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a b s t r a c t 
Real space teems with potential feature patterns with instances that frequently appear in the same lo- 
cations. As a member of the data-mining family, co-location can effectively find such feature patterns 
in space. However, given the constant expansion of data, efficiency and storage problems become diffi- 
cult issues to address. Here, we propose a maximal-framework algorithm based on two improved strate- 
gies. First, we adopt a degeneracy-based maximal clique mining method to yield candidate maximal co- 
locations to achieve high-speed performance. Motivated by graph theory with parameterized complex- 
ity, we regard the prevalent size-2 co-locations as a sparse undirected graph and subsequently find all 
maximal cliques in this graph. Second, we introduce a hierarchical verification approach to construct a 
condensed instance tree for storing large instance cliques. This strategy further reduces computing and 
storage complexities. We use both synthetic and real facility data to compare the computational time and 
storage requirements of our algorithm with those of two other competitive maximal algorithms: “order- 
clique-based” and “MAXColoc”. The results show that our algorithm is both more efficient and requires 
less storage space than the other two algorithms. 

© 2016 Elsevier Ltd. All rights reserved. 
1. Introduction 

Some types of features in real-world data inevitably have spa- 
tial neighbor relationships. Instances of these feature types are 
frequently located in the same locations, thereby creating a pat- 
tern that can be used to discover interesting phenomena in the 
natural or social world and facilitate decision-making by humans. 
For example, fire emergencies demonstrably occur more frequently 
around schools and residential buildings than around other urban 
structures. Using this pattern information, urban planners can lo- 
cate additional fire-fighting equipment around such locations to 
prevent extensive damage ( Fan & Luo, 2013 ). As a member of the 
data mining family, co-location represents an essential tool for 
finding these types of spatial patterns, and it is extensively used 
in many application domains, including but not limited to species 
distribution analysis ( Shekhar & Huang, 2001; Sierra & Stephens, 
2012 ), mobile services ( Yoo, Shekhar, Kim, & Celik, 2006 ), public 
safety ( Leibovici, Claramunt, Le Guyader, & Brosset, 2014 ), urban fa- 
cility distribution analysis ( Yu, 2016 ), and environmental manage- 
ment ( Akbari, Samadzadegan, & Weibel, 2015 ). 
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1.1. Context 
Co-location was originally proposed by Shekhar and Huang 

(2001) as a way to discover the rules of ecological species dis- 
tributions. This approach was followed by an Apriori -like method 
called the “join-based algorithm”, which created a precedent for 
pattern-mining technology that was later used for spatial appli- 
cations. However, the efficiency and storage requirements of this 
method became unfavorable as the amount of data increased. Ef- 
ficiency and storage are always core issues in co-location. In this 
section, we focus mainly on related works that address these two 
issues. 

Some studies indicate that the join-based method becomes 
inefficient with increasing data size because it requires massive 
amounts of instance-connecting operations. Thus, to reduce the 
number of connections, several scholars have presented faster 
algorithms, some of which provide satisfactory results. For ex- 
ample, the partial-join approach proposed by Yoo and Shekhar 
(2004) build a set of disjoint cliques in spatial instances to iden- 
tify neighbor relationships. However, this approach is affected 
by the distribution of the data, or more precisely, the number 
of cut neighbor relations. Arunasalam, Chawla, Sun, and Munro 
(2004) achieved the mining of complex relationships in a bigger 
dataset. Subsequently, Yoo and Shekhar (2006) also presented an 
improved algorithm called “join-less,” which inputs the neighbor 
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relationships into a compressed star model. However, both of the 
above methods are based on Apriori tactics, making it difficult to 
avoid large connecting processes; therefore, their efficiency im- 
provements are limited when addressing big or dense data. More- 
over, the large amount of storage space required by instance ta- 
bles presents a challenging problem. Recently, some scientists have 
found that maximal clique discovery from graph theory can be 
used to address the co-location issue and have presented inventive 
methods to generate maximal instance cliques ( Al-Naymat, 2013; 
Kim, Kim, & Kim, 2011 ). These methods significantly increase the 
computational speed. However, listing all maximal cliques is inher- 
ently an NP-hard problem, resulting in exponential time consump- 
tion. Although many maximal clique-mining algorithms have been 
explored ( Agrawal & Srikant, 1994; Bron & Kerbosch, 1973; Cazals 
& Karande, 2008; Johnston, 1976; Makino & Uno, 2004; Tomita, 
Tanaka, & Takahashi, 2006 ), finding all maximal instance cliques 
in a massive spatial dataset remains a difficult problem. Another 
problem concerns the enormous memory requirements faced dur- 
ing the calculations. To mitigate the dilemma between space re- 
quirements and time consumption, algorithms such as the “density 
clustering” ( Huang, Zhang, & Zhang, 2008; Lee, Qu, & Lee, 2012 ) 
and “grid differential” ( Yao, Wang, Chen, & Zou, 2015 ) algorithms 
make approximations for spatial instance locality or connecting 
definitions. However, these methods can lose instance connections 
and miss some significant co-locations. Currently, the prevailing 
co-location algorithms run in parallel ( Yoo & Boulware, 2013; Yoo, 
Boulware, & Kimmey, 2014 ) and exhibit good performance when 
applied to big data. However, these algorithms require distributed 
programming frameworks and are somewhat uneconomical. The 
recommended solution is to reduce the time and storage require- 
ments before modifying the algorithms to run in parallel. 

From the above, it is apparent that alleviating storage redun- 
dancy and improving efficiency for co-location in a stand-alone 
device without losing precision remains a thorny task. To ad- 
dress these problems, a maximal framework was developed and 
demonstrated to be superior ( Wang, Zhou, Lu, & Yip, 2009; Yoo & 
Bow, 2011 ). This framework contains two main steps: (1) candi- 
date maximal co-location acquisition from the size-2 instance ta- 
ble and (2) final maximal co-location acquisition from the candi- 
dates obtained in the first step. The basic concept was first pro- 
posed by Wang et al. (2009) using an FP-growth-like ( Han, Pei, 
& Yin, 20 0 0 ) approach called the “order-clique-based” (OCB) algo- 
rithm ( Wang et al., 2009 ). The OCB algorithm uses a pruning strat- 
egy to return maximal co-locations of which the subsets with car- 
dinal numbers larger than one represent all co-location patterns. 
Specifically, it compresses the neighbor relationships of spatial in- 
stances and prevalent size-2 co-locations into extended prefix-tree 
structures and then uses the order-clique-based approach to con- 
struct long-size candidate maximal co-locations and their instance 
cliques to obtain the final results. Wang et al. (2009) and Boinski 
and Zakrzewicz (2014) verified the efficiency and storage advan- 
tages of this mining method. Subsequently, other researchers used 
this maximal framework and obtained satisfactory results ( Yoo & 
Bow, 2011 ). 
1.2. Challenges 

Among existing maximal methods, we are aware of two defi- 
ciencies that become prominent when datasets are large or dense. 
These deficiencies present opportunities for further improvements 
in two ways: 
• Current methods use time-consuming strategies, such as FP- 

growth-like strategies, which contain a number of expensive 
tree-based operations such as branch chopping and grafting 
during the discovery of long candidates or instance cliques. To 

our knowledge, both of these operations strongly impact the 
execution speed of tree-based algorithms. 

• Current methods usually build a duplicate initial structure, such 
as the prefix-tree in the OCB algorithm, which reserves instance 
pairs or prevalent size-2 co-location patterns for further clique 
acquisition. Building this structure requires extra space during 
execution; however, most of the nodes in this structure are 
eventually removed or reorganized. 

1.3. Contributions 
To address the above two problems, we propose a sparse-graph 

and condensed tree-based maximal co-location algorithm (here- 
after referred to as the SGCT algorithm) to reduce the computa- 
tion time and storage requirements. We mainly use two improved 
strategies: 

First, we induce a fast, maximal-clique mining algorithm applied to 
a sparse undirected graph to find candidate maximal co-locations. This 
strategy makes our method more efficient than most other maximal 
algorithms under the same step and input conditions. We observed 
that the candidate maximal co-locations can be extracted by de- 
tecting all maximal cliques in an undirected graph when the neigh- 
bor relationships of prevalent size-2 co-locations are abstracted as 
edges and when the relevant features are abstracted as vertexes. 
The maximal clique idea is not new in co-location issues; it has 
been used primarily for finding complete instance cliques in an 
entire space. Because the time complexity of maximal clique al- 
gorithms greatly depends on the vertex number, the efficiency im- 
provement is limited in large or dense data despite the addition 
of some spatial optimizations. In real-world data, feature types are 
generally much less common than spatial instances; thus, the max- 
imal clique idea can be better adapted to obtain long-size candi- 
dates than to find instance cliques in an entire space. Furthermore, 
the prevalence threshold constricts the lengths of candidate maxi- 
mal co-locations to a limited ceiling; i.e., the graph extracted from 
prevalent size-2 co-locations tends to be sparse. Therefore, we in- 
troduce a parameter called “degeneracy” to describe the sparse- 
ness of a graph ( Eppstein, Löffler, & Strash, 2010 ). In that case, 
we settle for the exponential time complexity of the traditional 
Bron–Kerbosch maximal clique algorithm ( Bron & Kerbosch, 1973 ) 
by applying parameterized complexity with “pivot” ( Tomita et al., 
2006 ) and “degeneracy” ( Eppstein & Strash, 2011; Eppstein et al., 
2010 ) interferences. This modification can improve the inner-and 
outer-level recursive procedures of the Bron–Kerbosch algorithm 
and reduce the time complexity of obtaining candidate maximal 
co-locations to a near polynomial function with small vertex size 
and low degeneracy parameters. 

Second, we adopt a hierarchical verification approach to construct 
a condensed instance tree that stores instance cliques for each long- 
size candidate maximal co-location. The method substantially reduces 
the execution time and storage requirements for acquiring satisfactory 
long-size instance cliques. An instance clique is a group of type- 
specific instances in which any instance pair has neighbor rele- 
vance and the type collection matches a particular candidate max- 
imal co-location. We abandon current common methods that con- 
struct an initial structure of neighbor instance pairs before the 
pruning stage. Instead, for each maximal co-location, we adopt a 
hierarchical verification approach to directly obtain a tree structure 
containing all instance cliques. This structure is called “condensed 
tree” because the construction process consists primarily of sim- 
ple and basic tree operations such as adding or removing nodes. 
Compared with traditional methods, it omits most of the expen- 
sive tree-based operations such as grafting or chopping branches 
and also reduces the ceiling storage requirements of the algorithm. 
In a sense, this improved method for acquiring instance cliques is 
condensed not only in space but also in time. 
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Table 1 
The important notations used in this article. 

Notation Definition 
F A set of feature types 
S A set of spatial instances 
r Distance threshold 
Min-prev Prevalence threshold 
InsTable2 Size-2 instance table 
E An edge set of neighbor relationships of the prevalent 

size-2 co-locations 
V A vertex set of feature types existing in the prevalent 

size-2 co-locations 
G The size-2 co-location graph extracted from E and V 
N ( v ) A set of neighborhoods of vertexes v 
CP m A set of candidate maximal co-locations 
C m A candidate maximal co-location 
InsC m Ordered instance clique of C m 
CInsTree Condensed instance tree of C m 

To demonstrate the improvements obtained by our algorithm, 
we tested it both with synthetic datasets and real data collected 
in 2014 from facilities in Beijing, China. The results show that the 
SGCT algorithm is more efficient, saves space, and is less sensitive 
to the threshold strategy, data size and density than are other com- 
petitive co-location methods such as the OCB ( Wang et al., 2009 ) 
and MAXColoc ( Yoo & Bow, 2011 ) algorithms. 

The remainder of this paper is organized as follows. Section 2 
presents our mining algorithm using sparse graph theory and the 
condensed tree-based method. The time and storage complexities 
are also analyzed in Section 3 . The performance tests are discussed 
in Section 4 . Section 5 provides a conclusion of our work and sug- 
gests future directions. 
2. Method 

This section presents the details of the SGCT algorithm. Table 1 
lists the important notations used in this article. 

In the following, we present the formalized expression of our 
mining algorithm. We assume a set of feature types F = { f 1 , f 2 ,…, 
f m } and a spatial dataset S = { s 1 , s 2 ,…, s n } endowed with the fa- 
miliar Euclidean distance function. Each instance s i contains in- 
formation about its type and location with X and Y coordinates. 
Specially, the set S f i contains instances of type f i . In addition, two 
constrained parameters, namely, the distance threshold r and the 
prevalence threshold Min-prev , are given as a priori information. 
The task is to discover the prevalent maximal co-locations, which 
concisely represent all prevalent co-location patterns. 
Example 1. In Fig. 1 , we give simulated spatial instances of five 
types ( F = { A,B,C,D,E }) to illustrate how the SGCT algorithm works. 
2.1. Overview 

This section presents a flowchart of the SGCT algorithm. As 
shown in Fig. 2 , this algorithm has four steps in the following flow 
chart: 

Step 1 (size-2 instance table construction): Based on the dis- 
tance threshold r , we construct a two-dimensional hash table, i.e., 
the size-2 instance table InsTable 2 , that stores different-type in- 
stance pairs that have neighbor relationships in space ( Shekhar & 
Huang, 2001; Yoo & Shekhar, 20 04, 20 06 ). These instance pairs are 
indexed by their types, which are regarded as the candidate size-2 
co-locations. 
Example 2. If the distance threshold r is set to 2, we connect in- 
stance pairs whose distances are within r and acquire InsTable 2 . As 
shown in Fig. 3 , The candidate size-2 co-locations { A ,B },{ A ,C }… are 
marked by “∗” in a hash table structure that contains instance pairs 

Fig. 1. The simulated instances of five types. 
indexed by their corresponding types, such as InsTable 2 ( A,B ) on the 
right side of the figure. 

Step 2 (prevalence index calculation for prevalent size-2 co- 
locations): We calculate the prevalence index of each candidate 
size-2 co-location and select those whose prevalence indices are 
not smaller than the pre-determined prevalence threshold Min- 
prev as the prevalent size-2 co-locations ( Shekhar & Huang, 2001 ). 
Example 3. The prevalence threshold Min-prev is set to 0.3. Based 
on Fig. 3 , we calculate the prevalence indices of all candidate size- 
2 co-locations and find that the prevalent size-2 co-locations are 
{ A ,B }, { A ,C }, { A ,D }, { A ,E }, { B,C }, { B,D }, { C,D } and { C,E }. 

Step 3 (candidate maximal co-location generation): We use 
a modified maximal clique algorithm of a sparse graph to find 
all candidate maximal co-locations from the prevalent size-2 co- 
locations. 

Step 4 (pruning process for prevalent maximal co-locations): 
Using a pruning framework ( Wang et al., 2009 ), we obtain the 
final maximal co-locations from the candidates obtained in the 
preceding step. Specifically, for each candidate maximal pattern, 
we acquire its instance cliques (Step 4.1) and calculate its preva- 
lence index (Step 4.2). If the prevalence index is not smaller than 
the prevalence threshold, we reserve the candidate as a real co- 
location pattern ( Shekhar & Huang, 2001 ). Otherwise, we supplant 
it by its subsets. In step 4.1, we adopt a hierarchical verification 
approach to construct a condensed tree of stored instance cliques 
for each long-size candidate. In this way, the instance cliques can 
be easily derived from this structure. 

Of the above four steps, Steps 3 and 4.1 are innovative and are 
described in the upcoming two sections. 
2.2. Generation of candidate maximal co-locations 

To yield the candidate maximal co-locations, we first provide 
the following definitions related to this procedure. 
Definition 1. (size-2 co-location graph). If the neighbor relation- 
ships of the prevalent size-2 co-locations are regarded as edges 
E = { e 1 , ..., e υ} and the feature types appearing in the prevalent 
size-2 colocations are regard as vertexes V = { v 1 , ..., v λ} , where 
υand λ are numbers of edges and vertexes, respectively, then the 
size-2 co-location graph can be modeled as an undirected graph 
G = ( E,V ), which is stored in a list data structure in ascending or- 
der. The set N ( v i ) is the neighborhoods of vertex v i and can be 
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Fig. 2. The flow of the SGCT algorithm. 

Fig. 3. The structure of the size-2 instance table based on the instances in Fig. 1. 
defined as 
N( v i ) = { w | { v i , w } ∈ E} (1) 

Based on the G , the task is to find all maximal cliques, which 
we term “candidate maximal co-locations”. These cliques are de- 
noted by C P m = { C m 1 , ..., C mδ} , where δ is the number of CP m . Each 
item C m is defined below. 
Definition 2. (candidate maximal co-location). The candidate max- 
imal co-location C m is composed of ordered types with two prop- 
erties: each pair of types in C m is connected by an edge, and no 
additional types can be added to C m while preserving its complete 
connectivity. 
Example 4. Using the prevalent size-2 co-locations in Example 3 , 
we give a diagram of the size-2 co-location graph G in Fig. 4 . We 
can infer that { A, B, C, D } is a case of a candidate maximal co- 
location based on the above definitions. 

In the previous paragraph of Section 1 , we stated that the size- 
2 co-location graph can be treated as a sparse graph because of 
the prevalence filtering. Thus, based on the Bron–Kerbosch algo- 
rithm, which is a recursive backtracking process for obtaining all 
maximal cliques from an undirected graph, we introduce a variant 
algorithm mixed with a graph-sparseness consideration and pivot 
selection to improve the efficiency of finding all candidate maxi- 

Fig. 4. The illustration of the size-2 co-location graph G. 

Fig. 5. The degeneracy order of G in Fig. 4. 
mal co-locations. The sparseness of a graph is described by “de- 
generacy” ( Eppstein et al., 2010 ), defined as: 
Definition 3. (degeneracy of a graph). The degeneracy of a graph 
G is the smallest value k such that every nonempty sub-graph of 
G contains a vertex of degree at most k . That is, the size of the 
maximal clique may not exceed k + 1. 
Example 5. We reorder the vertexes of V in Fig. 4 and acquire a 
sequence B → A → C → D → E, from which we see that each ver- 
tex has at most three neighbors to its right (see Fig. 5 ). Thus, the 
vertex of any sub-graph has degree at most 3 and the degeneracy 
of G is 3. We term the above sequence in which each vertex has k 
or fewer neighbors coming later “degeneracy ordering” in the re- 
maining sections. 

Based on degeneracy ordering, we give the pseudocode in 
Algorithm 1 (CMCP) to obtain all candidate maximal co-locations. 

Algorithm 1 comprises inner recursion (lines 7–15) and 
outer recursion (lines 1–6) that return all candidate maximal 
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co-locations that contain all vertices in CP m . In contrast to the 
original Bron–Kerbosch algorithm, Algorithm 1 uses two improved 
strategies: the first is a heuristic strategy called “pivoting” selec- 
tion ( Tomita et al., 2006 ; line 10). More concretely, as to a candi- 
date maximal co-location pattern, it must contain the vertex u or 
its non-neighboring vertexes. Otherwise, u should be added to en- 
large this pattern (lines 12–14). Thus, the algorithm only selects u 
and its non-neighboring vertexes (line 11) to reduce the number of 
inner recursive calls. The second strategy is called the “degeneracy”
strategy. The degeneracy ordering of V is denoted by v ∗1 , v ∗2 , . . . , v ∗λ
(line 2). In each outer recursion (lines 3–5), the number of ver- 
texes waiting for verification will not exceed k . Thus, the number 
of outer recursions can be reduced ( Yao et al., 2015; Yoo & Boul- 
ware, 2013 ). Consequently, the time complexity of the variant al- 
gorithm is limited to O ( k λ3 k /3 ) and is quite satisfactory for graphs 
with small degeneracy values. 

Next, we will prove the correctness of the CMCG algorithm. 
Theorem 1. The CMCG algorithm can find all candidate maximal co- 
locations. 
Proof. Based on Tomita et al. (2006) , the Bron–Kerbosch algorithm 
using pivoting selection can obtain all maximal cliques contain- 
ing all vertices in K , some vertices in M , and no vertices in T , 
without duplication. The degeneracy strategy verifies each vertex 
of G in degeneracy ordering. If v ∗

i is an earlier vertex of this or- 
der and a member of a maximal clique C m , C m will be put into 
CP m after finishing the inner recursion for v ∗

i . When the outer 
recursion traverses to other latter vertexes of C m , v ∗i will be in 
T . It can be concluded that C m will not be put into CP m again. 
Thus, the CMCG algorithm can find all maximal cliques from G 
and will not be trapped into an endless loop. Moreover, Wang 
et al. (2009) has proved that the candidate maximal co-locations, 
i.e., maximal cliques, contain all prevalent maximal co-locations, so 
the CMCG algorithm is correct. !

2.3. Condensed instance tree construction 
In this section, we describe a new method for obtaining in- 

stance cliques of C m . This method greatly reduces the time and 
storage requirements of current time-consuming strategies such as 
the FP-growth-like method used in the OCB algorithm. First, we 
provide the definitions involved this procedure. 
Definition 4. (ordered instance clique of C m ). Given a candidate 
maximal co-location C m , its ordered instance clique InsC m is a 
group of spatial instances that satisfy the following conditions. 
• The size of InsC m is equal to that of C m , and the type of each 

instance in InsC m is the same as that of C m in the corresponding 
order. 

• Instances of any instance pair in InsC m are spatially adjacent 
and can be found in the size-2 instance table InsTable 2 . 

Example 6. In Fig. 3 , given a candidate maximal co-location 
{ A,B,C,D }, { A 3 , B 1 , C 2 , D 3 } is a corresponding ordered instance clique 
based on Definition 4. 
Definition 5. (condensed instance tree of C m ). Given a candidate 
maximal co-location C m , the condensed instance tree CInsTree is 
a compressed construction that compresses all ordered instance 
cliques of C m . 

The entire pseudocode for generating a condensed instance tree 
from the candidate co-location pattern C m and the size-2 instance 
table InsTable 2 is shown in Algorithm 2 . 

Algorithm 2 is a finite iterative process. A cursor i initialized 
to 1 is used for recording the iteration number. First, we initialize 
the parameter CInsTree and create a root “CIT” for it. The root is 

initialized to level 0 (line 1). Then, the tree constructing process, 
which is divided into two steps, begins as follows: When i is equal 
to 1, the process implements the first step; otherwise, it executes 
the second step. The iteration repeats until there is no node in the 
current level i or until i is one less than the size of C m . 

Step 1 (lines 3–11): For each instance pair of the first two fea- 
ture types of C m , we determine whether the first element of 
the current instance pair exists in the first level of CInsTree 
(denoted by CInsTree 1 ). If so, we add the second element as a 
child node to the corresponding node at level 1; otherwise, 
we create a sub-tree made up of the current instance pair 
and graft it to the root of CInsTree . When that occurs, the 
CInsTree has two levels. It can be inferred that the instance 
types at each level are the same as the type of C m that share 
the same index at the tree level. 

Step 2 (lines 13–28): For each instance node in level i of CIn- 
sTree , we construct a list EI that contains the instances of 
type C m ( i + 1) by scanning InsTable 2 ( C m ( i ), C m ( i + 1)), where 
C m ( i ) is the i th type of C m . Then, each instance pair grouped 
by the current instance node of CInsTree and any member 
of this list can be found in InsTable 2 ( C m ( i ), C m ( i + 1)). Next, 
for each current member in this list, we determine whether 
the instance pair composed of this member and every an- 
cestor of the current instance node of CInsTree can be found 
in InsTable 2 . If so, we add the current list member as a child 
node to the current instance node. 

The above process highlights two properties of CInsTree as fol- 
lows: 
Property 1. The depth of CInsTree is less than or equal to the size 
of C m . The root is considered level 0 with no appended instance. 
Except for level 0, the types of instances at each single level i are 
the same as C m (i) . 
Property 2. The number of ordered instance cliques of C m is equal 
to the number of nodes at level size(C m ) . If the depth of CInsTree 
is less than size(C m ) , then there is no satisfactory ordered instance 
clique. A final ordered instance clique is actually the group of path 
nodes from level size(C m ) to level 1. Thus, we can easily acquire 
all instance cliques by collecting all these paths for the subsequent 
prevalence filtering. 

To make this process more intelligible, we give an illustration of 
constructing the condensed instance tree for the C m { A,B,C,D } using 
the simulated data in Fig. 1. 
Example 7. As shown in Fig. 6 , (a) corresponds to the Step 1 sub- 
procedure. We build a two-level tree containing instances of type 
A and type B according to InsTable 2 ( A,B ). Fig. 6(b, c) shows cases 
of the Step 2 sub-procedure. In (b), for nodes of type B in level 
2, we search for their neighbor instance partners of type C from 
InsTable 2 ( B,C ) and store them in a list EI = [ C 4 , C 2 , C 1 ]. Then, hier- 
archical verification is performed and two nodes ( C 4 and C 2 ) are 
obtained from the third level. Fig. 6 (c) is a bit more sophisticated 
for performing two-level verification than (b). By collecting path 
nodes from level 1 to level 4, we finally obtain two ordered in- 
stance cliques { A 2 , B 2 , C 4 , D 1 } and { A 3 , B 1 , C 2 , D 3 } in Fig. 6 (d). 
3. Complexity analyses 

In this section, we analyze the time and storage complexities 
of two improved strategies in our algorithm: the processes of can- 
didate maximal co-location generation (CMCG) and condensed in- 
stance tree construction (CITC). 
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Fig. 6. Constructing the condensed instance tree for candidate { A, B, C, D }. 
3.1. Time complexity 

In Algorithm 1 , we stated that the time complexity of CMCG 
is O ( k λ3 k /3 ), where k is the degeneracy of the size-2 co-location 
graph G and λ is the vertex number of G . In real-world ap- 
plications, λ is generally smaller than the type number m 
of the dataset; thus, the worst time complexity of CMCG is 
O ( km 3 k /3 ). 

Previous studies have indicated that calculating long instance 
clique consumes the bulk of the execution time required by the 
type-first maximal co-location algorithm ( Wang et al., 2009 ). For 
simplicity, we take only the longest candidate maximal co-location 
as an example for analyzing the time complexity of CITC. Assum- 
ing that the longest candidate maximal co-location is C L and that 
N L = { InsT abl e 2 ( C m (x ) , C m (y ) ) | 1 ≤ x < y ≤ | C L | } consists of instance 
pairs with types in C L , then the worst time complexity of CITC is 
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O ( f ( N L )), where f ( N L ) is calculated as follows: 
f ( N L ) = | C L | −1 ∑ 

i =1 
( 

∣∣πC L (i ) InsT abl e 2 ( C L (i ) , C L (i + 1) ) ∣∣
∗

| C L | ∑ 
j= i +1 log 2 | InsT abl e 2 ( C L (i ) , C L ( j) ) | 

) 
(2) 

In Eq. (2) , πC L (i ) InsT abl e 2 ( C L (i ) , C L (i + 1) ) denotes the instance 
projection of type C L ( i ) from instance table InsTable 2 ( C L ( i ), C L ( i + 1)). 
Generally, the cardinal number of πC L (i ) InsT abl e 2 ( C L (i ) , C L (i + 1) ) is 
much smaller than | S C L (i ) | , where S C L (i ) is the instance set of type 
C L ( i ). Therefore, it can be concluded that f ( N L ) << | S Max 

C L | ∗ log 2 | N L | , 
where | S Max 

C L | is the maximum number of instances with a single 
type in C L . 

From the above conclusion, we can see that the worst time 
complexity of CITC satisfies O ( f ( N L )) << O (| S Max 

C L | ∗ lo g 2 | N L | ) . 
3.2. Storage complexity 

The storage requirements of instance clique construction are the 
most costly in the maximal co-location algorithms. Our improved 
algorithm CITC adopts a hierarchical verification approach; thus, 
the peak space cost is greatly reduced. The worst space complexity 
of the longest candidate maximal co-location C L is O ( g ( N L )), where 
g ( N L ) is calculated as follows: 
g( N L ) = | C L | −1 ∑ 

i =1 (| πC L (i ) InsT abl e 2 ( C L (i ) , C L (i + 1) ) | 
∗| InsT abl e 2 ( C L (i ) , C L (i + 1) ) | ) (3) 

From the foregoing clarification, it can be concluded that 
πC L (i ) InsT abl e 2 ( C L (i ) , C L (i + 1) ) is much smaller than | S C L (i ) | . There- 
fore, we have g( N L ) = O ( | C L | ∗ | S Max 

C L | ∗ | Max (InsT able C L 2 ) | ) . 
We compute instance cliques for only single candidate itera- 

tions. Memory is released after the preceding iteration completes. 
Thus, the storage cost of instance clique construction never exceeds 
| C L | ∗ | S Max 

C L | ∗ | Max (InsT able C L 2 ) | . 
Summarizing, the entire algorithm is affected by the number 

of instances, the number of feature types, the degeneracy of size- 
2 co-locations, the number of instance pairs, and the number and 
length of candidate maximal co-locations. Specifically, k ≪ m ≪ n , 
meaning that the time and space complexity mainly depend on the 
last three items. 
4. Experiment evaluations 

In this section, we demonstrate the performance of our pro- 
posed algorithm by comparing it with two recent maximal al- 
gorithms, “OCB” and “MAXColoc”, on a 3.3-GHz Centrino PC ma- 
chine with 4G main memory. All the programs were coded and 
compiled using MATLAB. The Tree package utilized in our experi- 
ments was provided by Tinevez J. Y. and can be down-loaded from 
http://tinevez.github.io/matlab-tree/index.html . 
4.1. Experimental data 

We used both synthetic and real datasets for experiments. The 
two types of datasets are shown in Fig. 7 and detailed below. 

Synthetic dataset : Figs. 7 (a) and (b) are two synthetic datasets 
produced by a synthetic data generator ( Huang et al., 2004 ). The 
two datasets have different data sizes and the same distribu- 
tion area of 200 ∗280, so their densities are different. Specifically, 
Fig. 7 (a) shows a sparse dataset with 500 points and 8 feature 

types, and Fig. 7 (b) shows a dense dataset that has 50 0 0 points 
with 8 feature types. 

Real dataset : The real dataset used in our experiments is the 
recent (2014) facility point data from Beijing, China, that contains 
no sensitive location information. It was produced by the Beijing 
Administration for Industry and Commerce, and contains 288,486 
items with 85 feature types such as bank, food store, and restau- 
rant. Each item has four essential fields (instance ID, type ID, and 
X and Y coordinates). Fig. 7 (c) and (d) shows the distribution of 
the facility points and the point densities of sixteen datasets based 
on administrative boundaries, respectively. It can be seen that dis- 
tricts 1–6 are located near the city center and have facility den- 
sities much higher than those in districts 7–16. Consequently, we 
separated cases 1–6 from the others, treating them as members 
of a dense group; the remaining cases fall naturally into a sparse 
group. Our experiments were organized mainly based on this di- 
vision. Table 2 lists the primary statistical information of these 
datasets. 

Specifically, we pre-process each dataset using the “Point Dis- 
tance” tool of ArcGIS 10.0 to find neighbor instance pairs before 
implementing the three algorithms. Here, we focus primarily on 
the performance of the procedures that relate to our improved 
strategies. Thus, all three algorithms require equal computation 
times to find neighbor pair instances on the same dataset. 
4.2. Computing speed comparisons 

In this section, we measure the computational speed of our al- 
gorithm using an equidifferent series of prevalence thresholds and 
distance thresholds on different datasets and compare the results 
with those obtained using the other two contrasting algorithms. 
4.2.1. Performance on synthetic datasets with changes of distance 
and prevalence thresholds 

The execution times of the SGCT, OCB and MAXColoc algorithms 
over the sparse and dense datasets are graphed in Fig. 8 when the 
distance threshold was set to 9 as the prevalence threshold in- 
creased from 0.1 to 0.3; the results of the three algorithms over 
the two synthetic datasets, when the prevalence threshold was set 
to 0.1, as the distance thresholds increases from 5 to 9, are graphed 
in Fig. 9. 

It can be seen that when the dataset prevalence threshold is 
high or the distance threshold is low, the execution times of the 
three algorithms on the same dataset are similar. However, with 
increasing distance threshold or decreasing prevalence threshold 
the gap between the three algorithms becomes large. The SGCT 
algorithm is much less sensitive to the prevalence and distance 
threshold changes than the other two algorithms. The MAXColoc 
algorithm is somewhat less sensitive, and the OCB algorithm is the 
most sensitive. The reason is that a lower distance threshold or a 
higher prevalence threshold causes more instance connections or 
candidate patterns. Both the OCB and MAXColoc algorithms use 
FP-growth-like approaches to construct candidate co-locations or 
instance cliques. Those approaches require many advanced tree- 
based operations such as grafting or chopping branches, and cause 
computing redundancies. On the contrary, the SGCT algorithm can 
reduce most of these redundancies using two proposed methods. 
4.2.2. Performance on real datasets with changes of the prevalence 
threshold 

In experiments with real datasets, the distance threshold was 
set to 300 m and 500 m for the dense group (cases 1–6) and sparse 
group (cases 7–16), respectively. The total execution times for the 
sixteen datasets are presented in the linear graphs in Fig. 10 . Each 
graph presents the relationship between the prevalence threshold 
and entire execution time. 

http://tinevez.github.io/matlab-tree/index.html
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(a) (b)

(c) (d)
Fig. 7. Experimental data: (a) and (b) are sparse and dense synthetic datasets, (c) is the facility distribution of Beijing, 2014, and (d) is the facility density based on 
administrative boundaries. 

Table 2 
Statistical information of the real datasets. 

Data group Case ID Name of district zone Point number Point density (number/km 2 ) Type number 
Dense group 1 Dong Cheng and Chong Wen 20813 489 75 

2 Xi Cheng and Xuan Wu 23176 483 79 
3 Chao Yang 65794 153 85 
4 Feng Tai 27130 91 83 
5 Shi Jing Shan 6135 68 80 
6 Hai Dian 4 464 4 108 84 

Sparse group 7 Men Tou Gou 2960 2 76 
8 Fang Shan 10083 5 80 
9 Tong Zhou 16329 19 83 

10 Shun Yi 13926 14 83 
11 Chang Ping 17847 14 85 
12 Da Xin 16188 16 83 
13 Huai Rou 6733 3 81 
14 Ping Gu 4857 5 76 
15 Mi Yun 7506 4 79 
16 Yan Qing 4365 2 79 
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Fig. 8. The execution times over synthetic datasets with changes of the prevalence threshold. 

Fig. 9. The execution times over synthetic datasets with changes of the distance threshold. 

Fig. 10. The execution times with changes of the prevalence thresholds over real datasets. Cases 1–6 belong to the dense group (distance threshold of 300 m), and cases 
7–16 belong to the sparse group (distance threshold of 500 m). 
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Fig. 10 shows that the SGCT algorithm has the lowest execu- 

tion time in most cases. The results are similar to those over the 
synthetic datasets. 

To measure the performances of the two improved strate- 
gies of the SGCT algorithm, we separately selected two rep- 
resentatives with different orders of magnitude from both the 
dense and sparse groups. These representatives are cases 1, 5, 
12, and 14, representing large data with high density, small data 
with high density, large data with low density and small data 
with low density, respectively. The execution times and results of 
the two improved steps are charted in Fig. 11 . The histograms 
on the left side show the execution times to obtain candidates 
from the size-2 instance table, and the histograms on the right- 
hand side show the execution time for the prevalent maximal 
co-locations from candidates. Moreover, the series on the right- 
hand side also includes line charts on the secondary axis re- 
lated to the candidate and prevalent maximal co-location number 
changes. 

Fig. 11 shows that first, for the SGCT and OCB algorithms, the 
execution time required for the first step is much less than that 
required for the second step, given the same distance and preva- 
lence thresholds. In contrast, the MAXColoc algorithm exhibits the 
opposite characteristics. The reason is that the former two algo- 
rithms adopt a type-first strategy and therefore acquire candidate 
maximal co-locations directly from prevalent size-2 co-locations, 
whereas the latter uses an instance-first strategy by first con- 
structing star candidate sets from type neighborhood transactions 
that map to the neighbor relationships of all co-location instances, 
and then using a candidate pruning method to obtain the candi- 
date maximal co-locations. Generally, the instance number is ex- 
tremely large compared to the type number, so the time com- 
plexity of the instance-first strategy will be less satisfactory than 
that of the type-first strategy in obtaining candidate maximal co- 
locations. However, searching for instance cliques that match a 
particular candidate maximal co-location is much simpler in the 
instance-first strategy because after the global instance-connecting 
operation, the instance-first strategy needs to find only satisfactory 
items from a lookup table. 

Second, Fig. 11 shows that the time cost required for the sec- 
ond step increases as the gap between the candidate number and 
final result number increases. However, the execution time of the 
SGCT algorithm exhibits a lower sensitivity to this gap change 
than the other two methods because a larger gap signifies more 
long-size candidates are obtained. Due to the condensed tree- 
based tactic of obtaining instance cliques of the candidate max- 
imal co-locations in the SGCT algorithm, we can directly obtain 
long-size instance cliques of these candidates within the instance 
pairs of the candidate co-location types to avoid more instance 
connections. 

4.2.3. Performance with the change of the pattern number on real 
datasets 

To determine the effects of the pattern number on performance, 
we extracted the total time expense of the three algorithms and 
the number of maximal patterns found at the prevalence threshold 
set in experiments ( 2 ), and we then constructed Fig. 12. 

As shown in Fig. 12 , with the increase of the number of pat- 
terns, the time costs of the three algorithms increased. However, 
the performance of the SGCT algorithm was still more impressive 
than the other two algorithms in all cases. That was because the 
larger number of patterns meant more iterations were required for 
long-size candidate co-location. In this case, the SGCT algorithm 
can cut down more redundant operations than the other two algo- 
rithms due to the sparse graph and condensed tree-based tactics. 

4.2.4. Performance with different data sizes and densities on real 
datasets 

To more deeply investigate the effects of data size and den- 
sity on the total execution time of the three algorithms, we pro- 
duced separate charts for the dense and sparse datasets using a 
prevalence threshold of 0.7, as shown in Fig. 13 . The upper two 
graphs show the relationship between data size and entire exe- 
cution time for dense and sparse groups separately, whereas the 
lower two graphs show the relationship between data density and 
entire execution time for these two groups. The time values on the 
vertical axis are section results with the same prevalence threshold 
of 0.7. 

Fig. 13 demonstrates that the total execution time required by 
the three algorithms had a weak positive relationship with data 
size and density. However, the SGCT algorithm continued to have 
a lower sensitivity to these two factors than the other two algo- 
rithms. A dense or large dataset may easily cause a large number 
of instance connections. According to the previous analysis, it can 
be concluded that the SGCT algorithm tends to perform well under 
extreme conditions. 
4.3. Storage comparisons 

The storage costs of the maximal co-location algorithms depend 
on the long-size instance cliques and size-2 instance table. In our 
experiments, all tested algorithms were pre-processed; therefore, 
their size-2 instance tables on the same dataset cost the same stor- 
age space. Naturally, the difference of the space cost between the 
tested algorithms is mainly reflected by the instance cliques. The 
maximum number of instance connections directly affects the stor- 
age need of obtaining instance cliques. This value is actually the in- 
stance connection number of the neighborhood transaction in the 
MAXColoc algorithm, the neighbor relationship tree in the OCB al- 
gorithm, and the largest condensed instance tree in the SGCT algo- 
rithm. 

In this section, except for two synthetic datasets, we selected 
two real datasets, i.e., cases 5 and 12, to evaluate the improve- 
ments in storage requirements for our algorithm. The synthetic 
datasets were implemented using a prevalence threshold of 0.1, 
and a distance threshold from 5 to 9. The real datasets used the 
prevalence from 0.7 to 0.9, and the distance threshold of 500 m. 
Figs. 14 and 15 show the maximum number of instance con- 
nections in different thresholds on synthetic datasets and real 
datasets, respectively. 

Figs. 14 and 15 clearly show two phenomena. First, the max- 
imum numbers of instance connections of the SGCT algorithm 
are considerably lower than those of the other two algorithms in 
most cases. The OCB algorithm has the second-fewer number, and 
the MAXColoc algorithm has the most instance connections. The 
reason is that the MAXColoc algorithm constructs neighborhood 
transactions and takes instance connections in the global instance 
space. The OCB algorithm constructs a neighbor relationship tree 
among the instances with types of the candidate co-location pat- 
terns. Even the latter method shrinks the scope of connecting in- 
stances compared with the former; the neighbor relationship tree 
is still a redundant initial structure because most tree nodes will 
be removed during the instance clique acquirement. On the con- 
trary, the SGCT algorithm gains instance cliques for only an iso- 
lated candidate pattern during each iteration, releasing the space 
when the iteration completes. Furthermore, the hierarchical verifi- 
cation method avoids the initial duplicate construction process, so 
the storage need is the most satisfactory. 

The second phenomenon in Figs. 14 and 15 is that as the dis- 
tance threshold increases or the prevalence threshold decreases, 
the maximum numbers of instance connections of all three algo- 
rithms increases. In addition, this value tends to become larger 
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Fig. 11. Execution time and resulting size changes of two steps on four representative datasets. 
for larger and dense datasets than for smaller and sparse datasets. 
In Section 4.2 , we explained why the higher distance threshold, 
lower prevalence threshold, and larger and dense dataset may eas- 
ily cause more instance connections, which means more redun- 
dancy operations will be implemented in the OCB or MAXColoc 
algorithms. Thus, in these extreme situations, the advantage of the 
SGCT algorithm can impressively stand out. 

4.4. Result and analysis 
This section provides some interesting co-location patterns 

mined by our algorithm. We chose two real datasets, i.e., cases 2 
and 6, which are two concentrated industrial regions in Beijing. 
The prevalent maximal patterns of the two cases using different 
thresholds are listed in Table 3. 
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Fig. 12. Execution times with the changes of the prevalent pattern number on four representative datasets. 

Fig. 13. The effects of data size and data density on execution time for the three tested algorithms. 
From Table 3 , we can see that in the results of the two cases 

over two threshold settings, the same patterns, as well as some 
different patterns, exist. For example, {restaurant, food store} and 
{restaurant, snack bar} are both prevalent patterns in the four sit- 
uations; {hotel, leisure club} is prevalent only when the distance 
threshold is set to 100 m and the prevalence threshold is set to 

0.3. In addition, cases 2 and 3 have more prevalent patterns re- 
lating to banks and private enterprises, respectively. That is be- 
cause the two cases are the largest commercial and new high- 
technology centers of Beijing. This phenomenon implies that the 
prevalent patterns are much affected by the regional characters of 
datasets. 
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Fig. 14. The maximum number of instance connections with changes of the distance threshold for two synthetic datasets. 

Fig. 15. The maximum number of instance connections with changes of the prevalence threshold for two real datasets. 
Table 3 
The prevalent maximal patterns of cases 2 and 6. 

Threshold setting Case 2 Case 6 
Distance threshold = 200 m, prevalence 

threshold = 0.5 {Restaurant, food store}, {food store, bank}, 
{parking lot, bank}, {private enterprise, parking 
lot}, {bank, private enterprise, restaurant}, 
{commercial building, bank}, {private enterprise, 
commercial building}, {barber shop, food store}, 
{restaurant, snack bar}, {food store, snack bar} 

{Restaurant, food store}, {restaurant, bank, private 
enterprise}, {restaurant, snack bar}, {parking lot, 
private enterprise, bank}, {private enterprise, 
commercial building}, {barber shop, food store} 

Distance threshold = 100 m, prevalence 
threshold = 0.3 {Restaurant, food store}, {restaurant, snack bar}, 

{food store, snack bar}, {restaurant, bank}, 
{barber shop, food store}, {barber shop, 
restaurant}, {hotel, leisure club}, {bank, private 
enterprise}, {private enterprise, government 
sectors}, {optician shop, clothing shop}, {optician 
shop, cosmetics store}, {photo shop, clothing 
shop}, {cosmetics store, clothing shop} 

{Restaurant, food store}, {restaurant, snack bar}, 
{restaurant, bank}, {parking lot, private 
enterprise}, {private enterprise, commercial 
building}, {snack bar, beverage outlets}, {leisure 
club, hotel}, {barber shop, food store}, {barber 
shop, snack bar} 

Algorithm 1. Candidate maximal co-location generation (CMCG). 
Input: G = ( E,V ) 
Output: CP m 
1 . C P m ← ∅; X ← ∅; P ← ∅;
2 . for each v ∗i in a degeneracy ordering v ∗1 , v ∗2 , ... v ∗λ;
3 . { P ← N(v ∗i ) ∩ { v ∗i +1 , ..., v ∗λ};
4 . X ← N(v ∗i ) ∩ { v ∗1 , ..., v ∗i −1 };
5 . BK _ Pivot( P , { v ∗i } , X ) ;
6 . } 
7 . Procedure BK _ Pivot( M , K , T ) 
8 . if M ∪ T = ∅ then 
9 . { C P m ← C P m ∪ K; } 
10 . Choose a pivot u ∈ M ∪ T ; % to maximize | M ∩ N(u ) | 
11 . for each v i ∈ M\ N(u ) 
12 . { BK _ Pivot( M ∩ N( v i ) , K ∪ { v i } , T ∩ N( v i ) ) ;
13 . M ← M\{ v i };
14 . T ← T ∪ { v i };
15 . } 

5. Conclusions 
This paper proposes a fast and space-saving algorithm (SGCT) 

for mining maximal co-locations. The prevalent size-2 co-locations 
are abstracted as a sparse undirected graph, and the degener- 
acy and pivot strategies in graph theory are used to improve 
the computing speed of obtaining candidate maximal co-locations. 
Furthermore, we devise a condensed-tree structure to store in- 
stance cliques of long candidate locations. This constructing pro- 
cess greatly diminishes the computational complexity and storage 
needs of the algorithm. The experimental results show that the 
SGCT algorithm is more efficient and requires less space than the 
current competitive maximal co-location algorithms. Moreover, be- 
cause the iteration processes for candidate co-locations are un- 
related to each other, our algorithm can be easily parallel trans- 
formed, which can further improve the computing speed. 

However, the SGCT algorithm could be improved. For exam- 
ple, the processes for obtaining instance cliques for each candidate 
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Algorithm 2. Condensed instance tree construction (CITC). 

Input: C m , InsTable 2 
Output: CInsTree is the condensed instance tree of C m 

1 . i ← 1 ;CInsT ree ← ∅; Create a root ′ CIT ′ for CInsT ree ;
2 . while i < size ( C m ) 
3 . { if i = 1 
4 . { for each instance pair I nsPai r k ∈ I nsTabl e 2 ( C m (1) , C m (2)) 
5 . { if InsPair(1) ∈ CInsT re e 0 .children then 
6 . { Add a child − node I nsPai r k (2) to CI nsT re e 1 (I nsPai r k (1)) ; } 
7 . else 
8 . { Create a subtree with I nsPai r k (1) as the root and I nsPai r k (2) as the 

child of its root ;
9 . Graft this subtree to the root of CInsT ree ; } 
10 . } 
11 . } 
12 . else 
13 . { for each instance node in s k ∈ CInsT re e i 
14 . { Find the indices of items that are equal to in s k from the first column 

of InsTabl e 2 ( C m (i ) , C m (i + 1)) ;
15 . Store the second items of the corresponding instance pair in list EI ;
16 . for each e i t ∈ EI 
17 . { f lag ← i − 1 ;
18 . cur r Ins ← in s k .parent;
19 . while f lag ≥ 1 
20 . { if ( cur r I ns, e i t ) ∈ I nsTabl e 2 ( C m ( f lag) , C m (i + 1)) then 
21 . { cur r Ins ← cur r Ins.parent; } 
22 . else break ;
23 . f lag ← f lag − 1 ;
24 . } 
25 . if f lag = 0 then { Add a child − node e i t to CInsT re e i ( in s k ) ; } 
26 . } 
27 . } 
28 . } 
29 . i ← i + 1 ;
30 . } 

co-locations are independent. When the candidates have an exces- 
sive number of communal types, the instance-connecting opera- 
tions of these communal types will cause redundant computations. 
In addition, although the degeneracies of the size-2 co-location 
graphs related to our tested spatial datasets are low, we cannot 
confirm that this is a universal phenomenon. If the degeneracy is 
high, the sparse graph strategy provides little improvement over 
the entire algorithm. Our future studies will focus on the above 
two points. 
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