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Abstract
Network embedding which is to learn a low
dimensional representation of nodes in a net-
work has been used in many network analysis
tasks. Some network embedding methods, in-
cluding those based on generative adversarial net-
works (GAN) (a promising deep learning tech-
nique), have been proposed recently. Existing
GAN-based methods typically use GAN to learn a
Gaussian distribution as a priori for network em-
bedding. However, this strategy makes it difficult to
distinguish the node representation from Gaussian
distribution. Moreover, it does not make full use of
the essential advantage of GAN (that is to adver-
sarially learn the representation mechanism rather
than the representation itself), leading to compro-
mised performance of the method. To address this
problem, we propose to use the adversarial idea
on the representation mechanism, i.e. on the en-
coding mechanism under the framework of autoen-
coder. Specifically, we use the mutual informa-
tion between node attributes and embedding as a
reasonable alternative of this encoding mechanism
(which is much easier to track). Additionally, we
introduce another mapping mechanism (which is
based on GAN) as a competitor into the adversar-
ial learning system. A range of empirical results
demonstrate the effectiveness of the proposed new
approach.

1 Introduction
Network embedding aims to represent the nodes of a net-
work by low-dimensional vectors, and then use this low-
dimensional representation for network analysis tasks such
as link predictions, node classification, network visualization,
user recommendation and community detection [Wang et al.,
2016], MRFasGCN [Jin et al., 2019b].

Most of the existing network embedding algorithms use in-
formation of network topologies, including DeepWalk [Per-
ozzi et al., 2014], LINE [Tang et al., 2015], GraRep [Cao et
al., 2015] and Node2Vec [Grover and Leskovec, 2016]. Rich
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information of node attributes consistent with information of
network topologies has also been explored in network em-
bedding in recent years, including TriDNR [Pan et al., 2016],
SNE [Liao et al., 2018] and NetVAE [Jin et al., 2019a].

Particularly, Generative Adversarial Networks (GAN)
[Goodfellow et al., 2014], originally proposed for generat-
ing images, has been extended to network embedding re-
cently. For example, ANE [Dai et al., 2018] leverages the
adversarial learning principle to regularize the representation
learning by matching the posterior distribution of the latent
representations to given priors (e.g. Gaussian distribution).
ARGA [Pan et al., 2018] encodes the topological structure
and node contents in a graph to a compact representation,
where a decoder is trained to reconstruct the graph struc-
ture. The latent representation is then enforced to match a
prior distribution via adversarial training. NetRA [Yu et al.,
2018] proposes to learn the network representations with ad-
versarially regularized autoencoders and learn the smoothly
regularized vertex representations through jointly consider-
ing both locality-preserving and global reconstruction con-
straints. In GraphSGAN [Ding et al., 2018], a novel approach
for semi-supervised learning on graphs (where generator im-
plicitly generates fake samples in low-density areas between
subgraphs and classifier implicitly), takes the density prop-
erty of subgraph into consideration.

It is worth noting that these existing methods typically ap-
ply the adversarial learning strategy on the representation of
nodes, e.g. matching the distribution of node representation
to an arbitrary prior (such as Gaussian distribution in most
cases). However, this strategy makes it difficult to distinguish
the node representation from Gaussian noise, since it requires
the representation to obey the Gaussian distribution, which
roughly equals adding a Gaussian regular term to the repre-
sentation. While this is reasonable to some extent, it does not
make full use of the essential advantage of adversarial learn-
ing. We believe it is better to apply the adversarial learning
strategy on the representation mechanism that projects data
onto latent space (to make the system robust and effective)
rather than on the representation itself (which simply requires
the representation distribution to follow priors).

Based on this idea, we proposed a novel adversarial learn-
ing approach for network embedding under the framework of
autoencoder. The core of this model is adversarial learning
on the representation mechanism, i.e. on the encoding mech-



anism in encoder, which however, is still difficult to operate.
Since it is often believed that the mapping mechanism can
be expressed approximately by the mutual information of the
input and output of the mapping [Hjelm et al., 2019], which
is much easier to address, we use this mutual information to
measure the quality of the mapping mechanism. Addition-
ally, we introduce another mapping mechanism as a competi-
tor into the adversarial learning system, and let the competi-
tor competes with the encoder in their mapping mechanisms.
Competition in this game motivates both the competitor and
the encoder to improve their mapping methods, resulting in
an effective encoder with competitive representation mech-
anism. Considering the fact that basic GAN model with a
generator and a discriminator can capture semantic variation
in data distribution through its latent space [Donahue et al.,
2017], we use the basic GAN generator as the competitor
of our adversarial learning model. Then, the discriminator
is trained to discriminate the mapping mechanism of the en-
coder from that of the competitor.

2 Preliminaries
We first give the notations and define the problem. We then
introduce Generative adversarial networks (GAN) which is
the base of our approach.

2.1 Notations and the Problem
Consider an undirected, unweighted and attributed network
N = (V,E,X) with n nodes V = {v1, v2, . . . , vn}, a set of
edges E = {eij} ⊆ V × V , and a set of node attribute X ∈
Rn×T , where T represents the number of attributes of each
node. The topological structure of N is represented by an
adjacency matrix A = [aij ] ∈ Rn×n, where aij = 1 if nodes
vi and vj are connected, or aij = 0 otherwise. Attribute
xi ∈ X specifies the features or properties of node vi. The
objective of network embedding is to cast each of the n nodes
in the network to a vector hi ∈ Rk (where k � n).

2.2 Generative Adversarial Networks
Generative adversarial networks (GAN) are inspired by the
two-player game in game theory. The two players in the
GAN model are a generator G and a discriminator D. The
goal of the generator is to generate samples that are as simi-
lar to the real training examples as possible. This is done by
learning the underlying distribution of the real data. As real
data are often noisy, a variable of noise z is typically intro-
duced into the GAN model. The goal of the discriminator,
on the other hand, is to distinguish synthetic samples (gen-
erated by the generator) from the real ones as accurately as
possible. In particular, discriminator is a two-class classifier
that estimates the probability of a sample being synthetic or
real. In the iterative process of training, with one part (gener-
ator or discriminator) being fixed, the parameters of the other
part are updated. In the process of competitive confrontation
between the generator and discriminator, both parties try to
optimize their own objectives until a dynamic equilibrium is
established. At equilibrium, the resulting generative model
from generator captures the latent distribution of the training
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Figure 1: The structure of AMIL. It consists of three parts, including
an autoencoder (encoder & decoder, shown on the top of the figure),
the mutual information discriminator (D, shown in the middle) and
a negative sample generator (generator (GNSG) & the attribute dis-
criminator (DNSG), shown on the bottom). In the autoencoder, the
encoder derives the network embedding of nodes, and then the de-
coder uses it to reconstruct network topology. In the negative sample
generator, the generator (GNSG) attempts to generate fake node prop-
erties based on Gaussian noise to deceive the attribute discriminator
(DNSG). Meanwhile, the generator (GNSG) provides the negative
sample by calculating the mutual information between the fake node
properties and Gaussian noise to deceive the mutual information dis-
criminator (D). Last, D attempts to identify the mutual information
of node attributes and embedding from either the encoder (positive
sample) or the generator (negative sample).

data so that the discriminator can no longer accurately sepa-
rate the synthetic samples from the real ones with an accuracy
rate above 50%. The above process can be expressed as:

min
G

max
D

V (D,G) = min
G

max
D

(Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]),
(1)

where the first expectation is the loss of discriminator for real
training samples and the second the loss of discriminator for
synthetic samples (generated by the generator).

3 The Approach
We first give a brief overview of the proposed method, and
then introduce three elements of the model in detail. At last,
we give the proposed Adversarial Mutual Information Learn-
ing approach (AMIL).

3.1 Overview
To adversarially learn an effective embedding mechanism, we
leverage mutual information to express the mapping mech-
anism from data space to latent space (or vice versa), and



introduce a basic GAN generator into the whole adversarial
learning model as a competitor. The structure of our adver-
sarial mutual information learning approach is illustrated in
Figure 1. It includes three elements: an autoencoder, a neg-
ative sample generator (which is the introduced competitor)
and a mutual information discriminator.

In the autoencoder, the encoder (E) transforms the node
attributes (X) into the embedding (Z = E(X)) utilizing the
network topology, and the decoder reconstructs the topol-
ogy using this embedding. The negative sample generator
includes a generator (GNSG) and the attribute discriminator
(DNSG) (with respect to the mutual information discriminator
D). It is a basic GAN model where the latent space Z ′ of
such model can capture semantic variation in the real data,
i.e., the node attribute X . The mutual information discrim-
inator (D) identifies the mapping mechanism of the encoder
from that of the negative sample generator with the help of
the mutual information. In our AMIL model, we not only
train an encoder but also train a generator. The encoder is
trained with dual objectives: a traditional reconstruction error
criterion of autoencoder and an adversarial training criterion
from the mutual information discriminator (D). The train-
ing of generator (GNSG) in negative sample generator also has
dual objectives: an adversarial training criterion from the mu-
tual information discriminator (D) and an adversarial training
criterion of negative sample generator from the attribute dis-
criminator (DNSG).

It is worth noting that the model can be also taken as frame-
work that naturally combines node attributes (X) and topo-
logical structure (A) into the embedding representation (Z).
The decoder of autoencoder feeds back a reconstruction er-
ror criterion (with topological information) to the encoder.
Meanwhile, the mutual information discriminator (D) feeds
back an adversarial training criterion (with attributes informa-
tion) to the encoder. Then the encoder uses the two types of
feedbacks to update its weight parameters. The above three
steps are performed iteratively, and then a compact represen-
tation containing both attribute and topological information is
obtained.

3.2 The Autoencoder
We use the autoencoder framework similar to graph auto-
encoder [Kipf and Welling, 2016]. First, we use the graph
convolutional networks (GCN) [Kipf and Welling, 2017] as
the encoder to extract the embedding of nodes. In this pa-
per, we use the classic two-layer GCN. Given the adjacency
matrix A and attribute matrix X of a network, the model is
constructed as

Z(1) = fRelu(X,A|W (0)),

Z(2) = fLinear(Z(1), A|W (1)),
(2)

with each convolutional layer expressed by

f(Z(l), A|W (l)) = φ(D̃1/2ÃD̃−1/2Z(l)W (l)). (3)

Here Ã = A + I (where I is the identity matrix) and
D̃ii =

∑
j Ãij . W (l) denotes the weight parameters to be

trained and Z(l) the output embedding in this layer. φ is an
activation function such as Relu(t) = max(0, t) used in the

first layer and Linear(t) = t used in the second layer. In
the decoder, we reconstruct the network topology using the
embedding derived from the encoder. Given the embedding
Z = Z(2), using the inner product method the reconstructed
graph Â can be presented as

Â = sigmoid(ZZT ). (4)

We then use the cross entropy to define the loss as

LAE =
∑

E[aij log Âij + (1− aij) log(1− Âij)]. (5)

3.3 Negative Sample Generator
The negative sample generator, which is a basic GAN, can
play the role of a competitor in the whole adversarial learn-
ing system, if the following two conditions are met. First, it is
an effective mapping mechanism. Second, it is a multi-layer
perceptron. Since classical GAN is indeed a multi-layer per-
ceptron, we only need to show the first condition is also sat-
isfied (to show the negative sample generator can be a com-
petitor). It is well known that a basic GAN learns a generator
mapping from arbitrarily latent distribution to the data. Re-
cent work also showed that the latent space of such generator
captures sematic variation in real data [Donahue et al., 2017].
This may indicate that GAN is indeed an effective mapping
mechanism (satisfying the first condition). Thus, the negative
sample generator can be a competitor.

The negative sample generator includes two parts: a gen-
erator (GNSG) and a discriminator (DNSG). The generator
(GNSG) uses a three-layer fully-connected network which
takes a Gaussian noise Z ′ as input and generates the attribute
of the nodes (X ′ = GNSG(Z ′)). The generator (GNSG) gen-
erates fake node attributes X ′ based on latent variables Z ′, to
deceive the discriminator (DNSG). The discriminator (DNSG)
attempts to identify the real attribute from the fake one. By
interactive training, the generated attributes of the nodes can
look more like the real data.

Here the loss of the generator (GNSG) is defined as

LGNSG
= −Ez′∼pz′ (z

′)[logDNSG(GNSG(z′))], (6)

where z′ is a sample that satisfies the simple Gaussian distri-
bution pz′(z′), GNSG(z′) and DNSG(·) indicate the generator
and discriminator explained above.

The loss of the discriminator (DNSG) is defined as

LDNSG
=− Ex∼pdata(x)[logDNSG(x)]

− Ez′∼pz′ (z
′)[log(1−DNSG(GNSG(z′)))],

(7)

where pdata(x) is the sample distribution of x.
The training objective of the negative sample generator can

be defined as a minimax objective

LNSG = min
GNSG

max
DNSG

Λ(DNSG, GNSG)

= min
GNSG

max
DNSG

(Ex∼pdata(x)[logDNSG(x)]

+ Ez′∼pz′ (z
′)[log(1−DNSG(GNSG(z′)))]).

(8)

Compared with the simple generator, which does not have
a discriminator and thus is not a GAN model, our negative
sample generator has the following advantages. First, it can



produce node attribute information which is more similar to
the real one in the data, thanks to the adversarial learning
of the generator and discriminator in the GAN model. Sec-
ond, the discriminator (DNSG) in the GAN model can make
the generated node attributes (X ′) not deviate much from the
given ones (X). This will limit the solution space for model
training and parameter tuning.

3.4 The Mutual Information Discriminator
The core of our model is to apply adversarial learning strategy
on the representation mechanism rather than on the represen-
tation itself, so as to learn an effective encoding mechanism.
The encoding mechanism can be regarded as a representation
learning function as well as the relationship between its input
and output variable. Mutual information can represent the
relationship between two variables. Recent research showed
that the encoding mechanism can be expressed approximately
by the mutual information of the input and output of the en-
coder [Hjelm et al., 2019], which is much easier to track.
Then, we use the mutual information between the input vari-
able (node attributesX) and the output variable (node embed-
ding Z) of the encoder to express the encoding mechanism.
The mutual information between node attributes and the node
representation of the encoder, denoted by (MI(X,Z)), can
track the quality of the encoding process. That is, when the
mutual information between node attributes and the represen-
tation is larger, this representation will be more representative
of the nodes in the network. While the mutual information
(MI(X,Z)) can be defined in many ways, here we take the
concatenation of X and Z as an effective relaxation and ap-
proximation (since it can well describe the mapping between
X and Z and is the simplest way for learning efficiently).

In specific, we use the mutual information of the nodes rep-
resentation (Z) (generated by the encoder) and the attribute
information (X) together as the positive sample mutual infor-
mation (MI(X,Z)). On the other hand, we use the mutual
information of the input (Z ′) and output (GNSG(Z ′)) of the
negative sample generator as the negative sample mutual in-
formation (MI(X ′, Z ′)). Once we get the mutual informa-
tion sampled from the encoder and the negative sample gen-
erator, we send the positive samples and the negative samples
to the mutual information discriminator (D). The discrimi-
nator attempts to discriminate the negative samples generated
by the generator as 0, and the positive samples generated by
the encoder as 1. Then, we can define the loss of the discrim-
ination (D) as

LD =− Ex∼pdata(x)[logD(MI(x,E(x)))]

− Ez′∼pz′ (z
′)[log(1−D(MI(GNSG(z′), z′)))].

(9)

3.5 Adversarial Mutual Information Learning
In this section, we will give the whole AMIL model. We
use the mutual information of the input (X) and the output
(Z = E(X)) of the encoder as a positive sample mutual in-
formation (with the help of decoder which reconstructs the
network topology). Therefore, the loss of the encoder is di-
vided into two parts: one part is the loss of the reconstructed
topology, expressed as Eq. (5). Another part is the loss from

adversarial training criterion, i.e., the loss that the mutual in-
formation discriminator (D) is deceived by the positive sam-
ple mutual information (MI(X,Z)) and thus takes it as a
negative one.

LED = −Ex∼pdata(x)[log(1−MI(D(x,E(x))))]. (10)

Then, we can define the overall loss of the encoder as

LE = LAE + LED. (11)

Meanwhile, we use the mutual information of the input
(Z ′) and the output (X ′ = GNSG(Z ′)) of the negative sample
generator as a negative sample mutual information. Then, the
loss of the generator (GNSG) is divided into two parts: One
part is the loss from negative sample generator, expressed as
Eq. (6). The other part is the loss from the mutual informa-
tion discriminator (D), i.e., the loss that D is deceived by the
negative sample mutual information and thus takes it as the
positive one. We define the loss from the mutual information
discriminator as

LGD = −Ez′∼pz′ (z
′)[logD(MI(GNSG(z′), z′))]. (12)

Then, we can define the overall loss of the generator
(GNSG) as

LGG
= LGNSG

+ LGD. (13)
The mutual information discriminator (D) attempts to

identify the mutual information of node attributes and em-
bedding from either the encoder (positive sample) or the gen-
eratorGNSG (negative sample). Therefore, the AMIL training
objective is defined as a minimax objective

min
E,GNSG

max
D

W (D,E,GNSG), (14)

where

W (D,E,GNSG) = Ex∼pdata(x)[logD(MI(x,E(x)))]

+ Ez′∼pz′ (z
′)[log(1−D(MI(GNSG(z′), z′)))].

(15)

We optimize the minimax objective (15) using the same
alternating gradient-based optimization as [Donahue et al.,
2017]. Our model jointly trains an encoder (E) and a gener-
ator (GNSG). At the global optimum of the whole adversarial
learning, encoder (E) and generator (GNSG) are each other’s
inverse.

4 Experiments
We first give the experimental setup, and then compare the
new approach AMIL with some state-of-the-art methods on
three network analysis tasks, i.e., node classification, node
clustering and network visualization. Next, we perform a
comparative experiment with a simple generator or with a
GAN generator, i.e., with or without discriminatorDNSG. We
finally give the parameter analysis.

4.1 Experimental Setup
Datasets. Seven publicly available datasets1 with varying
sizes and characteristics are used, which are representative of

1https://linqs.soe.ucsc.edu/data



Datasets Cornell Texas Waton Wisin Cora Cite Pubmed
Nodes 195 183 217 262 2,708 3,312 19,717
Edges 304 328 446 530 5,429 4,732 44,338
Classes 5 5 5 5 7 6 3
Attributes 1,703 1,703 1,703 1,703 1,433 3,703 500

Table 1: Datasets information. Waton, Wisin and Cite are short for
Washington, Wisconsin and Citeseer, respectively.

two types of networks: webpage networks (Cornell, Texas,
Washington and Wisconsin from the WebKB dataset) and
document networks (Citeseer, Cora and Pubmed). The de-
tailed information of the seven datasets are summarized in
Table 1.
Baseline Methods. We compared our approach AMIL
with ten embedding methods: (1) the methods using net-
work topology: DeepWalk [Perozzi et al., 2014], Node2Vec
[Grover and Leskovec, 2016], LINE [Tang et al., 2015] and
GraRep [Cao et al., 2015], and (2) the methods using both
topological and semantic information: TriDNR [Pan et al.,
2016], AANE [Huang et al., 2017], SNE [Liao et al., 2018],
VGAE [Kipf and Welling, 2016], ARVGE [Pan et al., 2018]
and DGI [Veličković et al., 2019]. Especially, ARVGE [Pan
et al., 2018] is a state-of-the-art network embedding method
based on GAN.
Parameter Settings. The final embedding dimension is of-
ten set to power of 2. To ensure fairness, we uniformly set
it to 64 for all the methods on all the datasets. The parame-
ters of the methods compared were set as what were used by
their authors. For DeepWalk, we set the walk length as 40
and window size as 5. For Node2Vec, we set the walk length
as 80 and window size as 10. For LINE, we set the number
of negative samples used in negative sampling as 5 and the
starting value of the learning rate as 0.025. For GraRep, we
set the maximum matrix transition step as 5.

In our approach AMIL, for the encoder, we use the classic
two-layer GCN, which has 128 units in the first layer and 64
units in the second layer. For the discriminators (DNSG and
D), we use three layers of fully connected neural network.
In specific, 512 units for first two layers and 1 unit for last
layer. We use ReLU(·) as the activation function in the first
two layers, and use Sigmoid(·) in the last layer. We use the
pytorch deep learning tools to learn the model with a learning
rate of 0.001.
Evaluation Metrics. In node classification, we use accu-
racy (AC) as the metric to evaluate the performance of all
methods. For node clustering (a.k.a. community detection),
besides accuracy [Liu et al., 2012], we also use normalized
mutual information (NMI) [Liu et al., 2012] as an additional
accuracy metric since NMI has been more often used in node
clustering.

4.2 Node Classification
In node classification, our goal is to classify each node into
one of the multiple labels. After getting the network embed-
ding, we adopt the LibSVM and LibLINEAR software pack-
ages in Weka to classify these nodes with ground-truth. For
each network, we used 10-fold cross-validation and accuracy
(AC) as the metric to evaluate the performance of all methods.

Packages Methods Cornell Texas Waton Wisin Cora Cite Pubmed

LibSVM

DeepWalk 38.97 49.18 55.30 49.24 82.57 52.52 78.79
Node2Vec 35.90 50.27 47.47 46.56 79.98 61.63 80.30
LINE 43.59 68.85 59.91 54.58 30.20 41.07 75.47
GraRep 53.33 62.68 52.07 59.16 73.41 54.28 80.64
AANE 51.80 56.28 64.06 43.13 30.20 24.70 78.63
TriDNR 37.95 48.09 47.01 40.46 43.27 54.47 79.07
SNE 48.21 57.92 54.38 59.54 49.00 44.74 78.37
VGAE 45.13 55.00 54.38 53.82 81.05 65.97 83.42
ARVGE 42.56 56.28 58.99 49.26 80.42 65.10 80.64
DGI 42.56 56.28 47.47 45.42 80.21 70.07 74.57
AMIL 53.58 68.92 65.76 59.70 83.60 70.99 80.81(2)

LibLINEAR

DeepWalk 38.46 48.09 53.92 49.62 82.04 48.42 78.36
Node2Vec 37.95 50.27 45.62 46.95 80.79 52.44 80.08
LINE 44.10 53.39 56.22 54.96 50.25 40.56 74.92
GraRep 53.33 59.40 51.15 60.31 79.83 53.61 80.37
AANE 41.54 53.01 61.75 38.93 27.03 22.24 77.99
TriDNR 34.87 42.08 43.32 41.60 53.39 52.91 78.40
SNE 45.64 59.02 55.76 59.92 54.46 44.35 77.20
VGAE 45.64 51.91 54.84 54.49 79.13 69.25 83.81
ARVGE 41.54 59.02 60.37 56.11 81.24 66.71 80.59
DGI 43.08 56.28 55.31 48.86 84.71 70.85 78.11
AMIL 54.15 59.73 62.53 61.16 81.46(3) 71.36 80.98(2)

Table 2: Comparison on node classification in terms of AC (%).
Bold font indicates the best result. The number in brackets denotes
the rank of our method when it is not the best.

The results are shown in Table 2. As shown, our method
AMIL performs the best on 6 of the 7 networks in LibSVM
and 5 of the 7 networks in LibLINEAR. On average, AMIL
outperformed the best baseline method (i.e. ARVGE) in node
classification by 13.46% using LibSVM and by 10.08% using
LibLINEAR. In particular, AMIL performs better than the
other GAN-based method (i.e. ARVGE) on all networks, an
obvious improvement.

4.3 Node Clustering
In node clustering, we aim to assign distinct cluster to each
node. After having the embedding of all the algorithms,
we applied k-means algorithm to the resulting embedding of
nodes to cluster them into classes (as done by the existing
works). Here, we use both the AC and NMI as the perfor-
mance metrics as discussed above.

The results are shown in Table 3. As shown, our method
AMIL performs the best on 6 of the 7 networks in terms of
both AC and NMI. On the remaining networks where our
AMIL does not perform the best, it still has the second best
results. On average, AMIL outperformed the best baseline
method (i.e. DGI) in node clustering by 10.45% in terms of
AC and 18.91% in terms of NMI. In particular, AMIL per-
forms better than the other GAN-based method (i.e. ARVGE)
on all the datasets. This further validate the effectiveness of
the new approach.

4.4 Visualization
To further illustrate that the embedding from our method
is an accurate representation, we also visualize the embed-
ding of some representative network embedding methods (i.e.
ARVGE [Pan et al., 2018] and our AMIL) in the Citeseer
dataset as an example. We use the t-SNE [Maaten and Hin-
ton, 2008] tool to reduce the result of embedding representa-
tion to two dimensions and draw a color for each categorical
label. The result is given in Figure 2.

As shown in Figure 2 (a), the representations derived from
ARVGE are also tightly interweaved, and thus it is still not
easy to distinguish them. In contrast, our embedding results



Metrics (%) Methods Cornell Texas Waton Wisin Cora Cite Pubmed

AC

DeepWalk 36.05 46.72 40.76 38.76 45.61 36.21 64.84
Node2Vec 33.85 47.54 37.33 49.62 56.30 40.76 65.56
LINE 39.49 53.38 52.68 45.43 30.72 25.01 43.11
GraRep 31.79 36.72 31.36 33.24 48.29 31.20 54.43
AANE 37.28 30.49 41.57 30.53 18.51 21.76 34.55
TriDNR 38.21 47.54 43.59 43.70 31.56 34.44 59.29
SNE 41.08 41.53 48.80 55.30 39.44 31.17 65.13
VGAE 36.72 48.35 43.73 43.28 57.06 53.46 58.64
ARVGE 38.21 41.48 43.66 42.81 64.08 43.50 58.76
DGI 38.46 51.91 48.85 45.80 63.51 67.54 64.07
AMIL 44.62 57.92 54.38 55.34 72.89 64.44(2) 66.12

NMI

DeepWalk 7.06 6.16 5.66 7.65 31.51 10.58 25.55
Node2Vec 6.65 4.49 2.94 7.86 42.02 12.99 25.02
LINE 9.27 18.16 18.95 9.39 10.13 5.62 7.17
GraRep 8.80 12.43 5.18 8.02 35.46 9.61 17.76
AANE 9.55 3.52 13.19 2.86 0.40 1.19 0.01
TriDNR 7.20 4.32 8.10 6.60 12.19 9.59 19.28
SNE 11.11 12.63 17.43 18.94 16.28 7.31 25.61
VGAE 7.77 8.52 9.03 9.31 42.92 27.93 17.83
ARVGE 10.26 7.28 12.60 11.92 44.95 22.72 18.40
DGI 12.52 13.98 15.64 13.69 49.76 42.74 26.64
AMIL 14.81 18.45 20.71 19.98 54.88 37.71(2) 28.03

Table 3: Comparison on node clustering in AC and NMI.

(a) ARVGE (b) AMIL

Figure 2: Visualization of different network embedding methods on
the Citeseer dataset.

in Figure 2 (b) show that the nodes are divided into differ-
ent categories more clearly. That is, nodes with the same
color are roughly gathered together. This visual results fur-
ther demonstrate that our model can obtain a better represen-
tation.

4.5 Comparative test with simple generator or
with a GAN generator

In this section, we want to evaluate whether our negative sam-
ple generator, which is a GAN generator, is better than a sim-
ple generator, which does not have a discriminator. In other
words, we want to evaluate the impact of the attribute dis-
criminator (DNSG). Specifically, we use the same clustering
method as in Section 4.3 to obtain experimental results with
and without the discriminator (DNSG). The model with the
discriminator (DNSG) is our AIML, and the method without
the discriminator (DNSG) is called AIML ND. Similarly, we
use both the AC and NMI as the performance metrics as dis-
cussed earlier.

The results are shown in Table 4. As shown, our method
AMIL performs better than AIML ND on the 7 networks in
AC and NMI. On average, AMIL outperformed AIML ND in
node clustering by 6.21% in terms of AC and 17.29% in terms
of NMI. This further shows that the discriminator (DNSG) can
help the generator generate more effective negative sample

Metrics (%) Methods Cornell Texas Waton Wisin Cora Cite Pubmed

AC AIML ND 42.56 52.46 53.46 48.47 71.01 59.15 65.64
AMIL 44.62 57.92 54.38 55.34 72.89 64.44 66.12

NMI AIML ND 12.01 12.90 19.03 16.41 53.49 32.69 26.41
AMIL 14.81 18.45 20.71 19.98 54.88 37.71 28.03

Table 4: Comparison with a simple generator or with a GAN gener-
ator in AC and NMI.
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Figure 3: The effect of the embedding dimension. (a) is the result
with different embedding dimensions in AC and (b) is in NMI.

mutual information, resulting in more robust embedding.

4.6 Parameter Analysis
In this section, we analyze the effect of the embedding dimen-
sion on the model’s performance. We select the embedding
dimensions of 16, 32, 64 and 128. The experimental results
are shown in Figure 3. Figure 3 (a) shows the result of net-
work embedding with different dimensions in terms of AC
(still on the node clustering task in Citeseer), and (b) shows
that in terms of NMI. As shown, in terms of AC, the algo-
rithm’s performance is relatively stable with the change of the
dimensions of network embedding, while it has some small
fluctuations in terms of NMI. This validates that the algorithm
is robust to the dimensions of network embedding.

5 Conclusions
To better utilize the essential advantage of GAN on network
embedding, we propose a new approach of adversarial mu-
tual information learning for network embedding (AMIL),
which uses adversarial learning strategy on the representation
mechanism rather than on embedding results. We use mutual
information to express a mapping mechanism of an encoder
(or generator) approximately, which makes the discrimina-
tor really work. In addition, another mapping function, i.e.
negative sample generator, is introduced to the adversarial
learning system as a competitor. The method proposed is
evaluated on some real datasets with different scales. Experi-
mental results show that the new method significantly outper-
forms the state-of-the-art methods including another GAN-
based method.
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