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Abstract—Graph neural network (GNN) can be formulated
as the multiplication of the topology-related matrix (adjacency
or Laplacian matrix) and node attribute matrix, i.e., operation
in node-wise. Unfortunately, this unified formula reveals two
inherent drawbacks. Firstly, the topology and node attribute
are not reciprocal but biased. From employment, the topology
information is repeatedly employed, while the node attribute is
only used once. From parameterization perspective, the node
attribute is parameterized with highly expressive MLPs, while
topology is not. Secondly, the graph topology can not be fully
explored. Only the local pairwise relation is explored, but the
mesoscopic community structure, which is one of the most
prominent characteristics of networks, is ignored. To alleviate
these issues, this paper proposes the Graph Reciprocal Network
(GRN) by treating node attribute and topology reciprocal. Firstly,
it is illustrated that the node can be regarded and utilized as
another kind of attribute. Secondly, a novel node representation
scheme is proposed from the theory of Quadratic Networks,
with a theoretical guarantee of the fine-grained element-wise
product of the representations of the topology and attribute.
Extensive experiments demonstrate the superior performance
and robustness of the proposed GRN.

Index Terms—graph neural networks, node attribute, commu-
nity structure, quadratic networks, parameterization

I. INTRODUCTION

Vanilla neural networks, which focus on regular data on
grid, such as images, speech and video, possess the character-
istic of universal approximation. Deep learning pursues seman-
tic representations by stacking multiple neural networks and
getting great performance breakthroughs [1]. Unfortunately,
they often perform poorly on irregular data, such as manifold
[2] and graph [3]. To overcome this issue, graph neural
network (GNN) is present to tackle representation learning on
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Fig. 1. Two intuitive examples of abstracting node as attribute on homophilic
and heterophilic networks. Orange circles and green triangles stand for nodes
from two classes. The gay boxes in adjacency matrices denote links between
nodes, while green and orange boxes in abstracted attribute vectors represent
attributes corresponding to nodes from different classes. As shown in red
boxes, the attributes abstracted from topology possess high discriminability.

graph by combing graph topology and node attribute [4], [5].
Most GNNs can from either spatial and spectral perspectives.

From spatial perspective, GNNs are designed following the
principle of message passing [6]. Based on the homophily
inductive bias, they often perform smoothing over the neigh-
borhoods and can be formulated as the multiplication of the
adjacency matrix and node attribute matrix. To alleviate the
over-smoothing issue and extend to heterophilic networks,
(initial) residual connection [7], [8] and equivalent multi-scale
topology [9]–[11] with learnable weights are employed [12].

From spectral perspective [13], the node attributes are
regarded as the signals on graph and processed in the spectral
domain. The filter in graph spectral domain is the function
of the eigenvalues of the Laplacian matrix [14] and can be
approximated with polynomial basis functions, such as Cheby-



shev polynomial [13] and Cayley polynomial [15]. Thus, the
filter learning is transferred to the learning of polynomial
coefficients. To avoid the expensive eigenvalue decomposition,
these polynomials on the eigenvalues in spectral domain are
equivalent to those on the Laplacian matrix in spatial domain.
Therefore, they can be formulated as the multiplication of the
polynomials of the Laplacian matrix and the node attribute
matrix with learnable polynomial coefficients.

In summary, existing GNNs, no matter whether designed
from spatial or spectral perspective, can be formulated as the
multiplication of the topology-related matrix and node attribute
matrix, which is the operation at the node-level. Unfortunately,
this unified formula reveals that existing GNNs have two
inherent drawbacks. Firstly, the topology and node attribute are
not reciprocal but biased. On the one hand, the employment of
two kinds of information is biased. The topology information
is repeatedly employed, while the node attribute is only fed
to the first layer. This causes the over-smoothing issue [16].
The initial residual connection, which is the widely-employed
treatment to alleviate over-smoothing issue, is to correct this
bias by feeding node attribute to all layers. On the other hand,
the parameterization of two kinds of information is biased.
The node attribute is parameterized with highly expressive
MLPs, while topology is only parameterized with weighting
coefficients for different scales. Although some attempts tend
to refine the graph structure with an inference model, almost
none of them employ expressive neural networks.

Secondly, the graph topology can not be fully explored.
As revealed in the optimization perspective of GNNs (Section
II-B), only the local pairwise relation is explored in existing
GNNs. Besides, most parameterizations to refine graph struc-
ture also focus on the pairwise relation, such as the attention
mechanism attention in GAT [17]. Unfortunately, the local
pairwise relations are fragile to noise and hard to explore high-
order and long-distance information. Actually, instead of the
microscopic structure, the mesoscopic community structure,
which is one of the most prominent characteristics of networks,
is critical for network mining and embedding.

To alleviate these essential issues, this paper proposes the
Graph Reciprocal Network (GRN) by treating node attribute
and topology reciprocal from the perspectives of both employ-
ment and parameterization. Firstly, it is illustrated that the
node, especially the hub node, can be regarded and utilized
as another kind of attribute as shown in Fig. 1. This meets
the cases in real world. For example, the famous people
you follow on online social networks indicate your interest.
This justifies the employment of MLP for representation
learning on topology. Secondly, a novel node representation
scheme is proposed from the theory of Quadratic Networks,
which possess better universal approximation. This scheme
can be interpreted as the fine-grained element-wise product
of the representations of the topology and attribute. The main
contributions of this paper are summarized as follows:

• We investigate the drawbacks of existing GNNs based
on the multiplication of topology and attribute matrices,

which perform a node-wise operation and cause over-
smoothing.

• We propose a novel Graph Reciprocal Network (GRN)
by abstracting nodes as attributes and assembling the
network with the theory of Quadratic Networks.

• We conduct experiments to demonstrate the superior
performance and robustness of the proposed GRN.

II. PRELIMINARIES

A. Notations

Let G = (V, E) denote a graph with node set V =
{v1, v2, · · · , vN} and edge set E , where N is the number of
nodes. The topology of graph G can be represented by its
adjacency matrix A = [aij ] ∈ {0, 1}N×N , where aij = 1 if
and only if there exists an edge eij = (vi, vj) between nodes
vi and vj . The degree matrix D is a diagonal matrix with
diagonal element di =

∑N
i=1 aij as the degree of node vi.

N (vi) = {vj |(vi, vj) ∈ E} stands for the neighbourhoods of
node vi. X ∈ RN×F and H ∈ RN×F ′

denote the collections
of node attributes and representations with the ith rows, i.e.,
xi ∈ RF and hi ∈ RF ′

, corresponding to node vi, where F
and F ′ stand for the dimensions of attribute and representation.

B. Optimization Perspective of GNNs

Recent attempts tend to reveal the essence of graph con-
volutional networks. Among them, some works interpret and
unify graph convolutional networks from the perspective of
numeral optimization [18]–[20]. Specifically, they show that
the graph convolution with residual connection is to minimize
the following objective function via gradient descent

C = ||XW −H||2F + λtr
(
HT L̃H

)
(1)

=

N∑
i=1

||xiW − hi||22 +
λ

2

N∑
i=1

∑
j∈N(i)

ãij ||hi − hj ||22,

The first term stands for the distance between the node
embeddings hi’s and attributes xi’s, while the second term
which focuses on local pairwise relation stands for the distance
between the representations of two connected nodes hi and
hj . Hence GNNs can be divided into two categories to model
this pairwise relation. One treats topology information as noise
free and smooth two nodes if they are connected, i.e., GCN
[21] and SGC [22]. The other refine the graph structure to
weaken the harmful noise. For example, GAT [17] models
pairwise relation via normalized nodes feature similarity ẽij =

softmax(eij), eij = LeakyReLU(bt[Wh
(t−1)
i ||Wh

(t−1)
j ]),

where bt is learnable parameters. However, these trapped
in local pairwise relations methods are fragile to noise, i.e.,
topology and feature noises, and make the high-order topology
information underutilized.

III. METHODOLOGY

A. Node as Attribute

Representation learning, e.g., deep learning, tends to embed
i.i.d data, such as 2D images and 3D videos, in vector form



TABLE I
STATISTICS OF SMALL-SCALE NETWORKS. HR MEANS HOMPHILY RATE.

Dataset Nodes Edges Features Classes HR

Cora 2,708 5,429 1,433 7 0.83
Citeseer 3,327 4,732 3,703 6 0.71
Pubmed 19,717 44,338 500 3 0.79
Chameleon 2,277 36,101 2,325 5 0.25
Squirrel 5,201 217,073 2,089 5 0.22
Actor 7,600 33,544 931 5 0.24
Texas 183 309 1,703 5 0.06
Cornell 183 295 1,703 5 0.11

based on the fact that semantic information contained in the
data itself is represented. On the contrary, the topological
semantic information does NOT contain in node itself in the
graph but is determined by other nodes it links to. Therefore,
the algorithms for network embedding, such as DeepWalk [23]
and node2vec [24], which tend to seek node representation,
are very different from those for i.i.d. data. It causes two
challenges. Firstly, it is difficult to employ existing neural
networks for semi-supervised network embedding. Secondly,
the topology component in GNNs can not be parameterized
via existing neural networks.

However, nodes, especially hub ones, can actually be treated
as another kind of attribute, which possesses high discrim-
inability. Firstly, it intuitively meets the cases in the real world.
In the online social network, the famous people you follow,
e.g., Lionel Messi, indicate your interest, e.g., football. In the
citation network, the seminal papers cited by a paper, e.g., the
paper on DeepWalk or node2vec, shows its category, i.e., data
mining/network embedding. Secondly, two representative ex-
amples of homophilic and heterophilic networks are provided
in Fig. 1. A novel kind of attribute is abstracted from the
topology (adjacency matrix). As shown in the red boxes, the
abstracted attribute possesses high discriminability no matter
whether the graphs are homophilic or heterophilic. Note that
this discriminability is independent of the order of the nodes.

As long as nodes can be employed as another kind of
attribute, existing neural networks can be applied to explore
and model the topology. Similar to original attribute HX =
XWX where WX ∈ RF×F ′

denotes the neural network for
original attribute, MLP is employed to attributes abstracted
from topology as HA = AWA, where WA ∈ RN×F ′

denotes
the neural network for abstracted attributes. Therefore, the
node representation in one layer can be formulated as follows:

H = [A||X]

[
WA

WX

]
= HA +HX = AWA +XWX . (2)

Note that the final node representation is the summarization
of those from topology and node attributes. Thus the topology
and node attributes in Eq. (2) are reciprocal without bias from
the perspectives of employment and parameterization. Thus,
Eq. (2) can be regarded as the graph reciprocal operation.

B. Graph Reciprocal Networks
Previous section presents the graph reciprocal operation, i.e.,

one layer graph reciprocal network. This section tends to as-

TABLE II
STATISTICS OF LARGE-SCALE NETWORKS. HR MEANS HOMPHILY RATE.

Dataset Nodes Edges Features Classes HR

Penn94 41,554 1,362,229 5 2 0.47
pokec 1,632,803 30,622,564 65 2 0.44
arXiv-year 169,343 1,166,243 128 5 0.22
snap-patents 2,923,922 13,975,788 269 5 0.07
genius 421,961 984,976 12 2 0.61
twitch-gammers 168,114 6,797,557 7 2 0.54

semble multiple graph reciprocal operations to form the Graph
Reciprocal Networks (GRN). Unfortunately, the assembly is
not trivial to simultaneously keep the reciprocal characteristic
and high expressive ability. Firstly, although it is natural to
respectively embed topology and node attributes with two
deep networks, the expressive ability is low since topology
and node attributes are not deeply integrated. Secondly, the
reciprocal characteristic is broken if GRN is constructed
following existing GNNs, i.e., treating the node representation
from previous layers as the node attribute in the next layer.

To simultaneously keep the reciprocal characteristic and
high expressive ability, Quadratic Network is employed to con-
struct the deep Graph Reciprocal Networks. Recent attempts
demonstrate that Quadratic Networks possess better universal
approximation compared to vanilla neural networks and have
been successfully applied to many fields [25]–[27]. Different
from vanilla neural network via y = σ

(
(wTx)

)
, Quadratic

Network embeds the vector-form input x as

y = σ
(
(wT

1 x)⊙ (wT
2 x)

)
,

where w1 and w2 are two different weight vectors to be
learned, σ() stand for the nonlinear mapping, and ⊙ denotes
the element-wise product. Following this scheme, the GRN
can be iteratively constructed as

H(t) = σ
(
H(t−1) ⊙

(
AW

(t)
A +XW

(t)
X

))
, (3)

H(0) = σ
(
AW

(0)
A +XW

(0)
X

)
. (4)

where W
(t)
A and W

(t)
X are parameters for tth layer. It is

obvious that the element-wise product ⊙ can preserve the
reciprocal characteristic, thus the reciprocal characteristic of
final representation can be iteratively guaranteed.

Expressive Ability of GRN: The expressive ability of
GNNs is often illustrated by analyzing the interaction between
topology and node attribute as the model depth increases. For
simplicity, by removing the nonlinear mapping, the formula
of the first layer of GRN is analyzed, i.e.

H =
(
HA +HX

)
⊙

(
HA +HX

)
= HA ⊙HA +HX ⊙HX + 2HA ⊙HX

where HA ⊙HA and HX ⊙HX are the Quadratic Network
for topology and node attribute, respectively. The third term
on the right-hand side, i.e.

HA ⊙HX = AWA ⊙XWX (5)



TABLE III
CLASSIFICATION ACCURACY OF LARGE-SCALE NETWORKS.(BOLD INDICATES THE BEST, UNDERLINED INDICATES THE SECOND BEST). NOTE THAT THE

EVALUATION METRIC FOR GENIUS IS ROC-AUC AS IN [28]. OOM DENOTES THE RUN-OUT-OF MEMORY ERROR.

Methods Penn94 pokec arXiv-year snap-patents genius twitch-gamers

MLP 73.61±0.40 62.37±0.02 36.70±0.21 31.34±0.05 86.68±0.09 60.92±0.07
GCN 82.47±0.27 75.45±0.17 46.02±0.26 45.65±0.04 87.42±0.37 62.18±0.26
GAT 81.53±0.55 71.77±6.18 46.05±0.51 45.37±0.44 55.80±0.87 59.89±4.12
SGC 83.02±0.03 78.82±0.22 47.02±0.82 45.76±0.38 88.32±0.62 63.05±1.12

GraphSAGE 82.83±0.34 79.07±0.57 48.38±1.16 46.63±0.22 87.16±0.83 61.30±2.97

GCNII 82.92±0.59 78.94±0.11 47.21±0.28 37.88±0.69 90.24±0.09 63.39±0.61
APPNP 74.33±0.38 62.58±0.08 38.15±0.26 32.19±0.07 85.36±0.62 60.97±0.10
H2GCN OOM OOM 49.09±0.10 OOM OOM OOM
JKNet 79.38±0.54 77.23±0.19 48.02±1.29 44.84±0.28 87.91±0.39 62.33±2.14

FAGCN 83.41±0.72 OOM 40.63±0.40 OOM 88.18±0.67 63.29±0.41
GPRGNN 81.38±0.16 78.83±0.05 45.07±0.21 40.19±0.03 90.05±0.31 61.89±0.29
GloGNN 85.74±0.42 83.05±0.07 54.79±0.25 62.03±0.21 90.91±0.13 66.34±0.29
LINKX 84.71±0.52 82.04±0.07 56.00±1.34 61.95±0.12 90.77±0.27 66.06±0.19

GRN 86.60±0.34 83.33±0.20 57.37±1.14 62.12±0.27 90.85±0.07 67.06±0.21

performs the interaction between topology and node attribute.
Note that the interaction in Eq. (5), which performs element-
wise product, is very different from existing matrix multipli-
cation based GNNs from both spectral domains and spatial
domains. This kind of interaction essentially balances the
topology and node attribute in element-wise instead of node-
wise propagation in existing GNNs.

IV. EVALUATIONS

A. Datasets

We conduct the experiments for node classification on 14
benchmark datasets, which include 6 large-scale datasets and
9 small-scale datasets. Statistics of datasets are shown in I, II.

Citation networks: Cora, Citeseer, and Pubmed, which
are widely used to evaluate GNNs, are the standard citation
network benchmark datasets [29], [30]. arXiv-year is a directed
subgraph of ogbn-arXiv. WebKB webpage networks: Cornell
and Texas are the webpage networks that are captured from
the computer science departments of these universities, respec-
tively. Co-occurrence network: Actor network contains the
co-occurrences of actors in films, which are extracted from the
heterogeneous information networks. Wikipedia networks:
Chameleon and Squirrel are the webpages extracted from
different topics in Wikipedia [31]. Social networks: Penn94 is
a subgraph extracted from Facebook whose nodes are students.
Pokec is a friendship network from a Slovak online social
network. genius is a subnetwork extracted from genius.com,
which is a website for crowdsourced annotations of song
lyrics. twitch-gamers is a subgraph from Twitch’s platform.

B. Baselines

To verify the superiority of the proposed GRN, 10 baseline
methods are employed for performance comparison. These
methods are divided into two categories. The first category
consists of classical methods for graph data, such as mul-
tiple layer perception (MLP), Graph Convolutional Network

(GCN) [21], Graph Attention Network (GAT) [17], Simple
Graph Convolutional (SGC) [22], Inductive Representation
Learning on Large Graphs (GraphSAGE) [32]. The methods
in the second category possess some attractive characteristics,
including high accuracy on homophilic networks, heterophilic
networks and massive graphs. This category contains GCN
with Initial residual and Identity mapping (GCNII) [33],
Personalized Propagation of Neural Predictions (APPNP) [7],
Representation Learning on Graphs with Jumping Knowledge
Networks (JKNet) [10], Beyond Homophily in Graph Neural
Networks (H2GCN) [34], Beyond Low-frequency Information
in Graph Convolutional Networks (FAGCN) [35], Generalized
PageRank GNN (GPRGNN) [12], Finding Global Homophily
in GNN (GloGNN) [36], Large Scale Learning on Non-
Homophilous Graphs (LINKX) [28]. We collect the results
from their original papers or employ the authors’ implemen-
tation for specific datasets they are absent.

C. Parameter Setting

For the dataset in Table.I, we randomly split nodes for
each class into 60%, 20% and 20% for training, validation
and test , as suggested in [37]. For the dataset in Table.II,
we randomly split nodes for each class into 50%, 25% and
25% for training, validation and test, as suggested in [28].
All results are obtained by computing over 10 random splits
for fairness. The hyperparameters, including weight decay,
dropout, and learning rate, are tuned on the validation set.

D. Results Analysis

The performance of the node classification task for each
dataset across different methods is shown in Table III, IV.
Hence experimental analysis is carried out from two aspects
respectively.

1) Results on large-scale networks: Large-scale networks
are universal in industrial applications yet hard to solve.
Surprisingly, our proposed GRN achieves the new SOTA on



TABLE IV
CLASSIFICATION ACCURACY OF SMALL-SCALE NETWORKS.(BOLD INDICATES THE BEST, UNDERLINED INDICATES THE SECOND BEST).

Methods Cora Citeseer Pubmed Chameleon Squirrel Actor Texas Cornell

MLP 74.82±2.22 70.94±0.39 63.76±0.78 46.21±2.99 28.77±1.56 36.53±0.70 81.89±4.78 81.08±6.37
GCN 85.77±0.25 73.68±0.31 88.13±0.28 35.99±2.58 34.02±1.34 26.97±1.49 55.68±9.16 55.14±7.57
GAT 86.37±0.30 74.32±0.27 87.62±0.26 60.26±2.50 40.72±1.55 27.44±0.89 58.38±4.45 58.92±3.32
SGC 86.20±0.12 76.68±1.70 88.50±0.22 52.12±0.32 36.91±0.14 35.31±0.21 66.83±6.37 65.72±0.67

GraphSAGE 87.77±1.04 71.09±1.30 88.42±0.50 58.73±1.68 41.61±0.74 34.23±0.99 82.43±6.14 75.95±5.01

GCNII 88.65±2.78 77.08±1.21 90.02±1.56 60.61±2.00 37.85±2.76 36.18±0.61 69.46±1.86 74.86±2.73
APPNP 87.87±0.85 76.53±1.33 89.40±0.61 54.30±0.34 33.29±1.72 31.71±0.70 82.43±1.72 82.16±3.83
H2GCN 86.92±1.37 76.88±1.77 89.40±0.34 59.39±1.98 37.90±2.02 35.62±1.30 84.86±4.32 82.16±3.27
JKNet 88.93±1.35 74.37±1.53 87.68±0.30 62.31±2.76 44.24±2.11 36.47±0.51 65.35±4.86 56.49±3.22

FAGCN 87.77±1.69 74.66±2.27 88.60±0.64 61.12±1.95 40.88±2.02 36.81±0.26 61.82±8.71 67.95±10.02
GPRGNN 88.49±1.37 77.99±1.64 89.18±0.61 67.48±1.98 49.93±1.34 36.58±1.04 77.84±2.78 79.73±3.91
GloGNN 88.33±1.09 77.41±1.65 89.42±0.39 71.21±1.84 57.88±1.76 37.70±1.40 84.05±4.90 85.05±5.10
LINKX 84.64±1.13 73.19±0.99 87.86±0.77 68.42±1.38 61.81±1.80 36.10±1.55 74.60±8.37 77.84±5.81

GRN 86.28±1.15 76.35±1.81 89.82±0.37 78.34±0.33 75.14±0.78 38.07±0.52 85.18±3.49 84.29±5.72

5 networks in all 6. On the one hand, GRN significantly
outperforms all basic GNNs. Except for the noticeable per-
formance improvements compared to GCN and GAT, GRN
makes remarkable progress compared to methods designed
explicitly for homophilic and heterophilic networks, such as
GCNII and GPRGNN. Some methods unsuitable for massive
graphs occur run-out-of-memory errors, like H2GCN. On the
other hand, GRN outperforms the methods designed for large-
scale networks in most cases. For example, GRN is the runner-
up, except for the genius. Fortunately, the difference between
GloGNN and GRN on genius is very tiny. This observation
demonstrates the superiority of the proposed GRN on the
large-scale node classification task.

These improvements can be attributed to the novelty
combination of topology and attribute information through
Hadamard product. Traditional combination strategies such as
concatenation and summation always introduce inescapable
noise. On the contrary, GRN employs the topology information
to reweight the attribute information, thus always keeping the
valuable information and blocking the noises. Besides, run-
out-of-memory error always stems from redundancy propa-
gation which hinders the application of GNNs on massive
graphs. Thanks to the simple yet effective Hadamard product,
our proposed GRN is naturally efficient. In summary, the
tradeoff between scalability and accuracy is well-balanced.
These results inspire a broader industrial application for GRN.

2) Results on small-scale networks: The small real-world
datasets can be divided into homophily and heterophily, re-
spectively. On homophilic datasets, i.e., Cora, Citeseer, and
Pubmed, GRN achieves comparable performances, which are
slightly lower than SOTA, and the differences are tiny. It
demonstrates the effectiveness of our proposed GRN on
homophilic networks. These results correspond to peoples’
perception that nodes belonging to the same class in ho-
mophilic networks always have similar topology structures,
which benefits feature learning. On heterophilic datasets, GRN
is compared with H2GCN and GPRGNN, which are all the

TABLE V
MODEL EFFICIENCY: AVERAGE TOTAL RUNNING TIME (S)

Model GPRGNN GloGNN LINKX GRN

Penn94 10.25 36.39 12.94 12.15
pokec 58.15 132.52 73.50 64.84
arXiv-year 8.35 5.36 3.97 3.20
snap-patents 79.11 86.17 15.39 11.06
genius 6.81 7.19 6.29 6.18
twitch-gamers 21.81 24.39 7.15 6.69

GNNs designed for handling networks with heterophily. What
is fascinating is that GRN significantly outperforms most
of these baseline models. Specifically, GRN achieves new
SOTA performance on Chameleon and Squirrel. These results
redemonstrate the well-balanced tradeoff of GRN between
scalability and accuracy. Since poor predictability attributes
are widespread in networks with heterophily, GRN benefits a
lot from the topology reweighted feature learning.

E. Efficiency Study

In this section, we study GRN’s efficiency. We compare
the average training time for effective methods on large-
scale datasets for fairness. We use the same training set and
hyperparameters for all these methods on each dataset and run
the experiments for 500 epochs. All experiments are performed
on the same device.

Table V clearly shows that GloGNN takes the most training
time in most cases since its time-consuming topology de-
noising process and convolution operation. Compared with
GloGNN, GPRGNN is more efficient since it performs con-
volution directly from its adjacency neighbors and has micro-
scopic trainable parameters. However, GPRGNN is not good
at handling large-scale networks as examined before II. On
the whole, LINKX has balanced well between efficiency and
effectiveness. However, our proposed GRN performs better
than all those methods. GRN is simple enough and does not



employ convolution operation. These results show that GRN
is highly efficient for tackling large-scale networks.

V. CONCLUSIONS

This paper investigates the multiplication of topology-
related matrix and node attributes, which unifies graph neural
networks from spatial and spectral domains. It observes that
this formula does neither treat topology and attribute reciprocal
from both employment and parameterization perspectives nor
fully explore and capture topology structure. These drawbacks
cause the over-smoothing issue and the performance reduction
on networks beyond homophily. This paper proposes the
Graph Reciprocal Network (GRN) by abstracting attributes
from nodes and adopting the theory of Quadratic Networks to
assemble the overall network. Theoretical analyses reveal two
attractive characteristics of GRN. GRN performs fine-grained
element-wise product of the representations of the topology
and attribute instead of node-wise propagation in existing
GNNs. Experiments demonstrate the superior performance and
robustness of GRN.
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