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ABSTRACT
Graph Neural Networks have been widely employed for multimodal

fusion and embedding. To overcome over-smoothing issue, residual

connections, which are designed for alleviating vanishing gradient

problem in NNs, are adopted in Graph Neural Networks (GNNs) to

incorporate local node information. However, these simple residual

connections are ineffective on networks with heterophily, since the

roles of both convolutional operations and residual connections

in GNNs are significantly different from those in classic NNs. By

considering the specific smoothing characteristic of graph convo-

lutional operation, deep layers in GNNs are expected to focus on

the data which can’t be properly handled in shallow layers. To this

end, a novel and universal Difference Residual Connections (DRC),

which feed the difference of the output and input of previous layer

as the input of the next layer, is proposed. Essentially, Difference

Residual Connections is equivalent to inserting layers with opposite

effect (e.g., sharpening) into the network to prevent the excessive

effect (e.g., over-smoothing issue) induced by too many layers with

the similar role (e.g., smoothing) in GNNs. From the perspective of

optimization, DRC is the gradient descent method to minimize an

objective function with both smoothing and sharpening terms. The

analytic solution to this objective function is determined by both

graph topology and node attributes, which theoretically proves

that DRC can prevent over-smoothing issue. Extensive experiments

demonstrate the superiority of DRC on real networks with both
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homophily and heterophily, and show that DRC can automatically

determine the model depth and be adaptive to both shallow and

deep models with two complementary components.

CCS CONCEPTS
• Computing methodologies→ Neural networks;

KEYWORDS
Graph neural networks, residual connection, smoothing, sharpen-

ing

ACM Reference Format:
Liang Yang, Weihang Peng, Wenmiao Zhou, Bingxin Niu, Junhua Gu, Chuan

Wang, Yuanfang Guo, Dongxiao He, and Xiaochun Cao. 2022. Difference

Residual Graph Neural Networks. In Proceedings of the 30th ACM Inter-
national Conference on Multimedia (MM ’22), October 10–14, 2022, Lisboa,
Portugal.ACM, NewYork, NY, USA, 9 pages. https://doi.org/10.1145/3503161.

3548111

1 INTRODUCTION
Graph Neural Networks (GNNs) are powerful tools to analyze irreg-

ular data by leveraging expressive power of deep learning [36, 42].

They have been widely employed by natural language processing

[4], computer vision [5], information retrieval [20, 40] and mul-

timedia [8] for multimodal fusion and embedding [13, 21]. Origi-

nated from the graph signal processing in spectral graph theory

[29], GNNs are designed from the perspective of either spectral

Fourier analysis [14] or spatial message passing [9], and recent pro-

gresses attempt to bridge the gap between these two perspectives

[2] or unify them from the perspective of numerical optimization

[24, 39, 44]. Most GNNs follow the feed-forward structure as classic

deep neural networks (NNs) by stacking multiple graph convolu-

tional layers (GCLs).

However, there exist many differences between classic NNs and

GNNs. In classic deep NNs, shallow layers extract low-level infor-

mation from input, while deep layers extract high-level semantic

information based on the low-level extracted information. Thus, to

https://doi.org/10.1145/3503161.3548111
https://doi.org/10.1145/3503161.3548111
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(a) Feed-forward Structure

GCL

-
GCL

Output of GCLInput to GCL

(b) Difference Residual Connections

GCL

GCL

Figure 1: Comparison between GNN architectures following
the feed-forward strategy and the proposed difference resid-
ual connection. GCL denotes graph convolutional layer.

improve the expressive power, classic NNs are getting deeper and

deeper, from AlexNet [17] and VGG [30], to GoogleNet [31] and

ResNet [11]. To overcome the vanishing gradient problem, which

hinders the efficient training of deep model as the depth in classic

NNs increases, residual connection is proposed [11, 12]. Different

from classic NNs, in GNNs, shallow layers explore local information,

while deep layers explore global information for node representa-

tion. Due to the smoothing characteristic of graph convolutional

operations in GCLs, GNNs often possess serious over-smoothing

issue, which leads to the loss of expressive power, by stacking multi-

ple layers [19, 22, 25]. To overcome this issue, residual connections

are adopted in GNNs to incorporate local node information, e.g.,

original node attributes [1, 6, 15, 16, 23, 37, 41]. Therefore, the roles

of both layer and residual connections are remarkably different in

NNs and GNNs.

These significant differences are the essential reasons of many

serious issues in GNNs. 1) The direct feed-forward stacking scheme,

i.e., the output of previous layer is directly adopted as the input of

next layer, causes the over-smoothing issue, due to the smoothing

characteristic of most GCLs. 2) Although some simple residual

connections alleviate over-smoothing issue, they fail to perform

well on networks with heterophily, where connected nodes possess

different attributes and smoothing operation tends to be invalid.

Thus, the investigation of the layer stacking scheme in GNNs is

motivated.

To overcome the issues mentioned above, a novel universal Dif-

ference Residual Connection (DRC) for GNNs is proposed as shown

in Figure 1. The key intuition of DRC is to let the deep GCLs process

the information which has not been properly handled in shallow

GCLs. Specifically, DRC feeds the difference of the input and out-

put of previous layer as the input of the next layer, and combines

the outputs from all the layers with learnable weighting param-

eters. The theoretical analysis to DRC are conducted from two

perspectives. First, by analyzing the output of each GCL with DRC,

DRC is equivalent to inserting layers with the opposite effect (e.g.,

sharpening) into the network to prevent the excessive effect (e.g.,

over-smoothing issue) induced by too many layers with similar

role (e.g., smoothing) in GNNs. Second, from the perspective of

optimization, DRC is the gradient descent method to minimize an

objective function with both smoothing and sharpening terms. The

analytic solution to this objective function is determined by both

graph topology and node attributes, which theoretically proves

that DRC can prevent over-smoothing issue. Besides, experimental

evaluations show that DRC possesses two attractive properties: 1)

automatic determination of the model depth, 2) adaptive to both

shallow and deep models with two complementary components,

i.e., difference residual connection and output weights

The main contributions of this paper are summarized as follows:

• We propose a novel and universal difference residual con-

nection (DRC) for graph neural networks.

• We theoretically prove that DRC can overcome over-smoothing

via iterative smoothing and sharpening.

• We experimentally show that DRC can automatically deter-

mine the model depth and be adaptive to both shallow and

deep models with two complementary components.

2 PRELIMINARIES
In this section, the notations are given. Then, several existing GNNs,

which are mentioned in this paper, are reviewed. Finally, Graph

Representation Learning Framework, which can be used to explain

some existing GNNs from optimization perspective, is provided.

2.1 Notations
A graph is represented by G = (V, E), where V is the vertex

set with |V| = N and E is the edge set. Let A ∈ RN×N
and

D = diaд(d1,d2, ...,dN ) denote the adjacency matrix and diagonal

degree matrix of G, respectively. The graph Laplacian matrix and its

normalized form are defined as L = D−A and L̃ = I −D− 1

2AD− 1

2 , re-

spectively. We define L̂ = I − D̃− 1

2 ÃD̃− 1

2 and Â = D̃− 1

2 ÃD̃− 1

2 ,where

Ã = A+ Iand D̃ = D + I . Let X ∈ RN×D
denotes the node attribute

matrix, where each node vi is associated with a D-dimensional

attribute vector Xi

2.2 Graph Neural Networks
GraphConvolutionalNetwork (GCN) [14] is a simple andwidely

used model exploiting message passing algorithm. The representa-

tion of (t + 1)th layer can be formulated as

H (t+1) = σ (ÃH (t )W ),H (0) = X (1)

GCN naturally combines graph structure and node attribute in the

convolution. Unfortunately, the most serious issue of GCN is the

over-smoothing issue, which is caused by the multiple propagations

via stacking multiple graph convolution layers.

JKNet [37] is a deep graph neural network which exploits in-

formation from neighborhoods of differing locality and the final

representation can be formulated as

H =
T∑
t=1

αt Ã
tXW , (2)

APPNP [15] is proposed to alleviate the over-smoothing issue

in GCN by adding initial residual to each graph convolutional layer

and can be formulated as

H (t+1) = (1 − α)ÃH (t ) + αX ,H (0) = X (3)
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2.3 Graph Representation Learning
Framework

The Graph Representation Learning Framework [44] can be formu-

lated as

O = min

H
∥H − X∥2F + λtr (H

T L̃H) (4)

The first term is a unary constraint, which describes the representa-

tion of nodevi should be similar with its original attribute xi , while
the second term is a pairwise constraint, which depicts connected

nodes should possess the similar representation.

Furthermore, recent researches have proved that many existing

GNNs can be derived from this Graph Representation Learning

Framework [39, 44]. Specifically, these GNNs can be induced by

numerical optimization methods based on this framework.

3 DIFFERENCE RESIDUAL CONNECTIONS
3.1 Motivations
In this subsection, the rationality of the feed-forward structure

adopted in GNNs are investigated. Figure 1(a) shows the data flow

of the classic GNNs, such as GCN [14] and GAT [34]. Similar to

classic deep feed-forward neural networks, the output of previous

GCL (red arrows) is directly fed as the input of next GCL (black

arrows). This process can be formulated as

H (t ) = f tA(H
(t−1)), (5)

whereH (t )
stands for the output representations of the t th GCL and

the initial representation is the original node attribute, i.e.,H (0) = X .

f tA(·) represents the t
th

GCL, which processes the input according

to graph topologyA. In this process, the output of the (t − 1)th GCL

f t−1A (·), i.e. H (t−1)
is directly fed as the input to the t th GCL f tA(·).

In classic deep neural networks, shallow layers extract low-level

information, while deep layers extract high-level semantic infor-

mation based on the low-level information. Different from classic

neural networks, in graph neural networks, shallow layers explore

local information, while deep layers explore global information

for node representation. Thus, it is not appropriate to adopt global

information directly for node representation. Furthermore, it may

induce the loss of expressive power during feed-forward process,

since many GNNs actually learn node representations by smooth-

ing over neighbourhoods. Therefore, it tends to be not rational to

directly feed the output of previous GCL to the next.

3.2 Architecture
To overcome the issues mentioned above, a novel Difference Resid-

ual Connection (DRC) for GNNs is proposed. The key intuition

of DRC is to let the deep GCLs process the information which

has not been properly handled in shallow GCLs. To this end, the

feed-forward scheme in Eq. (5) is enhanced to

H (t ) = f tA(F
(t )), (6)

where the input to t th GCL, i.e. F (t ), is not directly constrained to

the output of previous GCL. Then, the difference between the input

and output of previous GCL is utilized to represent the information,

which has not been properly handled. Thus, F (t ) is set as

F (t ) = α (t )(F (t−1) − H (t−1)) t > 1, (7)

where F (t−1) and H (t−1)
denote the input and output of (t − 1)th

GCL respectively, and F (t−1) − H (t−1)
stands for the information

which is not properly handled in (t − 1)th GCL. The learnable

parameter α (t ) denotes the importance of this information for the

representation learning. The input to the first GCL is original node

attribute, i.e., F (1) = X . Finally, information handled by all GCLs,

i.e., H (t )
’s, is combined as the final result H =

∑
t H

(t )W (t )
, where

W (t )
is the learnable mapping function. Note that the adoption of

α (t ) can also be regarded as controlling the scale ofW (t )
in order to

prevent overfitting as in GCNII [6]. However, different from fixed

α (t ) in GCNII, α (t ) is learnable in DRC. This model is shown in

Figure 3(e), where red and black arrows denote the output and

input, respectively.

Universality: Following sections will mainly take the standard

graph convolutional layer proposed in GCN [14], i.e., ÂX , as the
GCL and demonstrate the effect of difference residual connection.

Essentially, the proposed DRC is a universal framework which can

be employed by most existing GNNs.

3.3 Overcome Over-smoothing Issue
In this subsection, we show that Difference Residual Connection

(DRC) can overcome the over-smoothing issue.

First, the over-smoothing in GCN is investigated. The essence of

Graph Convolutional Network (GCN) [14] is the Laplacian Smooth-

ing [19] or low-passing filtering [35]. From the perspective of Lapla-

cian Smoothing, each Graph Convolutional Layer (GCL) in GCN is

averaging node attribute among neighbourhoods. As formulated in

[19, 26], GCL processes the input H (t−1)
as

H (t ) = (1 − γ )H (t−1) + γ D̃−1ÃH (t−1)

= (I − γ L̃)H (t−1), (8)

where D̃ = I +D, Ã = I +A and L̃ = I − D̃−1Ã are the degree matrix,

adjacent matrix and the Laplacian matrix (Random Walk version)

with self-loop, respectively. Thus, by ignoring the nonlinear map-

ping function and collapsing weight matrices as in [35], the output

after K GCLs is H (K ) = (I − γ L̃)KX . As K → ∞, (I − γ L̃)KX → 1
where 1 stands for matrix with all elements as 1 [19, 22]. This over-

smoothing issue and the loss of expressive power are caused by that

all the GCLs perform smoothing via I − γ L̃. Thus, to alleviate over-

smoothing issue, we need to interfere the successive smoothing

process.

By adopting our proposed Difference Residual Connection, Eq.

(8) can be reformulated as

H (t ) = (1 − γ )F (t ) + γ D̃−1ÃF (t )

= (I − γ L̃)F (t ), (9)

F (t ) = α (t )(F (t−1) − H (t−1))

= α (t )(F (t−1) − (I − γ L̃)F (t−1))

= α (t )γ L̃F (t−1), (10)

where H (t )
and F (t ) are the output and input of the t th GCL.
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Figure 2: Equivalence.

Similarly, the output of the (t + 1)th GCL is

H (t+1) = (I − γ L̃)F (t+1)

= (I − γ L̃)α (t+1)γ L̃F (t )

= α (t+1)γ L̃(I − γ L̃)F (t ). (11)

It can be observed that the effect of γ L̃ is opposite to the Laplacian

smoothing I −γ L̃, which averages the node attribute with its neigh-

bourhood by weighted summation. Actually, γ L̃ = γ (I − D̃−1Ã) is
known as the Laplacian Sharpening, which removes some attributes

from node to make each node different from its neighbourhoods, i.e.

sharpening [26, 33]. Therefore, different from vanilla GCN in Eq (8)

which successively performs smoothing in each GCL, our proposed

DRC in Eq. (11) iteratively performs smoothing and sharpening to

prevent over-smoothing. The equivalent process is shown in Figure

2(a). Analogously, if the GCL is designed as a sharpening process,

the proposed DRC is equivalent to inserting smoothing layer into

the GNNs to prevent over-sharpening as shown in Figure 2(b).

In brief, Difference Residual Connections essentially insert layers

with the opposite effect into the GNNs to prevent the excessive

effect induced by too many layers with the similar role (smoothing

or sharpening). The learnable parameter α (t ) determines the im-

portance of the output of t th layer. Thus, DRC enhances the classic

GNNs with the ability to handle networks with both homophily and

heterophily. The relationship between overcoming over-smoothing

issue and handling network with heterophily is also investigated

in [38].

3.4 Optimization Perspective
Recently, some efforts have been paid to interprete GNNs from

the perspective of numerical optimization [24, 39, 44]. Each graph

convolutional layer in GCN [14] can be seen as the gradient de-

scent to minimize the graph Laplacian regularization tr (HT L̂H ) =
1

2

∑
i, j ∥hi − hj ∥

2

2
with node attribute X as the start point, where

tr (·) stands for the trace of the matrix and L̂ = I − D̃− 1

2 ÃD̃− 1

2 . Due

to the smoothing effect of graph Laplacian regularization, all hi ’s
will converge to the same value, i.e., over-smoothing issue, when

tr (HT L̂H ) achieves the minima 0. From this perspective, APPNP

[15] and JKNet [37] actually are the gradient descent of the follow-

ing two objective functions according to [39], respectively,

min ∥H − X ∥2F + βtr (H
T L̂H ),

min ∥H − ÂX ∥2F + βtr (H
T L̂H ), (12)

which are equivalent to preventing over-smoothing issue induced

by tr (HT L̂H ) via local information, i.e. original node attribute X
in APPNP or low-frequency information AX in JKNet. Although

both of them can alleviate over-smoothing issue, they are incapable

to handle network with heterophily, because they only balance

the local information and smoothing constraints but fail to pre-

vent over-smoothing. To further understand the ability of DRC

on both perventing over-smoothing and handling networks with

heterophily, we provide the following theorem.

Theorem 3.1. If the graph convolutional layer function is f tA(F
(t )) =

ÂF (t ) (smoothing effect) or f tA(F
(t )) = L̂F (t ) (sharpening effect) where

Â = D̃− 1

2 ÃD̃− 1

2 and L̂ = I −D̃− 1

2 ÃD̃− 1

2 are the symmetric normalized
adjacency and Laplacian matrices, the Difference Residual Connec-
tions in Eqs. (6) and (7) are the gradient descent methods to minimize
the following two objective functions, respectively

min

H
∥H − ÂX ∥2F + βtr (H

T ÂH ),

min

H
∥H − L̂X ∥2F + βtr (H

T L̂H ), (13)

with the analytic solution as

H = (I + βÂ)−1ÂX , H = (I + βL̂)−1L̂X . (14)

Proof. To show the equivalence between the Difference Resid-

ual Connections in Eqs. (6) (7) with the graph convolutional layer

function as f tA(F
(t )) = ÂF (t ) and Eq. (13), we prove they possess

the same solution. Let O denote the objective function in Eq. (13).

We have

O = min

H
∥H − ÂX ∥2F + βtr (H

T ÂH ), (15)

with the gradient as

∂O

∂H
=
∂∥H − ÂX ∥2F
∂H

+ β
∂tr (HT ÂH )

∂H
.

Tominimize Eq. (15), we let its derivative equal to zero, i.e.,
∂O
∂H = 0,

then

∂∥H − ÂX ∥2F
∂H

+ β
∂tr (HT ÂH )

∂H
= 0. (16)

That is,

H − ÂX + βÂH = 0. (17)

The solution to Eq. (17) is

H = (I + βÂ)−1ÃX . (18)
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Figure 3: Architecture comparison of different residual con-
nections in GNNs.

This solution can be expressed as the following summation of series

H = (I + βÂ)−1ÂX

= ((1 + β)I − βL̂)−1ÂX

≈
1

1 + β
ÂX +

β

(1 + β)2
L̂ÂX + ... +

βk

(1 + β)k+1
L̂k ÂX

= η1ÂX + η2L̂ÂX + η3L̂
2ÂX + ... + ηk+1L̂

k ÂX

=

k+1∑
i=1

ηi L̂
i−1ÂX . (19)

In the next, we show the Difference Residual Connections in Eqs. (6)

(7) with the graph convolutional layer function as f tA(F
(t )) = ÂF (t )

possess the same expression as Eq. (19).

Similar with the relation between inputs of t th and (t + 1)th

layers mentioned in Eq. (10), the relation of outputs of t th and

(t + 1)th layers can be deduced as follows.

H (t+1) = α (t+1)γ L̂H (t ). (20)

Note thatH (t )
represents the output of t th layer and node represen-

tationH = H (1)+H (2)+ · · ·+H (k+1)
, which denotes the summation

of each layer. With γ = 1 and H (1) = η1ÂX , we can calculate the

final result of node representation as follow.

H =
k∑
i=1

ηi L̂
i−1ÃX . (21)

It can be observed that the final node representations of DRC in

Eq. (21) is the same as the solution of Eq. (19) to objective function

Eq. (13). Thus, DRC is equivalent to the gradient methods of the

objective function Eq. (13). □

Here, graph convolutional layer function with smoothing ef-

fect, i.e., f tA(F
(t )) = ÂF (t ) is taken for interpretation. The first

term in the objective function is to make the node representation

similar to the smoothed node attribute, i.e., ÂX . The second term

tr (HT ÂH ) possesses the opposite effect to Laplacian regulariza-

tion tr (HT L̂H ), since L̂ = I − Â. Thus, the second term plays the

role of Laplacian sharpening. By combining both terms, smooth-

ing and sharpening effects are balanced. Note that Eq. (14) is the

solution to both objective function in Eq. (13) and the Difference

Residual Connection with graph convolutional layer function as

Table 1: Datasets statistics

Dataset Nodes Edges Features Classes Homophily

Cora 2,708 5,429 1,433 7 0.83

Citeseer 3,327 4,732 3,703 6 0.71

Pubmed 19,717 44,338 500 3 0.79

Chameleon 2,277 36,101 2,325 5 0.25

Squirrel 5,201 217,073 2,089 5 0.22

Actor 7,600 33,544 931 5 0.24

f tA(F
(t )) = ÂF (t ). It means as the number of layers tends to infinity,

the learned node representation H = (I + βÂ)−1ÂX is determined

by both topology A and original node attribute X . Therefore, Dif-
ference Residual Connection can prevent over-smoothing issue.

Analogously, for graph convolutional layer function with sharp-

ening effect, i.e., f tA(F
(t )) = L̂F (t ), Difference Residual Connection

can prevent over-sharpening issue.

3.5 Comparisons
In Figure 3, some representative architectures of GNNs are provided.

These architectures focus on the flow of the input and output, but

ignore the specific structure of Graph Convolutional Layer (GCL).

In the figure, blue arrows denote the input node attributes, while

black and red arrows represent the input and output of the GCL,

respectively.

• Figure 3(a) stands for the classic Graph Convolutional Net-

works without any branch connections, such as GCN [14]

and GAT [34]. The over-smoothing issue is its fatal draw-

back.

• Figures 3(b) and (c) represent the architectures of GNNs

which combine multi-scale topology information [1, 15, 16,

23, 37] and initial node attribute [6, 15], respectively. Their

abilities on alleviating over-smoothing can be mainly attrib-

uted to the integration of the local information in shallow

GCL or node attribute which is ignored by architecture in

Figure 3(a). However, it is incapable to handle network with

heterophily by just integrating local information.

• Figure 3(d) shows the GNNs with residual connections, such

as DeepGCNs [18] which draws lesson from ResNet [11].

Note that different from the residual connections in ResNet,

which aims at overcoming vanishing gradient problem in

training deep neural network, the role of residual connec-

tions in GNNs is mainly the incorporation of local informa-

tion. Although this architecture is the most similar to our

proposed Difference Residual Connection in Figure 3(e), it

is essentially an extension of architecture in Figure 3(c) and

share the same advantages and disadvantages with initial

residual connections.

4 EVALUATIONS
In this section, the performance of our proposed DRC is experimen-

tally evaluated on real world datasets including both homophilic

and heterophilic ones. Then, the universality and some attractive

properties of DRC are validated.
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Table 2: Mean Classification Accuracy (Bold indicates the best, underlined indicates the second best)

Models Cora Pubmed Citeseer Chameleon Squirrel Actor

GCN 85.77±0.25 88.13±0.28 73.68±0.31 28.18±0.23 23.96±0.26 26.86±0.23

GAT 86.37±0.30 87.62±0.26 74.32±0.27 42.93±0.28 30.03±0.25 28.45±0.23

GraphSAGE 87.77±1.04 88.42±0.50 71.09±1.30 49.24±1.68 36.28±1.73 35.28±1.37

MLP 74.82±2.22 63.76±0.78 70.94±0.39 49.67±0.78 37.04±0.46 34.10±0.25

Geom-GCN-I 85.19±1.13 90.05±0.90 77.99±1.23 60.31±1.77 33.32±1.59 29.09±0.86

Geom-GCN-P 84.93±0.51 88.09±1.37 75.14±1.50 60.90±1.13 38.14±1.23 31.63±0.98

Geom-GCN-S 85.27±1.48 84.75±1.39 74.71±1.17 59.96±2.03 36.24±1.05 30.30±1.20

GPRGNN 88.65±1.37 89.18±0.61 77.99±1.64 67.48±1.98 49.93±1.34 36.58±1.04

FAGCN 87.77±1.69 88.60±0.64 74.66±2.27 61.12±1.95 40.88±2.02 36.81±0.26

H2GCN-1 86.92±1.37 89.40±0.34 77.07±1.64 57.11±1.58 36.42±1.89 35.86±1.03

H2GCN-2 87.81±1.35 89.59±0.33 76.88±1.77 59.39±1.98 37.90±2.02 35.62±1.30

JKNet 88.93±1.35 87.68±0.30 74.37±1.53 62.31±2.76 44.24±2.11 36.47±0.51

APPNP 87.87±0.85 89.40±0.61 76.53±1.33 54.30±0.34 33.29±1.72 31.71±0.70

GCNII 88.49±2.78 89.57±1.56 77.08±1.21 60.61±2.00 37.85±2.76 36.18±0.61

DeepGCNs 83.58±1.21 84.87±0.77 70.64±1.89 39.22±0.89 28.89±1.55 30.16±0.73

DRC(ours) 87.14±0.91 88.96±0.48 76.38±1.08 71.34±3.09 52.64±2.16 36.89±0.99

4.1 Real world datasets
With various levels of homophily, 6 datasets: Cora, Citeseer, Pubmed,

Actor, Chameleon and Squirrel, are adopted. Cora, Citeseer and

Pubmed are three commonly used homophilic datasets, which are

citation networks. Actor, Chameleon and Squirrel are datasets with

low ratio of homophily. Actor is a graph representing actor co-

occurrence in Wikipedia pages, based on the film-director-actor-

writer network in [32]. Chameleon and Squirrel are two subgraphs

of web pages in Wikipedia. Dataset statistics and the corresponding

homophily ratios are summarized in Table 1. Homophily ratios

provided in [27] are employed to show the proportion of node pairs

with the same label in all the node pairs.

4.2 Baselines
To demonstrate the superiority of DRC, three classic GNN mod-

els are employed, including GCN [14], GAT [34] and GraphSAGE

[10]. Besides, DRC is compared with other four recently proposed

state-of-the-art methods designed for networks with heterophily,

including Geom-GCN [27], H2GCN [43], GPRGNN [7] and FAGCN

[3], and four models designed for tackling over-smoothing issue,

including JKNet [37], APPNP [15], GCNII [6] and DeepGCNs [18].

All the results are obtained by running the code provided in the

paper with default settings.

4.3 Node Classification Task
Settings. For all datasets listed in Table 1, we randomly split nodes

of each class into 60%, 20% and 20% for training, validation and

testing respectively, as in [27].

Experimental Results Analysis. Table 2 shows the mean classi-

fication accuracy and the standard error, where the bold and the

underlined indicate the best and the second best performances, re-

spectively. It can be observed that compared to recent methods de-

signed for networks with heterophily including H2GCN, GPRGNN

and FAGCN, the proposed DRC achieves new state-of-the-art re-

sults on Squirrel, Chameleon and Actor, and obtains competitive

performance on other datasets, which demonstrate the superior-

ity of DRC. Notably, the reason for performance improvement on

networks with heterophily are two-fold. First, DRC meets the char-

acteristic of heterophily. Specifically, heterophily means that most

connected nodes possess different attributes and smoothing-based

graph convolutional operation tends to be failed. Thus, by itera-

tively performing smoothing and sharpening as shown in Figure 2,

DRC adaptively captures both homophily and heterophily charac-

teristics in the networks. Second, the DRC possesses the ability to

overcome over-smoothing issue.

Comparison with multi-scale models. It can be observed form

Table 2 that DRC outperforms all the multi-scale models (e.g., JKNet)

on three heterophilic datasets, which demonstrates the advantage of

difference residual connections. The reasons is blindingly obvious.

By adopting multi-scale architecture [1, 15, 16, 23, 37] shown in

Figure 3(b), GNNs can alleviate over-smoothing issue but fail on

networks with heterophily, since these architectures only perform

the smoothing operation.

4.4 Comparison with Deep Models
To validatewhether the proposedDRC can alleviate over-smoothing

issue, four strong baselines: GCNII, FAGCN, GPRGNN and JKNet,

which perform well as deep models, are compared with the pro-

posed DRCwith varying number of layers on 6 networks mentioned

in Table 1. The results are shown in Figure 4.

Alleviating over-smoothing issue. As shown in Figures 4(a)-(d),

different from the basic model GCN, our proposed DRC keeps the

performance quite stable or rise continuously as the number of

layers increases. This quality is mainly caused by the design of the

difference residual connection, which is equivalent to replacing the

successive smoothing operation in existing GNNs with the iterative

balance between smoothing and sharpening operation (Figure 2).
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(c) Pubmed (d) Actor

(e) Chameleon (f) Squirrel

(a) Cora (b) Citeseer

Figure 4: Classification accuracy results of deepGNNmodels
with various depths.

Over-smoothing case on nodes with different degrees. The previous
work has suggested that nodes with higher degrees are more likely

to suffer from over-smoothing [28]. Figure 5 shows the mean clas-

sification accuracies of nodes with different degrees on Chameleon

and Squirrel datasets, which demonstrates that DRC consistently

enhances the performances of all nodes with both high and low

degrees. Therefore, DRC can sort out the over-smoothing issue of

nodes with higher degrees.

Comparison with other deep models on heterophilic networks. As
shown in Figures 4(e)-(f), the proposed DRC significantly out-

performs other SOTA deep models which are designed for net-

works with heterophily, on representative heterophilic networks

Chameleon and Squirrel. Similar to the performance on homophilic

networks, the performance on networks with heterophily are sta-

ble as the number of layer increases. This also shows the superior

ability of DRC on balancing smoothing and sharpening effects,

and demonstrates that the proposed DRC are more effective on

capturing high-order information.

Efficiency analysis on real world benchmark datasets. The average
running time per epoch and total running time of GCN, GCNII and

DRC on three largest datasets are given in Table 3. All experiments

are conducted on an NVIDIA Geforce 3090 GPU. It can be observed

from Table 3 that indeed DRC has a running time similar to that of

GCN and less than that of GCNII, which demonstrates that DRC is

faster than other models even working as a deep model.

Table 3: Average running timeper epoch/ total running time.

Dataset Cora (2 layers) Citeseer (16 layers) Chameleon (16 layers)

GCN 14.23ms / 9.52s 14.30ms / 9.43s 15.18ms / 7.20s

GCNII 23.08ms / 18.01s 67.33ms / 21.81s 35.99ms / 12.72s

DRC 15.69ms / 13.10s 15.87ms / 11.69s 17.21ms / 8.35s
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Figure 5: Mean accuracies of nodes with different degrees.
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Figure 6: The trends of the learnable parameters α ’s with the
increment of layer on datasetswith both homophily andhet-
erophily.

4.5 Automatic Determination of Mode Depth
Different from themost existingGNNswhich pre-define the number

of layers, the proposed DRC assigns learnable output weights α to

all the layers. Figure 6 shows the learned α in different layers on

networks with both homophily and heterophily. It can be observed

that these output weights possess an attractive property that they

decrease to zero as the number of layers increases. Thus, DRC can

automatically determine the number of layers, i.e., model depth.

This property guarantees that the DRC tends to converge to stable

even we initialize a large number of layers. This property can also

reveal the reason why DRC can overcome the over-smoothing issue

from another perspective. Since the over-smoothing issue is often

caused by the large number of graph convolutional layers which

act as smoothing operation, DRC overcomes over-smoothing issue

by employing only a small part of them even a large number of

them are available. Therefore, the automatic determination of mode

depth makes DRC overcome the over-smoothing issue.

Moreover, for node classification task, it is intuitive that the

local information is more important than the global one, and the

node too far away from the target one often plays a limited role.

By assigning a learnable parameters α to the output of each layer

instead of fixing the number of layers, the varying α verifies the
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Table 4: DRC with different GNN backbones.

Dataset Cora Pubmed Citeseer Cham. Squirrel Actor

GraphSAGE 87.11 86.36 74.32 39.96 34.58 36.18

+DRC 87.19 88.83 76.17 44.35 39.25 36.99

GAT 86.00 84.51 74.92 37.72 25.84 25.46

+DRC 86.92 88.72 76.35 39.21 32.19 35.13

GCN 86.37 84.89 71.92 33.99 21.42 24.80

+DRC 85.72 88.94 74.67 70.98 52.64 36.32

Table 5: Results on synthetic datasets.

Homophily -1 -0.5 -0.25 0 0.25 0.5 1

GPRGNN 96.25 93.75 86.50 85.75 86.75 92.25. 97.00

GCNII 50.50 57.50 73.50 77.00 91.00 91.00 96.75

DRC 98.50 96.50 96.00 96.50 96.00 96.50 97.00

above intuition and makes the model adaptive and efficient. We can

observe from Figure 6 that there are widely differences between the

trends of α with the increment of layers on datasets with homophily

and heterophily. We will try to find a theoretical basis to support

this attractive characteristic in future work.

4.6 DRC with Different GNN Backbones
In previous experiments which demonstrate the superiority of DRC,

GCN [14] is adopted as the backbone, i.e. the GCL in Figures 2 and

3. Essentially, the proposed DRC is a general framework, where

any existing GNNs can be employed as the backbones. To verify

this, the backbone in the proposed DRC is replaced with GAT [34]

and GraphSAGE [10], respectively. Table 4 shows the performance

improvements of DRC with different GNNs as backbones. It is

obvisous that DRC can significantly improve the performances

of GNN backbones, especially on the networks with heterophily.

Therefore, the proposed DRC is universal and effective framework

to enhance the existing GNNs.

4.7 Evaluation on Synthetic Datasets
In order to fully test the ability of DRC with varying levels of ho-

mophily and heterophily, we propose to use cSBMs to generate

synthetic graphs, following the generation emploited by GPRGNN.

Note that parameter Φ controls homophily ratio of datasets and

the corresponding homophily ratios are denoted by Homophily
in Table 5. More specifically, Φ = 1 corresponds to strongly ho-

mophilic graphs while Φ = −1 corresponds to strongly heterophilic

graphs. A detailed difference between the generation of synthetic

datasets proposed by GPRGNN and this paper, is that we include

1,000 nodes and each node owns 1,500 features and approximately

10,000 edges in synthetic datasets. The performances of DRC in syn-

thetic datasets with varying homophily ratios are shown in Table 5,

which also includes the results of two state-of-the-art methods, i.e.,

GCNII [6] and GPRGNN [7] on the same setting. We can observe

that our proposed DRC outperforms both GCNII and GPR, two

outstanding models that can alleviate over-smoothing issue and be

adaptively used on both homophilic and heterophilic datasets. It

Table 6: Ablation Study on residual connection and α ’s.

# Layers Components Chameleon Squirrel Actor

w/o weight α 66.47 51.16 34.72

w/o residual 64.55 48.91 35.974 Layers

DRC 70.98 52.64 36.32

w/o weight α 21.18 24.74 24.91

w/o residual 66.37 49.45 35.8316 Layers

DRC 71.34 52.34 36.89

demonstrates the superiority of DRC on preventing over-smoothing

and its applicability for both homophilic and heterophilic datasets.

4.8 Ablation Study
This section performs the ablation study to provide an intuitive

understanding to the two components, i.e. residual connection and

output weight α . To this end, the performances of DRC with one

component and different numbers of layers are given in Table 6. It

can be observed that the performances of DRC with one compo-

nent are much lower than those of full DRC. Therefore, both two

components play important roles in the performance improvement.

Besides, it can be found that the residual connection plays more

important role than the output weight in shallow GNNs (4 layers),

while the output weight are more critical than residual connection

in deep GNNs (16 layers). Thus, this verifies that these two compo-

nents are adaptively complementary to performance improvements.

5 CONCLUSIONS
To alleviate the issue of GNNs on over-smoothing and ineffective-

ness on network with heterophily, a novel and well-performed

Difference Residual Connection (DRC) is proposed by simply feed-

ing the difference of the output and input of previous layer as the

input of the next layer. Theoretically, DRC essentially inserts layers

with the opposite effect (e.g., sharpening) into the network to pre-

vent the excessive effect (e.g., over-smoothing issue) induced by too

many layers with the similar role (e.g., smoothing) in GNNs. From

the perspective of optimization, DRC minimizes an objective func-

tion with both smoothing and sharpening terms, and the analytic

solution is determined by both graph topology and node attributes,

which theoretically proves that DRC can prevent over-smoothing

issue. Extensive experiments demonstrate the superiority of DRC

on real networks with heterophily and preventing over-smoothing

issue and the universality to enhance the existing GNNs.
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