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ABSTRACT
Spatial co-location pattern mining is employed to identify a group
of spatial types whose instances are frequently located in spatial
proximity. Current co-location mining methods have two limita-
tions: (1) it is difficult to set an appropriate proximity threshold to
identify close instances in an unknown region, and (2) such meth-
ods neglect the effects of the distance values between instances
and long-distance instance effects on pattern significance. This
paper proposes a novel maximal co-location algorithm to address
these problems. To remove the first constraint, the algorithm uses
Voronoi diagrams to extract the most related instance pairs of
different types and their normalized distances, from which two
distance-separating parameters are adaptively extracted using a
statistical method. To remove the second constraint, the algorithm
employs a reward-based verification based on distance-separating
parameters to identify the prevalent patterns. Our experiments
with both synthetic data and real data from Beijing, China, demon-
strate that the algorithm can identify many interesting patterns
that are neglected by traditional co-location methods.
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1. Introduction

Mining co-location patterns is a technique employed to identify relationships among
different types of spatial data. This technique is applied extensively in species distribu-
tion analysis (Shekhar and Huang 2001, Sierra and Stephens 2012), public safety
(Leibovici et al. 2014), environmental management (Akbari et al. 2015), site selection,
and other fields. In site selection, for example, an investigation of commercial entities
reveals that most banks are located around restaurants in urban areas. Based on this
finding, decision makers can scientifically determine restaurant locations using a specific
site selection model.
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Most current co-location methods involve two steps: first, different types of instances
that have close relationships are connected. Second, frequency mining technology is
adopted to identify frequent patterns through calculating the prevalence index. The
prevalence index is the minimum participation ratio among the types of a candidate
pattern based on its instance table and can measure the significance of a co-location
pattern (Shekhar and Huang 2001).

1.1. Context

Co-location was first proposed by Shekhar and Huang (2001) and followed by a join-
based algorithm using an Apriori strategy (Morimoto 2001). Subsequently, many
researchers have developed a variety of interesting algorithms that yielded satisfactory
results. Some of these algorithms, such as the partial-join algorithm (Yoo and Shekhar
2004), the join-less algorithm (Yoo and Shekhar 2006), the density clustering algorithm
(Huang et al. 2008), the order-clique-based algorithm (Wang et al. 2009), the parallel co-
location algorithm (Yoo et al. 2014) and the SGCT algorithm (Yao et al. 2016), focused on
efficiency improvements. Additionally, others have expanded the data categories by
introducing co-location mining algorithms for lines and polygons (Xiong et al. 2004),
spatio-temporal data (Leibovici et al. 2014), uncertain data (Wang et al. 2013), or rare
types of data (Huang et al. 2006). Moreover, some have enlarged the mining targets by
proposing algorithms such as the negative co-location algorithm (Wan et al. 2008) and
the co-location algorithm with constraints (Flouvat et al. 2015). However, all the above
algorithms require a predefined distance threshold or deformation concepts (Huang
et al. 2008) to separate close instances from distant ones. This requirement restricts their
implementation in unknown regions with little prior information, such as density
information.

To improve the adaptability of these mining techniques, some scholars (Wan and
Zhou 2008, Qian et al. 2012, Sundaram et al. 2012, Qian et al. 2014, Deng et al. 2017)
have deployed novel approaches. For example, Wan and Zhou (2008) proposed a
k-nearest features-based co-location algorithm in which the neighbour relationships
among instances depend on the number of nearest objects and k. However, these
algorithms still demand knowledge of proximity standards, such as a k threshold, prior
to implementation. To address this limitation, some adaptive algorithms that require no
proximity standards have been developed. For instance, Sundaram et al. (2012) used
Delaunay triangulation to find co-location instances. This approach considers nodes
connected by a triangle edge to be neighbours. Qian et al. (2012) presented an iterative
framework to discover prevalent co-location patterns. This method iteratively selects
informative edges to construct a neighbour relationship graph until every significant co-
location has sufficient confidence based on absolute and relative prevalence. Qian et al.
(2014) explored a hierarchical co-location algorithm that adopts a k-nearest neighbour
graph instead of a distance threshold to discover regional co-location patterns. However,
these algorithms use topological predicates or proximity predicates that offer limited
consideration of the distance decay effect, which describes how near instances are more
closely related than distant instances in space (Tobler 1970). This oversight of the
detailed distance values among instances affects the meaning of the mined patterns
for use with high-accuracy data.
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1.2. Challenges

Recently, some studies have addressed distance decay effects associated with co-location
issues and used the kernel density model to imitate the degree of tightness among close
instances, which improves the precision of the prevalent patterns (Yao et al. 2017, Yu et al.
2017). However, these approaches still have some limitations. First, the close-instance
connections do not involve far instances that would introduce negative effects to the
pattern’s significance. Far-instance effects are mainly discussed in another related topic
called ‘de-location’ or ‘negative co-location,’ whose goal is to find type groups with effects
that are exclusive of each other (Wan et al. 2008). Similar to the current co-location
methods, most de-location algorithms only consider distant instances that comply with a
predefined proximity measurement. From that viewpoint, the distant instances truly affect
the significance of a pattern in the context of co-location mining. However, few studies
consider both close and far instances at the same time. Second, it is difficult to set an
appropriate proximity standard with which to connect instances. Although some valid
approaches have been proposed, they mainly use k-nearest or optimization mechanisms
(Qian et al. 2012, 2014), and they still suffer from the aforementioned limitations relating to
the distance values or far-instance effects. Based on the above statement, it is difficult to
integrate both the adaptability characteristics and the effects of close and far instances in
co-location. Such inadequacies significantly weaken the meaning of the prevalent patterns.
This paper is designed to address these problems.

1.3. Contributions

In this paper, we propose a novel maximal co-location mining algorithm that includes
adaptive proximity improvements and distant instance references (ADMC). Specifically, we
present the following three innovations.

(1) We use a Voronoi-based method (Aurenhammer 1991) to connect different-type
instances that have extreme spatial relationships with each other. These con-
nected instances are representatives of all the different-type instance pairs in
space and involve both close and far instances.

(2) A statistical method is proposed to adaptively estimate two ‘distance-separating
parameters’ based on the distances between these connected instances. This method
removes the requirement for a predefined proximity standard, as has been adopted
by traditional algorithms, thereby making the algorithm more adaptive.

(3) Based on the aforementioned distance-separating parameters, a new method
with distance decay interference is designed to measure pattern prevalence.
Consequently, the prevalent patterns are identified according to a ‘reward
value’ rather than a prevalence index. This solution considers the distance
effects of both close and far instances, thus making the final patterns more
trustworthy.

Our experiments use both synthetic data and real spatial data concerning points of
interest (POIs) in Beijing, China, in 2014. The results show that the ADMC algorithm is
more adaptive and reliable than other state-of-the-art techniques.
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The remainder of this paper is organized as follows. Section 2 presents the ADMC
algorithm in detail. Section 3 discusses the computational complexity of the ADMC
algorithm. The performance of the ADMC algorithm for both synthetic and real datasets
is discussed in Section 4. Section 5 provides conclusions and suggestions for future
study directions.

2. Methods

This section discusses the details of the ADMC algorithm. To formally describe the ADMC
algorithm, we assume a set of spatial event types E = {e1,e2,. . .,em} and instance objects
O = {o1,o2,. . .,on} in two-dimensional Euclidean space. Each instance oi contains informa-
tion that can be denoted as <instance ID, event type ej, location(X,Y)>. The instances of a
single type ei are stored in a set O(ei) with the cardinal number of ni. The ultimate task is
to mine all the maximal co-location patterns that satisfy a given reward threshold τ
(0 < τ < 1), which replaces the prevalence threshold used in traditional co-location
algorithms.

The ADMC algorithm is implemented in three steps. First, using a Voronoi- based
method, a size-two normalized instance table (NT) is constructed from O and E.
Second, using a statistical approach, two distance-separating parameters are esti-
mated from NT. These two parameters are used to construct a reward-based verifica-
tion method to identify prevalent patterns. Third, based on a maximal mining
framework (Yao et al. 2016), all the prevalent co-location patterns satisfying the
given reward threshold are obtained. The preceding steps correspond to the sub-
sequent three sections.

2.1. Size-two normalized instance table construction

This section describes the construction of the size-two normalized instance table (NT) using
Voronoi diagrams. A general Voronoi diagram shows the partitioning of a plane into
regions based on the distances between spatial instances in the plane. These instances
are specified beforehand; for each instance, a region exists in which all spatial points are
closer to this instance than to any others (Aurenhammer 1991). A weighted Voronoi
diagram is considered if the instances have different levels of impact; in such cases, a
complicated index that includes additional factors, such as the distance and instance scale,
is regarded as a proximity index to replace distance alone. Here, for simplicity, we use only
the general Voronoi diagram. The relative definitions are as follows.

Definition 1 (Instance pair set constrained by a type pair): Given the instances of a
single type ei, a Voronoi diagram can be constructed by regarding these instances as
kernels. Then, the entire space can be divided into ni cells. The instance pair set
constrained by a type pair (ei,ej) is a set that stores all the instances of type ej with
their corresponding kernels of type ei, defined as follows:

T ei; ej
! "

¼ f ox; oy
! "

joy 2 O ej
! "

; ox 2 O eið Þg; (1)
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where (ox,oy) is an instance pair consisting of a kernel ox and an instance oy of type ej in
its corresponding cell. Each instance of type ej can find its kernel; therefore, the cardinal
number of T(ei,ej) is nj. For the general Voronoi hypothesis, T(ei,ej) can be acquired by the
1-nearest strategy – that is, each instance of type ej should search out the nearest
instance of type ei.

Example 1: Suppose there are instances of two types A and B in space. Figure 1(a,b)
shows the Voronoi diagram based on the instances of type A and B, respectively. We
extract a sample of instances – for example, if P = {A1,A2,A3,B1,B2,B3,B4,B5}, then T(A,
B) = {(A2,B1),(A3,B2),(A3,B3),(A1,B4),(A1,B5)}, and T(B,A) = {(B2,A1),(B1,A2),(B2,A3)}. The cardinal
numbers of the two sets are 5 and 3, which are equal to the instance numbers of types B
and A.

As Example 1 shows, the instance pairs have directionality. Specifically, the instances
of (A3,B3), (A1,B4) and (A1,B5) in Figure 1(a) do not have connecting relationships in
Figure 1(b), but the instances of (A2,B1) and (A3,B2) can be connected in both Figures.
Because co-location pattern mining is a non-directional issue, we should eliminate the
redundant instance connections (see Definition 2).

Definition 2 (Size-two normalized instance table): The instances of each instance pair in
T(ej,ei) for all ei<ej are reordered by the lexicographical order of their types, forming a
new set T*(ej,ei). The size-two normalized instance table is defined as follows:

NT ¼ f ox; oy;Ndis ox; oy
! "# $

j ox; oy
! "

2 T$ ej; ei
! "

[T ei; ej
! "

for all 1 % ei < ej
% mg: (2)

In Equation (2), <ox,oy,Ndis(ox,oy)> is a triple, where ox and oy are instances that have
connecting relationships and Ndis(ox,oy) is their normalized distance (see Definition 3).
Additionally, m is the type number. A subset containing all triples that relate to types ei
and ej is denoted as NT(ei,ej). NT can be interpreted as a complicated two-dimensional
upper triangular matrix, as illustrated in Example 2.

Figure 1. The Voronoi diagram based on the instances of type A and B.
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Definition 3 (Normalized distance of an instance pair): The normalized distance of an
instance pair (ox,oy) is calculated by

Ndisðox; oyÞ ¼
disðox; oyÞ & minðDTÞ
maxðDTÞ & minðDTÞ

; (3)

where dis(ox,oy) is the Euclidean distance between instances ox and oy, DT is a collection
that includes all the distance values of instance pairs in space, and min(·) and max(·)
calculate the minimum and maximum values of the input collection, respectively. The
set that contains all the normalized distances of NT is defined as NorDNT and is used to
estimate the distance-separating parameters in Section 2.2.

Example 2: A new set, T*(B,A), is derived from T(B,A) = {(B2,A1),(B1,A2),(B2,A3)} in Example
1. As described in Definition 2, the instance pairs in T(B,A) are reordered by their types.
For instance, (B2,A1) is changed to (A1,B2) because A < B. All instance pairs in T(B,A) are
processed in this way; finally, T*(B,A) = {(A1,B2),(A2,B1),(A3,B2)} is acquired. The non-
redundant instance pairs are calculated by T*(B,A) [ T(A,B) = {(A1,B2),(A1,B5),(A1,B4),(A2,
B1),(A3,B2),(A3,B3)}. Computing the normalized distances of these instance pairs finally
yields NT = {<A1,B2,0.82>, <A1,B5,0.89>,<A1,B4,0.8>,<A2,B1,0.66>,<A3,B2,0.34>,<A3,B,0.31>},
as illustrated by the matrix in Figure 2. Then, NorDNT = {0.82,0.89,0.8,0.66,0.34,0.31}.

Based on the aforementioned definitions, we can identify that NT is different from the
size-two instance tables of current studies in two respects. First, in addition to the instance
pairs, NT also calculates their normalized distances. Second, the instance-connecting
strategy differs. Figure 3 shows an illustration using the star model (Wang et al. 2009)
comparing our strategy with three other classical instance-connecting strategies proposed
in contemporary studies (Wan and Zhou 2008, Wang et al. 2009, and Sundaram et al. 2012).

Example 3: As shown in Figure 3, there are instances of three types A, B and C in space.
Using the star model, Figure 3(a–d) shows the instance-connecting status of three
instances B1, B2 and B3 using the distance threshold strategy, k-nearest strategy,
Delaunay triangulation strategy and our strategy, respectively. We can see that B2 has

Figure 2. A size-two normalized instance table.
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connecting relationships with 2 instances, 3 instances, 5 instances and 1 instance
according to these four strategies. The connecting statuses of the former two strategies
will change when their proximity thresholds change.

Examples 3 highlight three properties of NT that differentiate NT from other size-two
instance tables acquired by generic means.

Property 1: In NT, each instance is paired with at least one instance of all other types.

Proof: Based on Definition 1, each instance of type ej will search out the nearest
instance of a different type ei when the instances of type ej are treated as kernels. That is,
each instance in O(ej) will be paired with one instance of type ei, and vice versa. Then,
the instance pairs in NT(ei,ej) are calculated by uniting all instance pairs with types ei and

Figure 3. An illustration comparing our strategy with three other classical instance-connecting
strategies proposed in contemporary studies.
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ej through Definition 2. Thus, each instance of type ei will have at least one pair of type
ej, and vice versa. To construct NT, we traverse the above process for all different-type
pairs; therefore, each instance will pair with at least one instance of another type.

Based on Property 1, we can see that even if two types have no co-location meaning,
all their instances will participate in the connections because the instance pairs are
formed based on the influence region of each instance rather than on a proximity
standard. Example 2 clearly shows this property.

Property 2: NT contains not only close-instance pairs in a general sense but also
relatively far pairs.

Proof: Most spatial instances are stable within their force field (Burrough 1986). If a
mutual attraction exists between two types, their instances will mainly be distributed in
each other’s core regions where the influence is stronger in the corresponding Voronoi
cell (such as the regions with darker colours in Figure 3(d)). Otherwise, they will be
distributed in the regions where the influence is considerably weaker (such as the
regions with lighter colours in Figure 3(d)). In this sense, the majority of the normalized
distances for which the instance pairs have potential co-location relationships are lower
than the average level among all normalized distances in NT. The average level of the
normalized distance separates close instances from relatively far ones.

Property 3: The distribution of NorDNT tends to satisfy the Generalized Extreme Value
(GEV) function.

Proof: The GEV distribution is a continuous probability distribution that is often used
as an approximation to model the extremes in long sequences of random variables. The
problem of modelling extreme or rare events arises in many areas. Some examples of
rare events include extreme floods and snowfalls, high wind speeds and extreme
temperatures. To develop appropriate probabilistic models and assess the risks caused
by these events, scientists frequently use extreme value distributions (Coles et al. 2001).
Based on Definition 1, the instance pairs in NT are obtained by the 1-nearest method –
that is, each instance of a specific type should search out the nearest instance of a
different type. Thus, these instance pairs are the most spatially related instances among
all the different-type instance pairs in a plane. Accordingly, their normalized distances
are the minima among those of all the different-type instance pairs. Thus, these normal-
ized distances can be considered an outcome of an operation of extreme values, and
their distribution tends to satisfy the GEV function.

Properties 2 and 3 are verified in Section 4.1, which lays the foundation for the
reward-based verification method of a prevalent pattern in Section 2.3.

2.2. Distance-separating parameter estimation

In Property 2, the instance pairs in NT are not only close pairs but are also mixed with
relatively distant ones. We presume there are two points that can divide these pairs into close,
average and distant groups. Here, we provide a definition of these two points as follows.
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Definition 4 (Distance-separating parameters): The distance-separating parameters lfar
and lclose are derived from the statistical elements of all the normalized distances in NT,
i.e. NorDNT. These parameters are cutoff signals that divide the [0,1] distance axis into
small, average and large groups and provide clues about the data density.

To detect the distribution characteristics of the normalized distances in NT, we use a
statistical method, assuming that the space is continuous. In Property 3, we propose that
the normalized distance satisfies the Generalized Extreme Value (GEV) function. The GEV
function is a family of continuous probability distributions developed within extreme
value theory to combine the Gumbel, Fréchet and Weibull families, also known as type I,
II and III extreme value distributions. These three families can be nested into a single
representation with three parameters, i.e. the location parameter μ, a scale parameter σ,
and a shape parameter k. This is a skewed bell-like distribution, in which μ ± stdrr (stderr
is the standard deviation of the estimated location parameter μ) is the value of the x
observation that is most apparent in real data (Coles et al. 2001). In our application,
μ ± stdrr is the value of the normalized distance that is most apparent in NT. Similar to
the normal distribution curve, [μ − stdrr, μ + stdrr], the peak bound of the real data in the
[0,1] distance axis denotes the average level of a sample dataset. It divides the distance
axis into three intervals. Distances larger than the bound are generally affiliated with the
far-instance group, whereas distances smaller than the bound are affiliated with the
near-instance group. Thus, the two distance-separating parameters are defined as
lclose = μ − stdrr and lfar = μ + stdrr.

To calculate these two parameters, we construct a frequency distribution histogram
for NorDNT using the Freedman-Diaconis rule (Freedman and Diaconis 1981), a widely
used approach for selecting the size of the bins in a histogram. Then, we employ
maximum likelihood estimation (MLE) (Hosking et al. 1985) with a significance (ɑ) of
0.05 to estimate the parameters of the GEV distribution function of the data.
Specifically, we regard each middle value of the histogram interval as an x observation
and its corresponding frequency as a y observation. The fitting function is the regres-
sive curve of these observation pairs composed of all the x and y values. Finally, their
coefficients of determination R2 (Nagelkerke 1991) are calculated to indicate how well
the observation pairs fit this function. When R2 is satisfactory, μ ± stdrr values are
extracted as the two distance-separating parameters, as illustrated in Figure 4. Section
4.1 provides experiments on real data with a fitting analysis to visually clarify this
process.

2.3. Prevalent pattern mining

This section provides details on mining prevalent co-location patterns from the size-two
normalized instance table (NT) and the two distance-separating parameters (lfar and
lclose) obtained in the previous sections. To offset the time costs of the distance-separat-
ing parameter estimation, we employ a fast maximal pattern-mining framework (Wang
et al. 2009, Yao et al. 2016) to return all prevalent maximal co-location patterns. A
prevalent maximal co-location pattern is a concise representative of the prevalent
patterns, and it can be defined as follows.
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Definition 5 (Prevalent maximal co-location pattern): Given a prevalent co-location
pattern Pm = {el,. . .,ev}, where l,v∈{1,2,. . .,n} and Pm·E, if Pm [ ei is a non-prevalent co-
location for any ei∈E and ei‚Pm, the prevalent co-location Pm is called a prevalent
maximal co-location pattern.

We then describe the reward value calculation for a candidate pattern and detail the
mining procedure used by the ADMC algorithm.

2.3.1. Reward-based verification for a candidate pattern
In the Introduction, we revealed that the prevalence index calculation is replaced by a
reward-based verification method to identify whether a candidate pattern is prevalent. The
reward value of a candidate pattern is calculated based on the instance cliques derived
from the instance pairs in NT and their related normalized distances. Instance cliques are
acquired using a condensed instance tree construction proposed by Yao et al. (2016); we
do not expound on that method here. Some related definitions are given below.

Definition 6 (Reward value of an instance pair): The reward value of an instance pair R
(ox,oy) reflects the effect of an instance pair (ox,oy) on its corresponding type pair (ei,ej).
This is a monotonically decreasing function that uses lfar and lclose, defined as follows:

Rðox; oyÞ ¼

lclose& Ndisðox ;oyÞ
lclose

% &2
; Ndisðox; oyÞ<lclose

& Ndisðox ;oyÞ& lfar
1& lfar

% &2
; Ndisðox; oyÞ>lfar

0; lclose % Ndisðox; oyÞ % lfar

:

8
>>><

>>>:
(4)

Figure 5 shows a diagram of Equation (4) with an lfar value of 0.6 and an lclose value of
0.4. Compared with most general co-location methods, which focus only on close
instances, Equation (4) also considers the weakening effect of the more distant instances
and presents a reward calculation when the normalized distance is (lfar,1]. A value within
[lclose, lfar] denotes that most normalized distances fall into this bound, and such a value

Figure 4. An illustration of distance-separating parameter extraction.
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has less co-location meaning. Thus, [lclose, lfar] is regarded as an interval without a
calculation design.

Definition 7 (Reward value of a candidate pattern, Cm): We first define the reward value
of an instance pair (ox,oy) projected on Cm as shown below,

RCmðox; oyÞ ¼
Rðox; oyÞ; ifðox; oyÞ 2 πðei;ejÞðinsTCmÞ
& absðRðox; oyÞÞ; otherwise ;

'
(5)

where insTCm is the instance table constructed from all the instance cliques of Cm
(Shekhar and Huang 2001). Here, πðei;ejÞðinsTCmÞ is an instance projecting process that
produces a set containing non-repetitive instance pairs of type ei and ej that have
connecting relationships in insTCm. The abs(·) function calculates the absolute value of
the input. Accordingly, the reward value of a type pair (ei,ej) projecting on Cm is as
follows:

RCmðei; ejÞ ¼ avgfRCmðox; oyÞjðox; oyÞis inNTðei; ejÞ for all membersg; (6)

where the avg(·) function calculates the average value of the input set. The reward value
of Cm is the minimum value of the entire reward set, which collects the reward values of
all the type pairs extracted from Cm, i.e.

RCm ¼ min1% i<j% k RCmðei; ejÞ
( )

: (7)

From the above statement, we can infer that RCm∈(−1,1). A prevalent co-location pattern
should satisfy RCm > τ, where τ is a reward threshold specified by the user.

Example 4: In Figure 6(b), we show a case for calculating the reward value of a
candidate pattern {A,B,C} based on the instance-connecting status shown in Figure 6
(a). Taking the type pair {B,C} for example, we first implement the instance-projecting
process based on the instance table of {A,B,C} and the instance pairs of {B,C} in NT. Based
on Equation (5), we acquire the reward values of the instance pairs of {B,C} projected
onto {A,B,C} and then acquire the reward value of {B,C} projected onto {A,B,C} according

Figure 5. A diagram of Equation (4) with an lfar value of 0.6 and an lclose value of 0.4.
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to Equation (6). After repeating the previous processes for the other-type pairs, such as
{A,C} and {A,B}, we obtain three reward values for the three type pairs projected onto {A,
B,C}: 0.01, 0.55 and 0.0725, respectively. Finally, we choose the minimum value as the
reward value of {A,B,C}.

Example 4 shows that in contrast to the traditional prevalence index, the reward
value mainly concerns the relationships between instances. Based on these definitions,
we present a proof of the following hypothesis: the prevalent co-location pattern based
on the reward-based verification has an anti-monotonicity property. This hypothesis is
the basis of the pruning strategy used in the mining procedure described in Section
2.3(2).

Property 4: Suppose Cm* = {e1,. . .,ek,ek+1}; then, RCm* % RCm.

Proof: Assuming RCm = RCm(ei,ej),(1 ≤ i < j ≤ k), we obtain πðei;ejÞðinsTCm$Þ '
πðei;ejÞðinsTCmÞ based on the anti-monotonicity property of insTCm. Then, the following
formula applies:

Figure 6. An example of the reward value calculation for a candidate pattern: (a) the instance-
connecting statuses and their reward values and (b) the reward value calculation of {A,B,C}.
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RCmðei; ejÞ & RCm$ðei; ejÞ

¼
sum Rðox ;oyÞþ absðRðox ;oyÞÞjðox ;oyÞ2πðei ;ejÞðinsTCmÞnπðei ;ejÞðinsTCm$Þ

n o

jNTðei;ejÞj ) 0;

where sum(·) is the summed value of the input collection and |·| is the cardinal number
of the input set. Thus, we obtain RCmðei; ejÞ ) RCm$ðei; ejÞ ) RCm$. □

2.3.2. The prevalent pattern-mining algorithm
The pseudocode for mining all prevalent patterns is shown in Algorithm 1. However, the
mining framework is not the main point of this paper; Algorithm 1 directly uses the
approaches proposed by Yao et al. (2016) to generate the candidate maximal co-location
patterns (line 3) and the prevalent maximal co-location patterns (lines 4–8), whose
subsets are all prevalent co-locations.

3. Computational complexity analysis

This section analyses the computational complexity of the ADMC algorithm based on its
three procedures.

In Step 1, the worst complexity for constructing NT is O(nlog2(n)), where n is the
number of instances in space. The computational complexity of the undirected process
is O(mn), and that of the normalizing distances of all instance pairs in NT is O(nNT), where
m is the type number and nNT is the number of instance pairs in NT.

In Step 2, we use traditional maximum likelihood estimation (MLE) with the complex-
ity of O(u3), where u is the observation number. The computing cost of obtaining
observations for the fitting process is O(nNT). Because the observation number using
the Freedman-Diaconis rule is nNT

1/3/2IQR(x), where IQR(x) is the interquartile range of
the data, the computing cost of MLE in our algorithm is O((nNT

1/3/2IQR(x))3) = O(nNT/8IQR
(x)3). Finally, the computational complexity of Step 2 is O(nNT(1 + 1/8IQR(x)3)), which is
approximately equal to O(nNT).

In Step 3, the time complexity of computing the prevalent size-two co-location
patterns is O(nNT), and that of acquiring candidate maximal co-location patterns is O
(km3k/3), where k is the degeneracy of the prevalent size-2 co-locations. The calculation

Algorithm 1: Mining prevalent maximal co-location patterns
Input: NT, lfar, lclose and τ (reward threshold)
Output: P (a set storing all prevalent maximal co-location patterns)
1: CP  ;;
2: calculate all prevalent size-two co-location patterns by Equation (6);
3: use the CMCG algorithm (Yao et al. 2016) to generate all candidate maximal co-location patterns (Cms) and store

them in set CP.
4: for each Cm in CP
5: {construct the instance table of Cm by the CITC algorithm (Yao et al. 2016) and calculate its reward value RCm

by Equation (7);
6: if RCm>τ {P P [ Cm; remove Cm from CP;}
7: else {Cm in CP is replaced by its subsets;}
8: }
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of the prevalent co-location patterns is related to the number of candidate maximal co-
location patterns. Previous studies have indicated that the long candidate verification
process consumes the bulk of the execution time in maximal mining frameworks (Wang
et al. 2009). We take only the longest candidate maximal co-location CL for example. The
worst complexity for constructing an instance tree for CL is O( SMax

CL

** ** $ log2nL), where
SMax
CL

** ** is the maximum number of instances with a single type in CL and nL is element
number of the set that contains connecting instances with types in CL. The worst
complexity of the reward calculation for CL is O(|CL|

2
* nL).

From the above analysis, the worst time cost of the ADMC algorithm is O(nlog2
(n) + mn + 3nNT + km3k/3 + t( SMax

CL

** ** $ log2nL + |CL|
2
*nL), where t is the number of Cms.

Because |CL| < m < SMax
CL

** ** < nL and n < nNT < mn, the final time complexity is similar to O
(nlog2(n) + mn + tnL (log2nL + |CL|

2).

4. Experiments and analysis

We used both synthetic and real datasets to design our experiments.
Synthetic datasets: Figure 7 shows the synthetic datasets produced by a synthetic

data generator similar to that used by Yao et al. (2017). To emphasize the distance
effects between instances and assure the stability of the mined results, we made some
changes to the original generator. Notably, it can generate potential prevalent maximal
co-locations based on predefined ranks. The design of the generator is shown in
Figure 8. First, we predefined the maximal co-locations according to the predefined
prevalence degree from high to low. These co-locations are stored in a permutation
P$ ¼ Pm$

1; Pm
$
2; :::; Pm

$
n

# $
, where n is the number of maximal co-locations. Second, we

generate instance neighbourhoods for each maximal co-location Pm$
kð0<k<nÞ with

input parameters rk, d, and mclump_k. The generating flow is described on the right
side of Figure 8. The distances among the new appended instance neighbourhoods
for the current pattern (Pm$

k or Pm$
k\T according to different conditions) are randomly

distributed in [rk − d, rk + d], and mclump_k is the number of instance cliques for the
current pattern. Third, we add nnoise random noise instances for each type to the spaces
using the method proposed by Huang et al. (2004). Finally, we implement the compara-
tive co-location algorithms and analyse the results. Table 1 shows the parameters of the
two synthetic datasets (Cases S1 and S2).

Real dataset: The real dataset includes POIs in Beijing, China (2014). This data was
also adopted by Yao et al. (2016, 2017) in their studies. The POIs include 288,486 items
with 85 types (such as banks and restaurants), are registered legal entities with the
Beijing Administration for Industry and Commerce, and do not include sensitive items.
Each POI is associated with geographic coordinates and a category. We present the
spatial distribution of the data in Figure 9(a) and preprocess these data using kernel
density clustering (Silverman 1986) to define nine representative regions with different
point densities, as shown in Figure 9(b). These regions are grouped into two series
(Cases 1–4 and Cases 5–9) with densities that range from high to low. As shown in
Table 2, the difference is that the areas of the regions in the former series are equivalent,
whereas the regions in the latter series contain similar numbers of points.
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We conducted three experiments using these datasets. All experiments were per-
formed on a 3.3-GHz Centrino PC machine with 4 GB of main memory.

4.1. Distance-separating parameter estimation results

This experiment was designed to verify that the normalized distances in the size-
two normalized instance table NT of different datasets tend to satisfy the GEV
distribution. Using the method described in Section 2.2, we determined the appro-
priate distance-separating parameters for each real dataset and analysed the fre-
quency distribution of the reward values of all type pairs based on real datasets
(Cases 1–9).

Based on Cases 1–9, we constructed the frequency distribution histograms of the
normalized distances in NT (NorDNT) using the Freedman-Diaconis rule and discovered
that most cases satisfy a type of skewed distribution with a high peak and a fat tail. The
GEV distribution, normal distribution and T distribution statistically belong to this
category due to their similar tracing patterns. To determine the best fitting function,

Figure 7. The synthetic datasets derived from the data generator.
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we used the fitting method proposed in Section 2.2 with a significance of 0.05 to
estimate the parameters of these three functions. The coefficients of determination
(R2) are detailed in Table 3, and the graph in Figure 10 shows the fitting effects of the
three aforementioned distribution functions for Case 1.

Table 3 demonstrates that, in all cases, the fitting effect of the GEV distribution is
optimal relative to any of the other distributions. This phenomenon is plainly
visible in Figure 10, which shows that the GEV fitting function is in superior
concordance with the outline of the frequency histograms than the other two
fitting functions.

This experimental result verified our inference in Section 2.1. Specifically, Cases 1,
2, 3, 5, 6, 7, 8 and 9 achieved high R2 values ranging from 0.9972 to 0.9360. These
values are extremely satisfactory for cross-sectional data. However, it is notable that
the remaining case (Case 4) exhibited poor fitting effects and achieved an R2 of
0.6397. For poor fitting cases, we used a compensatory strategy and chose the
middle value of the histogram bin with the peak frequency as the final distance-
separating parameters. In that case, a critical value of R2 was needed. No definitive

Figure 8. The design of the data generator.

Table 1. The parameters of the synthetic dataset generator for Case S1 and S2.
Parameter Definition Case S1 Case S2

Type number – 5 10
Instance number – 135 357
P* The permutation of the predefined co-locations <{1,2},{1,3},{2,3},

{1,4},{1,5}>
<{1,2,3},{2,4,5},{5,7},

{8,9},{1,6},{2,10}>
R The minimum distance between instance cliques of

the predefined co-locations
20 20

r1,r2,. . .,rn The distance between co-located instance pairs of
the current pattern

2,6,10,14,18 2,4,6,8,10,12

d Standard error of r 1 0.5
mclump1,. . .,mclump_n The number of instance cliques for the current

pattern
20,20,20,20,20 50,50,20,20,20

nnoise The number of noise instances for each type 2 5
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standard exists for this approach; instead, it depends on the application context. For
our application with human intervention, 0.8 is sufficient. Finally, for Cases 1, 2, 3, 5,
6, 7, 8 and 9, we employed the fitting strategy, and for Case 4, we employed the
compensatory strategy (see Figure 11).

Figure 9. The real dataset.

Table 2. Statistical information for the real dataset.
Region label Number of POIs Area (km2) Number of types Density of POIs (Number/km2)

Case 1 106,629 250.00 80 427
Case 2 52,225 250.00 81 209
Case 3 7,811 250.00 82 31
Case 4 1,696 250.00 60 8
Case 5 12,006 16.54 71 726
Case 6 12,073 45.85 74 263
Case 7 12,085 78.32 81 154
Case 8 12,368 573.13 82 22
Case 9 12,348 2,259.51 80 5

Table 3. Fitting effects of three distribution functions for nine cases.
Region label GEV fitting model (R2) Normal fitting model (R2) T fitting model (R2)

Case 1 0.9972 0.6632 0.7392
Case 2 0.9827 0.5019 0.6119
Case 3 0.9360 0.3242 0.4267
Case 4 0.6397 0.3218 0.4108
Case 5 0.9760 0.4271 0.7462
Case 6 0.9826 0.3726 0.5728
Case 7 0.9947 0.4819 0.6078
Case 8 0.9381 0.4821 0.7928
Case 9 0.9550 0.6729 0.8329

Items in bold font are the largest values in each row.
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4.2. Evaluation of the results

From the density-adaptability and result significance, we evaluated our algorithm by
using both synthetic and real datasets. We chose the DTBC algorithm for comparison
because its input parameters are similar to ours.

4.2.1. The density-adaptability evaluation of the results
We evaluate the adaptability character of our algorithm by using a real dataset (Case 5).
Table 4 shows the reward values of the top ten most prevalent patterns mined by the
ADMC algorithm and their corresponding prevalence indices and rank orders calculated
by the DTBC algorithm (Sundaram et al. 2012) based on Case5.

It shows that the prevalent co-location patterns mined by the two algorithms are
different and that the reward values calculated by the ADMC algorithm are considerably
larger than the prevalence indices acquired by the DTBC algorithm from the same
dataset. To more deeply analyse the reward value distribution of the candidate patterns
of different datasets, Figure 12 shows the grid images of reward values of all type pairs
from Cases 3 and 4 (the graph series on the left side) and their corresponding frequency
histograms (the graphs on the right side) based on the calculated distance-separating
parameters. The grid value in the ith row and jth column is the reward value of the type
pair (ei,ej). We can see from the graphs on the right that the reward value distributions
reflect similar characteristics in cases with different densities. First, most reward values
are close to 0, and only a few are close to −1 or 1. The frequency of the reward values
decrease quickly from the x = 0 axis in both the positive and negative directions.
Second, the reward values exhibit an axial-symmetric and fat-tailed distribution along
the [−1, 1] axis that is similar to that of other datasets.

In Table 4, the prevalence index is theoretically between 0 and 1. However, the results
of the DTBC algorithm shown in Table 4 are much lower than 1 and deliver an obscure
picture of the prevalence index distribution. In this context, it is easier to set a reward

Figure 10. The fitting effects of the three functions for Case 1.
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threshold in our algorithm than to set a prevalence threshold in the DTBC algorithm for
different datasets, and the reward values of different datasets have similar distributions.
Furthermore, the above characteristics of the reward values of type pairs show that the
distance-separating estimation can adaptively distinguish the different effects of both
close and far instances on patterns. That is, these effects are reflected by the axial
symmetry of the frequency distribution of reward values. The values displayed by warm
colours in the grid images and close to 1 imply that the corresponding type pairs have
co-location relationships. In contrast, the values close to −1 imply that the correspond-
ing type pairs are mutually exclusive. This finding agrees with the phenomena of the

Table 4. Prevalent patterns mined by four algorithms from Case 5.

Co-location patterns

ADMC DTBC

Reward value Rank Prevalence index Rank

{business store, company} 0.815 1 0.223 2
{company, bank} 0.648 2 0.189 4
{beverage outlet, beauty salon} 0.561 3 0.185 5
{restaurant, snack bar} 0.555 4 0.093 21
{restaurant, beauty salon} 0.550 5 0.122 10
{snack bar, beauty salon} 0.546 6 0.115 12
{convenience store, clothing shop} 0.539 7 0.123 8
{business store, bank} 0.538 8 0.020 –
{restaurant, bank} 0.533 9 0.115 13
{restaurant, beverage outlet} 0.530 10 0.020 –

“–”Means the sorted position of the corresponding pattern exceeds 100.

Figure 12. The grid images of reward values of all type pairs from Cases 3–4 and their correspond-
ing frequency histograms based on the distance-separating parameters.
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natural world, as reported in previous studies, notably, co-location patterns are extreme
relationships and are rare in nature.

Simultaneously, we find that the density of single-type instances in space influences the
mining results. For example, when instances of a certain event type (such as instances of
types 27–33 marked by the red rectangle in the grid image of Figure 12(a)) are abundant,
they will likely have co-location relationships with other-type instances because the density
of the single-type instances will influence the density of the entire dataset. Consequently,
the estimated distance-separating parameters will also be disturbed. These statistical
parameters reflect the comprehensive features of the dataset and will give higher weights
to the patterns that contain types with abundant instances.

4.2.2. The significant evaluation of the results
4.2.2.1. Evaluation on synthetic datasets. We implemented the ADMC and DTBC
algorithms using two synthetic datasets shown in Figure 7 and obtained the ranks of
the mined results according to their prevalence degrees. The quality of the mined results
can be evaluated by the following expression:

Precision ¼ 1 & hresult
hmax

* 100%;

where hresult is the number of inversions (Margolius 2001) in the permutation of the
predefined co-locations based on their calculated prevalence degrees and the prede-
fined sequence of these co-locations and hmax is the maximum number of inversions in
the probable permutation of the predefined co-locations. If the resulting ranks are the
same as the predefined ranks, the precision is 100%.

Table 5 shows the detailed results of two comparative algorithms implemented for
Cases S1 and S2. We can see from Table 5 that our algorithm performs well compared
with the DTBC algorithm in precision for both synthetic datasets.

4.2.2.2. Evaluation on real datasets. For the real datasets, Table 6 shows the pre-
valent maximal patterns obtained using the ADMC algorithm and the same series of
reward thresholds for Cases 1 and 5. These two datasets contain POIs from the core
region of Beijing and include a multitude of businesses and entertainment venues.
Geographically, the two datasets have similar morphologies. Notably, we can see that
the prevalent co-locations for the two datasets using the same reward threshold mostly
conform to logical patterns and the regional dataset characteristics. The prevalent co-
locations mined from the two datasets with the same reward threshold also display high
similarity (SRT), which is calculated by the formula shown below. The similarity helps to
mutually verify the significance of the results. A higher similarity value indicates higher
significance for the mined results:

SRT ¼
ðns=nc1 þ ns=nc2Þ

2
* 100%;

where ns is the number of the same prevalent co-locations in the two comparative
datasets under the same reward threshold and nc1 and nc2 are the numbers of all the
prevalent co-locations in the two datasets, respectively.
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To verify the significance of the final prevalent patterns, we chose six representative
patterns and analysed the frequency distribution of the normalized distances of their
corresponding instance pairs in Figure 13.

As shown in Figure 13, (a–c) are prevalent patterns in bold in Table 4. Specifically, Figure (a,
b) illustrates the results for {business store, company} and {company, bank}, both of which
have high prevalence indices and reward values in different algorithms. Figure (c) illustrates
the results for {restaurant, beverage outlet}. These POIs are identified as prevalent patterns in
the ADMC algorithm, but their sequence is significantly different in the DTBC algorithms.
Figure (d) illustrates the results for {convenience store, pet clinic}, with a reward value of
−0.035. We regard the distance-separating parameters of Case 5 acquired in Section 4.1
(lclose = 0.0495 and lfar = 0.0497) as the dividing lines of the frequency histograms in Figure 13.
Figure (a–c) shows that the instance pairs on the left side of the red line outnumber those on
the right side of the blue line. This result suggests that the close instances of the correspond-
ing pattern are dominant among all instance pairs, and their patterns have co-locational
meaning. Figure (d) shows the opposite situation–i.e. far instances predominate over close
instances–such that the types in the corresponding patterns are exclusive in space. The
phenomena reflected by these four patterns are consistent with their reward values. Thus, the
results gained by the ADMC algorithm are both reliable and significant.

4.3. Effects of the threshold settings

We chose the same reward thresholds for Cases 1–6. Specifically, Figure 14 shows the
time cost and number of results for the six datasets when the reward threshold was set

Table 5. The result evaluation of the two comparative algorithms.
Items Case S1 Case S2

Predefined co-locations <{1,2},{1,3},{2,3},{1,4},{1,5}> <{1,2,3},{2,4,5},{5,7},{8,9},{1,6},{2,10}>
ADCM Location ranks <{1,2},{1,3},{2,3},{1,4},{1,5}> <{1,2,3},{2,4,5},{8,9},{5,7},{1,6},{2,10}>

Number of inversions 0 1
DTBC Location ranks <{1,2},{1,5},{2,3},{1,4},{1,3}> <{1,2,3},{5,7},{8,9},{2,4,5},{1,6},{2,10}>

Number of inversions 5 2
Maximum number of inversions 10 15
Precision of ADCM 100% 93.3%
Precision of DTBC 50% 86.7%

Items in bold font denote high precision.

Table 6. Prevalent maximal patterns with different reward thresholds based on Cases 1 and 5.
Reward
threshold Case 1 Case 5 Similarity

0.5 {parking lot, company}, {snack bar,
convenience store, restaurant}, {snack bar,
convenience store, beauty salon},
{restaurant, bank, company}, {business
store, company}, {convenience store,
restaurant, clothing shop}, {convenience
store, beauty salon, clothing shop}

{convenience store, beauty salon, clothing
shop}, {restaurant, company, bank}, {snack
bar, beverage outlet, beauty salon},
{restaurant, snack bar, beauty salon},
{company, business store, bank},
{restaurant, beverage outlet}

54.1%

0.6 {business store, company}, {company, bank} {business store, company}, {company, bank} 100%
0.7 – {business store, company} –
0.8 – {business store, company} –
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to 0.4–0.9 with an interval of 0.1. The left vertical axis represents the number of
prevalent maximal patterns, while the right vertical axis represents the time cost of
the execution. Note that the changes in the number of patterns and the execution time
with the thresholds in the ADMC algorithm are similar to the changes observed in the
DTBC algorithm. Thus, as the prevalence threshold decreases, the number of patterns
and the time cost of the ADMC algorithm increases. This phenomenon verifies the anti-
monotonicity property of our algorithm.

5. Conclusions

In this paper, we proposed the ADMC algorithm with three main features. First, Voronoi-
based instance connections are implemented within the influence area of each instance.
This process considers both close and far instances in space. Second, the reward-based
verification for a prevalent pattern considers distance decay effects, which are neglected
by general co-location algorithms. Third, the algorithm adapts to the density of the task
data using a statistical method without requiring a predefined proximity standard, which
avoids uncertainty. The experimental results show the advantages of our algorithm in
terms of adaptability and significance.

However, our research and experiments were conducted using a general Voronoi
diagram without considering the barriers or facilitating aspects of real space. Instead of

Figure 13. The normalized distance distributions of instance pairs in NT of representative patterns.
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Euclidean distance, a new index is required to measure the relationships between
instances. Moreover, instances in the real world have complicated attributes, such as
the instance level and importance, which were not considered in this study. Based on
the results presented in this paper, we will explore new and improved solutions to
address these problems in further studies.
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