sequence model.

5 EVALUATIONS
5.1 Experimental Setup
Real-world Datasets. The proposed LSTGM is validated on 10 net-
works, whose statistics are shown in Table 1. These 10 networks can
be categorized into 4 categories.Citation networks: Cora, Citeseer,
and Pubmed are the standard citation network benchmark datasets
[26, 29].WebKB webpage networks: Cornell and Texas are the
webpage networks.Co-occurrence network: Actor network con-
tains the co-occurrences of actors in filmsWikipedia networks:
Chameleon and Squirrel are the webpages extracted from different
topics in Wikipedia [28]. In Table 1, the network homophily rates
[27] are provided. Large-scale graph. Ogbn-products and Ogbn-
mag [14]. The statistics about these 2 datasets are summarized in
Table 2.
Baseline Methods. To verify the effectiveness LSTGM, 13 baseline
methods are employed.They are divided into 3 categories: Classic
GNNs for node classification task include vanilla GCN [16], GAT
[30], andGraphSAGE [9].GNNswith residual connection include
JKNet [34], APPNP [17], and GCNII [4]. GNNs for networks with

(a) Pubmed (b) Photo

(c) Chameleon (d) Texas

Figure 5: Node classification results with various model
depths.

heterophily include Geom-GCN [27], H2GCN [42], GPRGNN [6],
and FAGCN [2].GNNs for large-scale graphs include LINKX [20]
and GloGNN [21].
Parameter Setting. For datasets in Table. 1, we randomly split
nodes of each class into 60%, 20% and 20% for training, validation
and testing. All results are obtained by computing over 10 random
splits, as suggested in [27]. The hyperparameters, including weight
decay, dropout, and learning rate, are tuned on validation set.

5.2 Results Analysis
5.2.1 Results on Real-World Datasets. The results are shown in
Table 3, where the bold and the underlined indicate the best and
the second best performances, respectively.

On small homophilic datasets, i.e., Cora, Citeseer, and Pubmed,
LSTGM achieves comparable performances, which are slightly
lower than SOTA, and the differences are very tiny. It can be ob-
served that LSTGM achieves new remarkable SOTA results on large
homophilic datasets Computer and Photo, compared to all other
baselines. It demonstrates that the node-dependent weights for
residual connections are indispensable.

On heterophilic datasets, LSTGM is compared with Geom-GCN,
GPRGNN, FAGCN, and H2GCN, which are all the GNNs designed

Long Short-Term Graph Memory Against Class-imbalanced Over-smoothing MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

Table 3: Classification Accuracy (Bold indicates the best, underlined indicates the second best).

Methods Cora Citeseer Pubmed Computer Photo Chameleon Squirrel Actor Texas Cornell

GCN 85.77±0.25 73.68±0.31 88.13±0.28 82.52±0.32 90.54±0.21 35.99±2.58 34.02±1.34 26.97±1.49 55.68±9.61 55.14±7.57
GAT 86.37±0.30 74.32±0.27 87.62±0.26 81.95±0.38 90.09±0.27 60.26±2.50 40.72±1.55 27.44±0.89 58.38±4.45 58.92±3.32

GraphSAGE 87.77±1.04 71.09±1.30 88.42±0.50 83.11±0.23 90.51±0.25 58.73±1.68 41.61±0.74 34.23±0.99 82.43±6.14 75.95±5.01
MLP 74.82±2.22 70.94±0.39 63.76±0.78 70.48±0.28 78.69±0.30 46.21±2.99 28.77±1.56 36.53±0.70 81.89±4.78 81.08±6.37

APPNP 87.87±0.85 76.53±1.33 89.40±0.61 81.99±0.26 91.11±0.26 54.30±0.34 33.29±1.72 31.71±0.70 82.43±1.72 82.16±3.83
GCNII 88.49±2.78 77.08±1.21 89.57±1.56 86.13±0.51 90.98±0.93 60.61±2.00 37.85±2.76 36.18±0.61 69.46±1.86 74.86±2.73
JKNet 88.93±1.35 74.37±1.53 87.68±0.30 77.80±0.97 94.13±0.70 62.31±2.76 44.24±2.11 36.47±0.51 65.35±4.86 56.49±3.22
DAGNN 87.40±0.72 74.67±1.31 84.84±0.35 88.35±0.24 94.36±0.25 53.79±1.29 37.68±0.63 30.50±0.59 79.19±2.42 74.32±3.47

Geom-GCN-I 85.19±1.13 77.99±1.23 90.05±0.90 NA NA 60.31±1.77 33.32±1.59 29.09±0.86 57.58±1.97 56.76±3.17
Geom-GCN-P 84.93±0.51 75.14±1.50 88.09±1.37 NA NA 60.90±1.13 38.14±1.23 31.63±0.98 67.57±1.13 60.81±2.21
GPRGNN 88.65±1.37 77.99±1.64 89.18±0.61 89.43±0.86 94.76±0.20 67.48±1.98 49.93±1.34 36.58±1.04 77.84±2.78 79.73±3.91
FAGCN 87.77±1.69 74.66±2.27 88.60±0.64 86.09±0.40 91.96±0.71 61.12±1.95 40.88±2.02 36.81±0.26 61.82±8.71 67.95±10.02
H2GCN 86.92±1.37 76.88±1.77 89.40±0.34 86.67±0.32 93.91±0.48 59.39±1.98 37.90±2.02 35.62±1.30 84.86±4.32 82.16±3.27

LSTM-GNNs 83.98±1.15 73.94±1.24 88.78±0.23 89.90±0.81 94.81±0.17 69.66±0.49 56.55±1.65 36.51±0.65 80.54±5.65 81.62±4.09
LSTGM 86.72±0.55 76.41±0.90 89.93±0.16 90.85±0.32 95.68±0.29 73.77±1.01 61.36±0.91 37.26±0.57 85.41±4.18 84.59 ± 4.17

Table 4: Classification Accuracy on Large-scale Graph(Bold
indicates the best, underlined indicates the second best).

Dataset
Ogbn-products Ogbn-mag

Val Accuracy Test Accuracy Val Accuracy Test Accuracy

GCN 92.00±0.03 75.64±0.21 39.66±0.18 39.02±0.16
GraphSAGE 92.24±0.07 80.50±0.14 43.68±0.06 42.28±0.21
APPNP 91.84±0.07 79.71±0.50 42.81±0.15 42.50±0.45
GPRGNN 93.02±0.13 81.95±0.14 50.24±0.30 49.48±0.34
LINKX 93.31±0.03 83.30±0.25 53.62±0.06 53.14±0.19
GloGNN 93.42±0.14 83.28±0.51 54.77±0.15 53.86±0.13

LSTGM 93.05±0.02 84.42±0.22 54.84±0.62 55.11±0.27

for handling networks with heterophily. This demonstrates that
topology and node attributes-related adaptive residual is critical
in heterophilic networks on account of the complicated topology
information and poor predictability attributes are widespread in
networks with heterophily. In addition, by sequence modeling,
layer-dependent residual connections benefit LSTGM by capturing
different order information.

LSTGM can handle large-scale graphs. As shown in Table 4,
LSTGM achieves the best results on Ogbn-products and Ogbn-mag.
These results inspire a broader industrial application for LSTGM.

5.3 Preventing Over-smoothing Issue
To prove that the proposed LSTGM can alleviate over-smoothing
issue, five baselines such as GCN, GCNII, FAGCN, GPRGNN and
JKNet, which perform well as deep models, are compared with the
proposed LSTGM with varying numbers of layers on 8 networks
mentioned in Table 1. The results are shown in Figure 5.

As shown in Figure 5(a)-(b), the proposed LSTGM keeps the
performance stable or continues to rise with the number of layers
increasing. This phenomenon is mainly attributed to the adaptive
residual connections, which enable fine-grained consideration. For
different nodes and layers, the residual information regularized by

Table 5: Model Efficiency: average total running time (s)

Model GCNII GPRGNN H2GCN LSTGM

Pubmed 31.81 22.39 46.29 65.18
Computer 18.15 12.52 33.50 40.84
Actor 11.35 10.36 20.97 29.17
Squirrel 9.11 6.17 15.39 21.06

the LSTGM is different, ensuring that redundant information will
not be propagated frequently, thus alleviating the over-smoothing.
As shown in Figure 5(c)-(d), the proposed LSTGM outperforms
other deep models, which are specially designed for heterophilic
networks. This phenomenon proves that a more comprehensive
and appropriate residual design is vital for heterophilic networks.

Compared to the case of GCN with residual connection in Fig-
ure 2, Figure 6 provides the class-wise recalls of LSTGM as model
goes deeper. It can be observed that LSTGM overcome the class-
imbalanced over-smoothing issue, due to its node- and layer-dependent
fine-grained residual connection in LSTGM.

5.4 Efficiency study
In this section, we study efficiency.We compare the average training
time for effective methods on relatively large datasets for fairness.
We use the same training set for all these methods on each dataset
and run the experiments for 500 epochs.

As shown in 5, though the average total training time of LSTGM
is larger than others, the gap is minimal. GPRGNN get the fewest
running time, but the classification accuracy on heterophily net-
works is far behind LSTGM as shown in 3. GCNII and H2GCN
introduce new trainable parameters for every layer, while LSTGM’s
parameters are agnostic of layers and reduce the time cost con-
sequently. In general, the additional time cost is acceptable and
LSTGM is efficient.

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Liang Yang et al.

(a) Cora (b) Citeseer

(c) Pubmed (d) Computers

(e) Chameleon (f) Squirrel

Figure 6: Class-wise recalls of LSTGM as model goes deeper.

30

40

50

60

70
80

90

100

Cora Cite. Pubm. Comp. Phot. Cham. Squi. Texas Corn

 LSTGM w/o forget gate w/o input gate w/o ouput gate

30

40

50

60

70

80
90

100

Cora Cite. Pubm. Comp. Phot. Cham. Squi. Texas Corn Film

 LSTGM only forget gate only input gate only output gate

（a）Classification accuracy results when removing one gate

（b）Classification accuracy results when living one gate
Figure 7: The accuracies of LSTGM with different parts.

5.5 Ablation Study
This section performs the ablation study.In the first experiment,
one of the three gates are kept. As shown in Figure 7(a), dramatic
performance degradation can be observed once we remove the
input gate in most datasets.Forget and output gate contribute more
to the long-term dependencies, which tell nodes what they should
be forgotten and should be passed. In the second experiment, one
of three gates is removed respectively. Figure 7(b) also intuitively
shows the importance of different gates on various datasets. They
come to a similar conclusion as Figure 7(a).

Figure 8: t-SNE of the node representations.

5.6 Visualizations
To provide an intuitive understanding of LSTGM, the t-SNE visu-
alizations of the node embeddings obtained from different GNNs,
including GPRGNN, H2GCN, and the proposed LSTGM on the
Chame-leon, Squirrel, and Photo, are shown in Figure. 8. The col-
ors of nodes represent their labels. The proposed LSTGM occurs
relatively little overlapping phenomenon on heterophilic datasets.
Besides, the representations on homophilic networks are more
discriminative than those from other methods. Therefore, the ex-
pressive power of LSTM-GNN is high.

6 CONCLUSIONS
The coarse-grained node-independent residual connection still suf-
fers from class-imbalanced over-smoothing issue, due to the fixed
and linear combination of topology and attribute in node repre-
sentation learning. To make the combination flexible to capture
complicated relationship, this paper reveals that the residual connec-
tion needs to be node-dependent, layer-dependent, and related to
both topology and attribute, and implements these requirements via
LSTM by considering the representations of one node in different
layers as a sequence of states. Furthermore, Long Short-Term Graph
Memory Network (LSTGM) is proposed by updating memory to
graph memory and enhancing the three gates with graph topology.
Experimental evaluations demonstrate that LSTGM possesses the
attractive characteristics including overcome the class-imbalanced
over-smoothing and superior performance on real-world networks
including homophilic, heterophilic and large networks.

7 ACKNOWLEDGMENTS
This work was supported in part by the National Science Fund for
Distinguished Young Scholarship of China (No. 62025602), in part
by the National Natural Science Foundation of China (No. 61972442,
62102413, 62276187, 62272020, U1936210, U1936208, U22B2036, 1193-
1915), in part by the Natural Science Foundation of Hebei Province
of China under Grant F2020202040, in part by the Fok Ying-Tong
Education Foundation China (No. 171105), the Tencent Foundation
and XPLORER PRIZE, and in part by the Fundamental Research
Funds for the Central Universities.

Long Short-Term Graph Memory Against Class-imbalanced Over-smoothing MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

REFERENCES
[1] Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien

Adam, and Paul Honeine. 2021. Analyzing the Expressive Power of Graph Neural
Networks in a Spectral Perspective. In ICLR.

[2] Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. 2021. Beyond Low-frequency
Information in Graph Convolutional Networks. (2021), 3950–3957.

[3] Junyu Chen, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, and Qingming Huang.
2022. A Unified Framework against Topology and Class Imbalance. In ACM
International Conference on Multimedia. 180–188.

[4] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and Deep Graph Convolutional Networks. In ICML. 1725–1735.

[5] XuChen, Yuanxing Zhang, LunDu, Zheng Fang, Yi Ren, Kaigui Bian, and Kunqing
Xie. 2020. TSSRGCN: Temporal Spectral Spatial Retrieval Graph Convolutional
Network for Traffic Flow Forecasting. In ICDM. 954–959. https://doi.org/10.1109/
ICDM50108.2020.00108

[6] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal
Generalized PageRank Graph Neural Network. In ICLR.

[7] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. NeuralMessage Passing for QuantumChemistry. In ICML. 1263–1272.

[8] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.
Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic
Flow Forecasting. In AAAI. 922–929. https://doi.org/10.1609/aaai.v33i01.3301922

[9] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In NIPS. 1024–1034.

[10] Xiaoke Hao, Jie Li, Yingchun Guo, Tao Jiang, and Ming Yu. 2021. Hypergraph
Neural Network for Skeleton-Based Action Recognition. IEEE TIP 30 (2021),
2263–2275. https://doi.org/10.1109/TIP.2021.3051495

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In CVPR. 770–778. https://doi.org/10.1109/
CVPR.2016.90

[12] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

[13] Wenzheng Hou, Qianqian Xu, Zhiyong Yang, Shilong Bao, Yuan He, and Qing-
ming Huang. 2022. AdAUC: End-to-end Adversarial AUC Optimization Against
Long-tail Problems. In International Conference on Machine Learning. PMLR,
8903–8925.

[14] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open Graph Benchmark: Datasets
for Machine Learning on Graphs. In NeurIPS.

[15] Zhao Kang, Zhiping Lin, Xiaofeng Zhu, and Wenbo Xu. 2022. Structured Graph
Learning for Scalable Subspace Clustering: From Single View to Multiview.
IEEE Trans. Cybern. 52, 9 (2022), 8976–8986. https://doi.org/10.1109/TCYB.2021.
3061660

[16] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[17] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personalized PageRank. In
ICLR.

[18] Guohao Li, Matthias Müller, Ali K. Thabet, and Bernard Ghanem. 2019. Deep-
GCNs: Can GCNs Go As Deep As CNNs?. In ICCV. 9266–9275. https://doi.org/
10.1109/ICCV.2019.00936

[19] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper Insights Into Graph
Convolutional Networks for Semi-Supervised Learning. In AAAI. 3538–3545.

[20] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and
Weining Qian. 2022. Finding Global Homophily in Graph Neural Networks When
Meeting Heterophily. In ICML. 13242–13256.

[21] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar
Bhalerao, and Ser-Nam Lim. 2021. Large Scale Learning on Non-Homophilous
Graphs: New Benchmarks and Strong Simple Methods. In NeurIPS. 20887–20902.

[22] Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan
Qi. 2019. Geniepath: Graph neural networks with adaptive receptive paths. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 4424–4431.

[23] Ke Ma, Qianqian Xu, Jinshan Zeng, Xiaochun Cao, and Qingming Huang. 2022.
Poisoning Attack Against Estimating From Pairwise Comparisons. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 44, 10 (2022), 6393–6408.

[24] Ke Ma, Qianqian Xu, Jinshan Zeng, Guorong Li, Xiaochun Cao, and Qingming
Huang. 2023. A Tale of HodgeRank and Spectral Method: Target Attack Against
Rank Aggregation is the Fixed Point of Adversarial Game. IEEE Transactions on
Pattern Analysis and Machine Intelligence 45, 4 (2023), 4090–4108.

[25] Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah.
2020. A Unified View on Graph Neural Networks as Graph Signal Denoising.
arXiv:2010.01777 [cs.LG]

[26] Galileo Namata, Ben London, Lise Getoor, and Bert Huang. 2012. Query-driven
active surveying for collective classification. In International Workshop on Mining
and Learning with Graphs.

[27] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. 2020.
Geom-GCN: Geometric Graph Convolutional Networks. In ICLR.

[28] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2019. Multi-scale Attributed
Node Embedding. arXiv:1909.130 (2019).

[29] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[30] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[31] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and
Kilian Q. Weinberger. 2019. Simplifying Graph Convolutional Networks. In ICML.
6861–6871.

[32] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. TNNLS
32, 1 (2021), 4–24. https://doi.org/10.1109/TNNLS.2020.2978386

[33] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.
Graph WaveNet for Deep Spatial-Temporal Graph Modeling. In IJCAI. 1907–1913.
https://doi.org/10.24963/ijcai.2019/264

[34] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In ICML. 5449–5458.

[35] Zhe Xue, Junping Du, Hai Zhu, Zhongchao Guan, Yunfei Long, Yu Zang, and
Meiyu Liang. 2022. Robust Diversified Graph Contrastive Network for Incomplete
Multi-view Clustering. In ACM MM. 3936–3944. https://doi.org/10.1145/3503161.
3547894

[36] Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018. Spatial Temporal Graph Convo-
lutional Networks for Skeleton-Based Action Recognition. In AAAI. 7444–7452.
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17135

[37] Liang Yang, Chuan Wang, Junhua Gu, Xiaochun Cao, and Bingxin Niu. 2021.
Why Do Attributes Propagate in Graph Convolutional Neural Networks?. In
AAAI. 4590–4598.

[38] Zhiyong Yang, Qianqian Xu, Shilong Bao, Xiaochun Cao, and Qingming Huang.
2021. Learning with Multiclass AUC: Theory and Algorithms. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2021).

[39] Zhiyong Yang, Qianqian Xu, Shilong Bao, Yuan He, Xiaochun Cao, and Qingming
Huang. 2022. Optimizing Two-way Partial AUC with an End-to-end Framework.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).

[40] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-Temporal Graph Convo-
lutional Networks: A Deep Learning Framework for Traffic Forecasting. In IJCAI.
3634–3640. https://doi.org/10.24963/ijcai.2018/505

[41] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57–81. https://doi.org/
10.1016/j.aiopen.2021.01.001

[42] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai
Koutra. 2020. Beyond Homophily in Graph Neural Networks: Current Limitations
and Effective Designs. In NeurIPS.

[43] Meiqi Zhu, XiaoWang, Chuan Shi, Houye Ji, and Peng Cui. 2021. Interpreting and
Unifying Graph Neural Networks with An Optimization Framework. InWWW.
1215–1226.

https://doi.org/10.1109/ICDM50108.2020.00108
https://doi.org/10.1109/ICDM50108.2020.00108
https://doi.org/10.1609/aaai.v33i01.3301922
https://doi.org/10.1109/TIP.2021.3051495
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/TCYB.2021.3061660
https://doi.org/10.1109/TCYB.2021.3061660
https://doi.org/10.1109/ICCV.2019.00936
https://doi.org/10.1109/ICCV.2019.00936
https://arxiv.org/abs/2010.01777
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.24963/ijcai.2019/264
https://doi.org/10.1145/3503161.3547894
https://doi.org/10.1145/3503161.3547894
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17135
https://doi.org/10.24963/ijcai.2018/505
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1016/j.aiopen.2021.01.001

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Graph Neural Networks
	2.3 Sequential modeling

	3 Observations and Analysis
	4 Methodology
	4.1 Long Short-Term Graph Memory Network

	5 Evaluations
	5.1 Experimental Setup
	5.2 Results Analysis
	5.3 Preventing Over-smoothing Issue
	5.4 Efficiency study
	5.5 Ablation Study
	5.6 Visualizations

	6 Conclusions
	7 Acknowledgments
	References

