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Abstract
Combinational network embedding, which learns
the node representation by exploring both topo-
logical and non-topological information, becomes
popular due to the fact that the two types of in-
formation are complementing each other. Most of
the existing methods either consider the topologi-
cal and non-topological information being aligned
or possess predetermined preferences during the
embedding process. Unfortunately, previous meth-
ods fail to either explicitly describe the correlations
between topological and non-topological informa-
tion or adaptively weight their impacts. To ad-
dress the existing issues, three new assumptions are
proposed to better describe the embedding space
and its properties. With the proposed assumptions,
nodes, communities and topics are mapped into one
embedding space. A novel generative model is pro-
posed to formulate the generation process of the
network and content from the embeddings, with re-
spect to the Bayesian framework. The proposed
model automatically leans to the information which
is more discriminative. The embedding result can
be obtained by maximizing the posterior distribu-
tion by adopting the variational inference and repa-
rameterization trick. Experimental results indicate
that the proposed method gives superior perfor-
mances compared to the state-of-the-art methods
when a variety of real-world networks is analyzed.

1 Introduction
Network embedding, which learns the representation of ev-
ery node in the network, challenges the end-to-end strategy
for its crown in network analysis [Hamilton et al., 2017;
Cai et al., 2017]. Tremendous efforts have been made to
improve the performance of embedding in two directions.
One is the preservation of structure and properties of the
network [Wang et al., 2017b; Ou et al., 2016], while the
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Figure 1: An example of the proposed embedding space. The em-
bedding space (red coordinate system) is spanned by the content se-
mantic subspace (green plane) and the network structure subspace
(blue plane). The network structure subspace (blue plane) is spanned
by the embeddings of communities v1 and v2, while the content se-
mantic subspace (green plane) is spanned by the embeddings of top-
ics u1 and u2. The projection of node embedding ai to the network
structure subspace forms the node’s community weight gi which
represents the network topology, while the projection to the semantic
subspace forms node’s topic weight fi which represents the content.

other is the integration of side information [Yang et al., 2015;
Tu et al., 2017; 2016]. Recently, researchers started to jointly
explore the two directions to further improve the embed-
ding performance. To exploit the advantages of both the
topological and non-topological information, which are actu-
ally complementing each other, combinational network em-
bedding learns the node representation by exploring both
of them and draws great attentions [Wang et al., 2017a;
Huang et al., 2017b].

Most of the existing methods can be categorized into two
classes. Class 1 methods, which assume the topological and
non-topological information being aligned, usually force the
entire embedding to represent the two kinds of information
simultaneously [Chang and Blei, 2009; Wang et al., 2016;
Pan et al., 2016; Liao et al., 2017]. However, the alignment
assumption doesn’t usually hold in reality. Taking Twitter as
an example, social relationships often indicate user groups
and users may post messages of diverse topics, i.e., the net-
work structure and content semantic are not aligned at all.

Class 2 methods, which usually assume one kind of infor-



mation to be more important than the other, tend to require
the embeddings to perfectly represent one kind of informa-
tion and then constrain the embeddings with the other kind of
information [Yang et al., 2015; Wang et al., 2017a]. [Huang
et al., 2017b] regularizes the network embedding by employ-
ing the content embeddings. [Huang et al., 2017a] constrains
the embedding of the node attribute with the network topol-
ogy information. From the literature review we can conclude
that some methods in Class 2 are scheduled to prefer the topo-
logical information, while others are set to prefer the non-
topological information. However, these predetermined pref-
erences of the topological or non-topological information are
not rigorous.

In fact, topological and non-topological information is cor-
related and they should be considered with no predetermined
preferences during the embedding process. The ignorance of
the correlation tends to degrade the integration of these infor-
mation and the quality of embedding. The biased treatments
of the two kind of information will reduce the versatility of
the embedding methods.

In this paper, to alleviate these issues, we improve the em-
bedding performance by considering the correlation in the
topological and non-topological information. Three new as-
sumptions about the embedding space and its properties have
been proposed, as shown in Figure 1. With the assumptions,
nodes, communities (mesoscopic properties of the topolog-
ical information) and topics (mesoscopic properties of the
non-topological information) are seamlessly transformed into
one embedding space and a new generative model is devel-
oped to portray the generation process of the network and
content. This model, which is constructed with respect to the
Bayesian framework, can adaptively weight the impacts of
the two types of information. i.e., it can automatically lean to
the information which is more discriminative. Specifically, if
the community structure of the network is more distinguish-
able than the topic semantics of node content, the model will
assign more weight to the topological information, and vice
versa. Then the embeddings can be achieved by maximizing
the posterior distribution with the variational inference and
reparameterization trick.

The main contributions are summarized as follows:

1. We propose three new assumptions to explicitly de-
scribe the correlations between the topological and non-
topological information (network structure and node
content ).

2. We propose a novel generative model to portray the gen-
eration process of the network and content from the la-
tent embeddings of nodes, communities and topics, and
adaptively weight their impacts.

3. We propose an efficient variation inference algorithm by
adopting the reparameterization trick to maximize the
posterior distribution and obtain the embeddings.

2 Correlated Embedding Model
A network with node content can be represented as an at-
tributed graph G = (O,E,W ). O = {oi|i = 1, ..., D}
is a set of D vertices, where oi is associated with a bag of
Ni words {wi,n|n = 1, ..., Ni}. Each word wi,n is drawn

from the vocabulary of L words. E is a set of edges, each
of which connects two vertices in O. The adjacency matrix
Y = [yij ] ∈ RD×D is adopted to represent the network topol-
ogy, where yij = 1 if an edge exists between the vertices oi
and oj , and vice versa. Besides, we assume that the number
of communities in the network, K, and the number of topics
in the content, T , are known.

In this section, the nodes, communities and topics are de-
signed to be represented in the same M -dimensional latent
embedding space. We denote A ∈ RD×M , V ∈ RK×M and
U ∈ RT×M as the embedding matrices of the nodes, commu-
nities and topics, where ai ∈ RM , vk ∈ RM and ut ∈ RM
are the corresponding embedding of node i, community k and
topic t, respectively.

2.1 Assumptions
To explore the correlations between the topological and non-
topological information, we make three natural assumptions
about the embedding space and its inner relationships.

Assumption 1: The 3-in-1 embedding space RM is
spanned by the network structure subspace S ⊂ RM and the
content semantic subspace C ⊂ RM . An example is shown in
Figure 1, where the embedding space (red coordinate system)
is spanned by the content semantic subspace (blue plane) and
the network structure subspace (green plane).

Assumption 2: Subspace reflects the mesoscopic proper-
ties of the observations. As shown in previous work, meso-
scopic properties, such as community structures in network
embedding [Wang et al., 2017b] and topics in document em-
bedding [He et al., 2017], should be preserved during em-
bedding. Instead of forcing the entire embedding to represent
the network structure and content semantic information si-
multaneously, we indirectly constrain the corresponding sub-
spaces to be spanned by the embeddings of mesoscopic prop-
erties. In this paper, we define the network structure and
content semantic subspaces as S = span(v1, v2, ..., vK) and
C = span(u1, u2, ..., uT ) respectively, where vk ∈ RM
and ut ∈ RM are the embeddings of the communities and
topics. Let V = [v1, v2, ..., vK ] ∈ RK×M and U =
[u1, u2, ..., uT ] ∈ RT×M . As the example shown in Figure
1, the network structure subspace (blue plane) is spanned by
the embeddings of communities v1 and v2, while the content
semantic subspace (green plane) is spanned by the embed-
dings of topics u1 and u2.

Assumption 3: The corresponding information is gener-
ated by the node’s mesoscopic properties, which are the pro-
jections of the embedding to the subspaces. The projection of
embedding ai to the network structure subspace is V ′V ai ∈
RM , and the coordinate based on bases {v1, v2, ..., vK} is
gi = V ai ∈ RK . gi, which is the inner product of the em-
bedding of node and communities, can be regarded as the
community weight of node i. It can be transformed into
the community distribution via si = softmax(gi) where
sik = softmaxk(gi) = egik/

∑
j e
gij . Similarly, the topic

weight of node i is fi = Uai ∈ RT and the topic distribu-
tion is ri = softmax(fi), where rit = softmaxt(fi) =
efit/

∑
j e
fij . gi and fi can be regarded as the struc-

ture and content embeddings of node i respectively. Ac-
cording to the mixed-membership model [Blei et al., 2003;



Figure 2: Graphical representation of the proposed model. The
shaded circles denote the observed variables. The single rings with
red, blue and green color denote the embeddings of nodes, com-
munities and topics. The double rings with blue and green color
denote the community and topic weights. The relationships among
ad, ut, vk, fd and gd are also shown in Figure 1.

Airoldi et al., 2008], the topic and community distributions of
nodes are the latent variables which respectively generate the
network topology and node content. An example is shown in
Figure 1 and the detailed generation process will be discussed
in Section 2.2.

2.2 Generative Model
The assumptions proposed above connect the embeddings
(nodes, communities and topics) and mesoscopic properties
(community and topic) . Here we continue to introduce the
generative process from the mesoscopic properties of each
node to the topological and non-topological observations.
For topological observation, the stochastic block model is
adopted. The community distribution of node generates a
community assignment to the initiator and receiver for each
pair of nodes. The probability of this pair of nodes being
connected depends on the communities to which initiator and
receiver belong. For non-topological observation, the topic
model is adopted. The topic distribution of node generates a
topic assignment to each word position. The probability of
the word appearing in current position depends on the word
distribution of this topic.

The generative process is described as follows. The pro-
posed model, which is illustrated in Figure 2, is represented
by three types of variables (observed variables, latent vari-
ables and parameter variables). Note that the notations are
summarized in Table 1.

1. For each topic t = 1, 2, ..., T

(a) Draw the topic word distribution φt ∼ Dir(β)
(b) Draw the topic embedding ut ∼ N (0, α−1I)

2. For each community k = 1, 2, ...,K

(a) Draw the community embedding vk ∼ N (0, η−1I)

3. For each node d = 1, 2, ..., D

(a) Draw node embedding ad ∼ N (0, ρ−1I)

Table 1: Notations.

Symbol Description

D,R number of nodes and edges
K,T number of latent communities and topics
Nd number of words in document d
L vocabulary size
M embedding dimension

yij connection between nodes i and j
wdn the nth word in node d

ad, ut, vk embeddings of node d, topic t and community k
fd topic weight of node d
gd community weight of node d
zdn topic assignment of word wdn

xi→j community assignment of node pair (i, j) initiator
xi←j community assignment of node pair (i, j) receiver
φt word distribution of topic t

ρ, η, α uncertainty degrees of three kinds of embeddings
τ, ε uncertainty degrees of community and topic
β prior of word distribution
B probabilities of interactions between communities

(b) Draw the node topic weight fd ∼ N (Uai, ε
−1I)

(c) Draw the node community weight gd ∼ N (V ai, τ
−1I)

(d) Derive the distribution over topics rd = softmax(fd)
(e) Derive the distribution over communities sd =

softmax(gd)
(f) For each word n = 1, 2, ..., Nd

i. Draw the topic assignment zdn ∼Mult(rd)
ii. Draw the word wdn ∼Mult(φzdn)

4. For each pair of nodes i and j
(a) Draw initiator indicator xi→j ∼Mult(si)
(b) Draw receiver indicator xi←j ∼Mult(sj)
(c) Draw link yij ∼ Bernoulli(Bxi→j ,xi←j

).

The joint distribution generated by the above model is

P (Y,W,A, F,G,U, V,X,Z,B,Φ|α, η, ρ, ξ, τ, ε, β)

=
∏
i

∏
i<j P (xi→j |si)P (xi←j |sj)P (yij |xi→j , xi←j , B)∏

d

∏
n P (zdn|rd)P (wdn|zdn,Φ)

∏
t P (ut|α)P (φt|β)∏

k P (vk|η)
∏
d P (ad|ρ)P (gd|ad, V, τ)P (fd|ad, U, ε),

where
∑
l φtl = 1. To obtain the embeddings of

nodes, communities and topics, A∗, F ∗, G∗, U∗, V ∗,
X∗, Z∗, B∗ and Φ∗ that maximizing the posterior
P (A,F,G,U, V,X,Z,B,Φ|Y,W,α, η, ρ, ξ, τ, ε, β) should
be computed. However, since the likelihood is intractable,
the posterior can be approximated via variational inference.

Remarks: One of the most remarkable advantages of the
proposed method is that it automatically weights the impacts
of two kinds of information and leans to the more discrimina-
tive one. For example, assume there exists an attributed net-
work. The community structure in that network is more dis-
tinguishable than the topic semantics in that network, i.e., the
community assignment of each node is more unequivocal (the
entropy of each si is low); while the topic assignment of each
node is less unequivocal (the entropy of each ri is very high).



Since both si = softmax(V ai) and ri = softmax(Uai)
are derived from the projections of ai to the network struc-
ture subspaces S and the content semantic subspace C re-
spectively, the correlation between ai and S is high, while
the correlation between ai and C is low, i.e., the model leans
to the topological information.

3 Variational Inference
In this section, we solve the proposed formulation by adopt-
ing the variational EM algorithm. By grouping all the vari-
ables into the observed variables as J = {Y,W} and the
latent variables as H = {A,F,G,U, V,X,Z,Φ}, the log
marginal probability can be decomposed as

lnP (J) = L(q(H)) + KL(q(H)||P (H|J)),

L(q(H)) =

∫
q(H) ln

{P (H,J)

q(H)

}
dH, (1)

KL(q(H)||P (H|J)) = −
∫
q(H) ln

{P (H|J)

q(H)

}
dH.

Maximizing the lower bound L(q(H)) w.r.t. q(H) is equiv-
alent to minimizing the KL divergence between q(H) and
P (H|J). Therefore, the posterior P (H|J) can be approxi-
mated by q(H). Here, q(H) is restricted to mean-field family
of variational distributions

q(H) = q(A,F,G,U, V,X,Z,Φ)

=
∏
k

q(vk)
∏
t

q(ut)q(φt)
∏
d

q(ad)q(fd)q(gd)∏
d

∏
n

q(zdn)
∏
i

∏
i<j

q(xi→j)q(xi←j),

where the factors have the following parametric forms,

q(ut) = N (ut|µt,Σ(u)
t ), q(vk) = N (vk|νk,Σ(v)

k ),

q(ad) = N (ad|γd,Σ(a)
d ), q(fd) = N (fd|ζd,Σ(f)

d ),

q(gd) = N (gd|ψd,Σ(g)
d ), q(zdn) = Mult(zdn|κdn),

q(φt) = Dir(φt|λt), q(xi→j) = Mult(xi→j |χi→j),
q(xi←j) = Mult(xi←j |χi←j).

For simplicity, the covariance matrices for q(fd) and q(gd)
are both assumed to be diagonal, i.e.,

Σ
(f)
d = diag(σ

(f)
d1 , ..., σ

(f)
dT ), Σ

(g)
d = diag(σ

(g)
d1 , ..., σ

(g)
dK).

Then, the objective function can be obtained as

L(q(H)) = L(q(A,F,G,U, V,X,Z,Φ))

=
∑
k

Eq
[

log
P (vk)

q(vk)

]
+
∑
t

Eq
[

log
P (ut)P (φt)

q(ut)q(φt)

]
+
∑
d

Eq
[

log
P (ad)P (gd)P (fd)

q(ad)q(gd)q(fd)

]
+
∑
d

∑
n

Eq
[

log
P (zdn)P (wdn)

q(zdn)

]
+
∑
i

∑
i<j

Eq
[

log
P (xi→j)P (xi←j)P (yij)

q(xi→j)q(xi←j)

]
.

L(q(H)) is iteratively minimized by varying each q(.) and
fixing the others. For each topic t, we update q(ut) =

N (ut|µt,Σ(u)
t ) by minimizing

L(q(ut)) = Eq[logP (ut|α)] +
∑
d

Eq[logP (fd|ad, U, ε)]

− Eq[log q(ut)].

By rearranging the items which do not contain ut, we obtain

ln q∗(ut) = E−ut [logP (ut|α)] +
∑
d

E−ut [logP (fd|ad)],

where
E−ut [log{(2π)−

M
2 α

M
2 exp(−α2 u

′
tut)}] ∝ −α2 u

′
tut,

E−ut [log{(2π)−
M
2 ε

M
2 exp(− ε2 (fd − Uad)′(fd − Uad))}]

∝ − ε2u
′
t

[∑
d(Σ

(a)
d + γdγ

′
d)
]
ut + ε

∑
d ζdtγ

′
dut.

Then, we can conclude that q∗(ut) is proportional to

exp{−1

2
u′t[αI + ε

∑
d
(Σ

(a)
d + γdγ

′
d)]u

′
t +
∑

d
ζdtγ

′
dut}

Thus, q∗(ut) satisfies our assumption that q(ut) =

N (ut|µt,Σ(u)
t ) where

Σ(u) = Σ
(u)
t =

[
αI + ε

∑
d
(Σ

(a)
d + γdγ

′
d)
]−1

,

µt = εΣ(u)
∑

d
ζdtγd, (2)

where Σ
(u)
t is independent with t and all topics share the same

covraiance matrix Σ(u). Similarly, q∗(vk) meets our assump-
tion that q(vk) = N (vk|νk,Σ(v)

k ) where

Σ(v) = Σ
(v)
k =

[
ηI + τ

∑
d
(Σ

(a)
d + γdγ

′
d)
]−1

,

νk = τΣ(v)
∑

d
ψdkγd. (3)

Similarly, q(ad) = N (ad|γd,Σ(a)), where Σ(a) and γd are[
ρI + τ

∑
k

(Σ(v) + νkν
′
k) + ε

∑
t

(Σ(u) + µtµ
′
t)
]−1

,

Σ(a)
(
τ
∑

k
ψdkνk + ε

∑
t
ζdtµt

)
. (4)

After approximate distributions for three embeddings, q(ad),
q(ut) and q(vk) are obtained. Then we optimize L(q(H))
according to the latent variables φt, zdn and fd in the topic
model branch. Similar to LDA, we can obtain

q∗(φt) ∝
∏

l
φ
β−1+

∑
d,n 1(wdn=l)1(zdn=t)

tl ,

which satisfies the assumption q(φt) = Dir(φt|λt) where

λtl = β +
∑

d,n
1(wdn = l)1(zdn = t). (5)

The approximate distribution q(zdn = t) is proportional to
exp

{
E−zdn [logP (zdn = t)] + E−zdn [logP (wdn)]

}
∝ exp

{
E−zdn [log softt(fd) + log

∏
l
φ
1(wdn=l)
tl ]

}
∝ exp

{
ζdt +

∑
l

1(wdn = l)
(

Ψ(λtl)−Ψ(
∑
l′

λtl′)
)}
,

(6)



where Ψ(.) is the diagamma function, i.e., the first derivative
of the log Gamma function. The last latent variable in the
topic model branch to be approximated is fd. By isolating
the terms containing fd, the objective function is

L(q(fd)) =
∑

n
Eq[logP (zdn|fd)]

+Eq[logP (fd|ad, U, ε)]− Eq[log q(fd)], (7)

Eq[logP (fd|ad, U)] = −ε
2

∑
t
(ζ2dt + σ

(f)2
dt ) + εζ ′dµγd,

Eq[log q(fd)] = −
∑

t
log σ

(f)
dt ,

Eq[logP (zdn|fd)] =
∑

t
1(zdn = k)Eq[log softt(fd)].

Here, µ = [µ1, ...., µT ] ∈ RM×T is the collection of the
means of q(ut) = N (ut|µt,Σ(u)

t ). Due to the normaliza-
tion term in the softmax function, Eq[logP (zdn|fd) does not
have a close-form solution. Thus, reparameterization trick
and Monto Carlo sampling [Kingma and Welling, 2013] are
adopted to approximate this expectation. Since we assume
q(fd) = N (fd|ζd, diag(σ

(f)
d )), fd can be reparameterized as

fd = ζd + σ
(f)
d � ε, ε ∼ N (0, I),

where � denotes the element-wise multiplication. Then,
S samples can be obtained from εs ∼ N (0, I) and
Eq[logP (zdn|fd) can be rewritten as

(1/S)
∑

s

∑
t
1(zdn = t)softmax(ζd + σ

(f)
d � εs).

The derivations of the three terms in L(q(fd)) (Eq. (7)) w.r.t.
the variational parameter ζd are

∇ζdEq[logP (fd|ad, U, ε)] = ε(µγd − ζd),
∇ζdEq[log q(fd)] = 0,

∇ζdEq[logP (zdn|fd)]

= (1/S)
∑

s

∑
t
1(zdn = t)

[
et − softmax(fsd )

]
=
∑

t
1(zdn = t)et − (1/S)

∑
s
softmax(fsd ).

Similarly, the derivations of these terms w.r.t. σ(f)
d are

∇
σ
(f)
d

Eq[logP (fd|ad, U, ε)] = −εσ(f)
d ,

∇
σ
(f)
d

Eq[log q(fd)] = −1/σ
(f)
d ,

∇
σ
(f)
d

Eq[logP (zdn|fd)] = 0,

where et is a vector whose elements are all 0 except the tth
element being 1. Then the derivatives of L(q(fd)) (Eq. (7))
w.r.t. the variational parameter ζd and σ(f)

d are

∇
σ
(f)
d

L(q(fd)) = −εσ(f)
d + 1/σ

(f)
d ,

∇ζdL(q(fd)) = ε(µγd − ζd) +
∑

n

∑
t
1(zdn = t)et.

−(Nd/S)
∑

s
softmax(fsd ). (8)

Thus, σ(f)
d =

√
ε and ζd can be updated with Adagrad.

L(q(H)) is optimized w.r.t. the latent variables θk, xi→j ,
xi←j and gd in the stochastic block model branch. Similar to
the derivation of q(fd), the variational parameters of q(gd) =

N (gd|ψd, diag(σ
(g)
d )) can be updated as follows. σ(g)

d =
√
τ ,

and ψd is updated with Adagrad according to

∇ψd
L(q(gd)) = τ(νγd − ψd) +

∑
j

∑
k
1(xd→j = k)ek

−(D/S)
∑

s
softmax(gsd), (9)

where ν = [ν1, ...., νK ] ∈ RM×K is the collection of the
means of q(vk) = N (vk|νk,Σ(v)

k ) and gd = ψd + σ
(g)
d �

δ, δ ∼ N (0, I).
Next, we optimize L(q(H)) w.r.t. q(xi→j) and obtain

χki→j = q(xi→j = k)

∝ exp
{
E−xi→j

[log softmaxk(gd)]

+
∑

h
E−xi→j [P (xi←j = h) logB

yij
kh (1−Bkh)1−yij ]

}
∝ exp{φik}

∏
h
(B

yij
kh (1−Bkh)1−yij )χ

h
i←j . (10)

Similarly, χhi←j = q(xi←j = h) is proportional to

exp{φjh}
∏

k
(B

yij
kh (1−Bkh)1−yij )χ

k
i→j . (11)

Until then, we have finished the E-step in the variational EM
algorithm, which computes all the approximate distributions
of the latent variables. In the M-step. the hyper-parameters
α, η, ρ, ξ, τ, ε, β are fixed and only the model parameter B
is updated by maximizing ELBO according to the updated
variational parameters. By isolating terms containing B and
maximizing L(B), we obtain

Bkh =
(∑

i,j
yijχ

k
i→jχ

h
i←j
)
/
(∑

i,j
χki→jχ

h
i←j
)
. (12)

By performing the E-step (variational parameters update) and
M-step (model parameters update) alternatively, the posterior
distribution can be effectively approximated. At last, γd, µt
and νk are the embeddings of nodes, topics and communities.

Complexity Analysis
The complexity of the proposed variational algorithm is an-
alyzed as follows. In Eq. (2), updating the means of varia-
tional topic embedding {µt}Tt=1 requires O(T (DM + M2))
operations. Updating the covariance of variational embed-
ding Σ(u), which is independent of topic t and only need to
be computed once, requiresO(DM2+M3) operations. Sim-
ilarly, the complexities of Eqs. (3) and (4) are O(K(DM +
M2) +DM2 +M3) and O(D(TM +KM +M2) + (T +
K)M2 + M3), respectively. In Eq (5), only a one-time
traversal over all the words in every node is required, whose
complexity is O(DN) where N is the average number of
words in each node. The computations in Eq. (6) consists
of two parts, computing Φ(.) for each pair of the topic and
word and computing κtdn. Their complexities are O(TL)
and O(DN) respectively, because computing κtdn only de-
mands a single traversal over all the words. The complexities
of Eqs. (8) and (9) areO(D(TM +N)) andO(DKM +R).



Table 2: Datasets.

Dataset D R Nd C

Texas 187 328 1,703 5
Cornell 195 304 1,703 5

Washington (WA) 230 446 1,703 5
Wisconsin (WI) 265 530 1,703 5

Citeseer 3,312 4,732 3,703 6
Cora 2,708 5,429 1,433 7
Wiki 3,363 45,006 4,972 19

Pubmed 19,729 44,338 500 3

Due to the sparsity of network structre [Airoldi et al., 2008],
Eqs. (10) and (11) can be performed with only one traver-
sal over all the edges, and thus their time complexities are
O(R). Similarly, B can be updated via O(R) operations.
In general, the total complexity of the proposed algorithm is
O(M3 +(D+T +K)M2 +D(T +K)M+DN+TL+R)
in each iteration, which is linear with the network scale.

4 Evaluations
4.1 Experimental Setups
Datasets. In the experiments, eight public real networks, as
shown in Table 2, are employed. Four of them, i.e., Texas,
Cornell, Washington and Wisconsin, are the sub-networks of
WebKB network. Each of them is the collection of web-
pages from an American university. Similarly, nodes in Wiki
network are webpages from Wikipedia. Citeseer, Cora and
Pubmed are three citation networks whose nodes and edges
are scientific publications with binary-valued word attributes
and citation relationships, respectively.
Baseline Methods. To demonstrate the superiority of our
proposed method, nine state-of-the-art embedding methods
are employed for comparisons. These methods can be clas-
sified into two categories. The methods in the first category,
such as DeepWalk [Perozzi et al., 2014], node2vec [Grover
and Leskovec, 2016], LINE [Tang et al., 2015], GraRep [Cao
et al., 2015] and M-NMF [Cao et al., 2015], only exploit the
network topology information. The methods in the second
category, such as TADW [Yang et al., 2015], AANE [Huang
et al., 2017a], TriDNR [Pan et al., 2016] and ASNE [Liao
et al., 2017] jointly exploit both the topological and non-
topological information. Each baseline method employs the
default settings in original paper. For fair comparison, the
embedding dimension M is set to 64 for every method.
Parameter Settings. In the experiments, the hyper-
parameters are set to β = 1/T, α = ρ = η = 0.1 and
τ = ε = 1. For the number of communities and topics,
we simply fix T = K = 40, though they are larger than the
true number of groups C and T +K > M , for the following
reasons: 1) We are interested in computing the embedding
instead of directly detecting the communities and topics; 2)
Setting T + K > M reveals the correlations between topo-
logical and non-topological information more obviously.

4.2 Node Classification and Clustering
For node classification, the SVM implemented by Liblinear is
adopted as the classifier. For each network, 10% of the nodes

Table 3: Node classification results (Accuracy).

Methods Cornell Texas WA WI Citeseer Cora Wiki Pubmed

DeepWalk 38.46 48.09 53.92 49.62 48.42 75.52 60.61 78.36
Node2Vec 37.95 50.27 45.62 46.95 52.44 70.31 60.38 81.08

LINE 44.10 63.39 56.22 54.96 40.56 72.25 53.93 74.92
GraRep 53.33 69.40 51.15 60.31 53.61 76.02 63.74 81.37
MNMF 34.87 57.38 58.53 51.15 46.42 68.19 54.06 70.41
TADW 61.03 67.76 64.98 67.56 72.53 81.64 68.50 86.80
AANE 41.54 53.01 61.75 38.93 22.24 70.74 43.04 77.99

TriDNR 34.87 42.08 43.32 41.60 52.91 66.53 57.94 78.40
ASNE 45.64 59.02 55.76 59.92 44.35 71.49 29.87 77.20
Ours 69.33 70.19 77.14 81.21 73.96 83.37 70.73 89.93

Table 4: Node clustering results (NMI).

Methods Cornell Texas WA WI Citeseer Cora Wiki Pubmed

DeepWalk 7.06 6.16 5.66 7.65 10.58 30.21 34.28 26.55
Node2Vec 6.65 4.49 2.94 7.86 12.99 32.10 33.87 25.02

LINE 9.27 23.16 24.95 9.39 5.62 28.95 29.01 7.17
GraRep 8.80 12.43 5.18 8.02 9.61 30.73 33.64 17.76
MNMF 11.63 17.20 22.15 10.10 8.95 18.00 19.23 1.41
TADW 11.13 10.90 11.63 17.52 31.60 39.90 37.92 20.11
AANE 9.55 3.52 13.19 2.86 1.19 17.57 15.49 0.01

TriDNR 7.20 4.32 8.10 6.60 9.59 35.99 32.37 19.28
ASNE 11.11 12.63 17.43 23.94 7.31 33.26 26.59 26.61
Ours 23.28 28.63 31.57 30.02 35.55 43.72 40.61 29.33

are randomly selected for training, while the rest of them is
employed for testing. This process is repeated 10 times, and
the average accuracy are reported in Table 3. The results
indicate that the proposed method gives a 5% performance
improvement (on average) compared to the state-of-the-art
methods, which not only demonstrates the effectiveness and
efficiency of the proposed model, but also shows the success
of correlation exploration and information adaptation.

For node clustering, the k-means algorithm is applied to the
learned embeddings. NMI is adopted to measure the cluster-
ing performance. This process is repeated 10 times for each
network, and the average results are shown in Table 4. The
proposed methods significantly outperform the existing state-
of-the-art methods by preserving the mesoscopic properties
in network structure and node content.

4.3 Correlation Analysis

(a) Wisconsin (b) Washington

Figure 3: The effects of T and K in node classification task.

To reveal the effectiveness of the correlations between the
topological and non-topological information, the dimensions
of the network structure subspace K and content subspace



T vary from 32 to 64 when the dimension of embedding
space is fixed as 64. The results are presented in Figure 3
and demonstrate several observations that: 1) The best results
are achieved when both K and T are between 40 and 48, i.e.,
some (not all) dimensions of the two subspaces are aligned.
2) When K = T = 32, i.e., the two subspaces are inde-
pendent, the performance is poor. 3) When either K or T is
64, i.e., one subspace contains the other one, the performance
also degrades. 4) When K = T = 64, i.e., two subspaces are
perfectly aligned, the performance is extremely poor. These
observations satisfy the proposed assumptions of this paper.

5 Conclusions
Based on the three new assumptions about the embedding
space and its properties, in this paper, nodes, communities
and topics are seamlessly mapped into one embedding space,
and a novel correlated embedding approach is proposed to
better utilize the correlations between the topological and
non-topological information and adaptively weight the im-
pacts of them. Extensive results demonstrate the superiority
of the proposed method compared to the current state-of-the-
art methods.
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