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Abstract. Foreground detection plays a core role in a wide spectrum
of applications such as tracking and behavior analysis. It, especially for
videos captured by fixed cameras, can be posed as a component decom-
position problem, the background of which is typically assumed to lie
in a low dimensional subspace. However, in real world cases, dynamic
backgrounds like waving trees and water ripples violate the assumption.
Besides, noises caused by the image capturing process and, camouflage
and lingering foreground objects would also significantly increase the dif-
ficulty of accurate foreground detection. That is to say, simply imposing
the correlation constraint on the background is no longer sufficient for
such cases. To overcome the difficulties mentioned above, this paper pro-
poses to further take into account foreground characteristics including
1) the smoothness: the foreground object should appear coherently in s-
patial domain and move smoothly in temporal, and 2) the arbitrariness:
the appearance of foreground could be with arbitrary colors or intensi-
ties. With the consideration of the smoothness and the arbitrariness of
foreground as well as the correlation of (static) background, we formulate
the problem in a unified framework from a probabilistic perspective, and
design an effective algorithm to seek the optimal solution. Experimental
results on both synthetic and real data demonstrate the clear advantages
of our method compared to the state of the art alternatives.

1 Introduction

Foreground detection is fundamental to numerous computer vision applications
like tracking [26,17] and behavior analysis [4], as the foreground is usually of
more interest and matters more than the background to further analysis. The
problem of foreground detection can be viewed as a decomposition of a video
into the foreground component and the background. From this view of point,
it can be achieved through either foreground or background modeling, which
mainly derives object detector based, motion based, and background construc-
tion based approaches. Object detectors are generally built by offline training
[21] or online learning [1], which perform as classifiers to determine whether a
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target region (often searched by a sliding window) belongs to the foreground
or the background. But, most of offline trained detectors are based on separate
datasets, which would be insufficiently discriminative for different cases and thus
lead to poor performance. The online learned ones require an initialization by
manually labeling at the start of a video, which limits the applicability in auto-
mated systems. As for motion-based methods [20,3,19], they avoid such training
and learning phases by exploiting motion patterns to classify pixels into different
groups. This kind of methods can deal with the cases in the presence of cam-
era motion, but the objects are assumed to move regularly [20,3] in respective
regions, which is often violated in practical situations.

Alternatively, constructing the background that is always present, seems to
be more simple and easier than modeling the foreground that may be of di-
verse appearance and complex motion. Background subtraction [8] is probably
the most straightforward method in this category. The difference image can be
obtained by subtracting the reference background from the current frame in a
pixel-wise manner, which is the etymology of background subtraction. If the
absolute difference exceeds a threshold, the pixel in question is declared to be-
long to the foreground. Temporal average and median filtering are two of classical
background subtraction methods. These approaches are simple and efficient, but
extremely sensitive because it assumes a static background with well behaved ob-
jects. In practice, this is almost never the case. To remedy the sensitivity, simple
Gaussian [24] is proposed to represent each background pixel using a Gaussian
model, the pixel is determined to be the background if it falls into a deviation
around the mean, otherwise the foreground. A more robust strategy [18] is to
record the possible values of each pixel of the background image over time by a
mixture of Gaussians. Instead of modeling the feature vectors of each pixel by a
mixture of several Gaussians, Elgammal et al. [5] try to evaluate the probability
of a background pixel using a nonparametric kernel density estimation based
on very recent historical samples in the image sequence. In order to achieve the
quick adaptation to changes in the scene and low false positive rates, they de-
sign a scheme to combine the results of the short-term and long-term background
models for better updating decisions. Maddalena and Petrosino [12] propose an
approach based on self organization through artificial neural networks, which
claims to be robust to multiple situations such as gradual illumination changes.

Although the methods mentioned above provide promising progresses in fore-
ground detection, they are rarely aware of the intensive global correlation of
background across different frames. By considering the correlation (low rank)
prior, it is natural to formulate the background as a linearly correlated model,
which turns out to be a classic problem of learning a low dimensional linear model
from high dimensional data. Mathematically, let O ∈ Rm×n be the observation
matrix containing n frames. Each column ofO corresponds to a vectorized frame
that has m pixels. O can be decomposed into two components, i.e. O = B+R,
where B ∈ Rm×n and R ∈ Rm×n denote the background and the residual,
respectively. Consequently, the objective can be designed as:

argmin
B,R

rank(B) + αΥ (R), s. t. O = B +R, (1)
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where rank(B) computes the rank of B and is usually substituted by the nucle-
ar norm, i.e. ‖B‖∗, to make it convex and computationally tractable, and α is
the weight with respect to Υ (R) that acts as the regularizer on the residual. If
Υ (R)

.
= ‖R‖0 is employed, Eq. (1) becomes the problem of Robust PCA (RP-

CA) that is designed to be robust to sparse outliers with arbitrary magnitudes,
where ‖·‖0 denotes the ℓ0 norm. But the problem is intractable and extremely d-
ifficult to approximate due to the non-convexity of ℓ0. Alternatively, ℓ1 norm can
be employed as the convex surrogate of ℓ0, which is optimal for Laplacian distri-
bution. Based on the convex relaxation, many solutions have been investigated
[2,28]. Moreover, the online extensions [7,25] broaden the applicable range of R-
PCA for the tasks with the requirement of incremental processing. Based on the
advanced solutions and extensions, plenty of interesting applications have been
developed [14,27]. Equivalently,B can be replaced with UV

T , where U ∈ Rm×r

and V ∈ Rn×r (usually r ≪ min{m,n}). That is to say, the rank of UV
T is

guaranteed to be never over r, thus the rank term can be discarded. By casting
the problem into probabilistic models, [22,13,23,6] have proven to be effective to
solve this problem.

However, in real world cases, only imposing the global correlation constraint
on the background component is inadequate, as the dynamic background, like
waving trees and water ripples, breaks the low rank assumption, and the noise
caused by the image capturing process, and the camouflage also significantly
increase the difficulty of accurately detecting foregrounds. Actually, some useful
properties of foreground could be exploited jointly with the correlation of back-
ground for improving the performance. Specifically, the foreground should appear
coherently in space and move smoothly in time. We call this property the smooth-
ness. [29] and [23] utilize Markov Random Field (MRF) constraints directly on
the foreground support to guarantee the spatial and temporal smoothness, which
provide desirable results but with relatively high computational complexities. In-
stead, we propose a more efficient solution than MRF by using a total variation
(TV) regularizer [15]. In addition, the appearance of foreground could be with
any values. Even though the background is unknown in advance, the residual
caused by foreground distributes the same as the foreground. That is to say, R
caused by foreground is more like uniformly distributed than either Gaussian or
Laplacian. We name this characteristic of foreground the arbitrariness. In this
work, we focus on how to harness the arbitrariness and the smoothness of fore-
ground and the global correlation of background for boosting the performance
of foreground detection.

The main contributions of this paper can be summarized as follows:

• Our framework harnesses three priors, including the arbitrariness of fore-
ground appearance, the spatial-temporal smoothness of foreground, and the
correlation of background, in a unified fashion.

• We design an effective and efficient algorithm to seek the optimal solution of
the associated optimization problem based on Augmented Lagrangian Mul-
tiplier with Alternating Direction Minimizing (ALM-ADM) strategy. Exten-
sive experiments are conducted to demonstrate the efficacy of our method.



4 Xiaojie Guo et al.

2 Our Method

2.1 Problem Formulation

Recall that each element Oij(i = 1, 2, ...,m; j = 1, 2, ...n) of the observation

matrixO can be modeled asOij = U iV
T
j +Rij , whereU i and V i are the i

th row
vectors ofU and V , respectively. Since a foreground pixel can be any value within
a bounded range, the corresponding residual falls into [−U iV

T
j , 255 − U iV

T
j ]

(the arbitrariness). Thus, we can assume they follow the uniform distribution
1

256 . As for the residuals caused by the other factors, we simply assume they
(approximately) follow a Gaussian distribution N (0, σ2)1. Let πu and πg be the
percentages of foreground and the other, respectively, which we actually do not
know in advance. As a result, each Rij can be seen as a sample from a mixture
model of distributions with probability p(Rij) = πgN (Rij |0, σ2)+πu 1

256 , where
πg + πu = 1. Then the likelihood of O can be written as:

p(O|U ,V , Θ) =
∏

i,j

p(Oij |U iV
T
j , Θ) =

∏

i,j

(

πgN (Oij |U iV
T
j , σ

2) +
πu

256

)

, (2)

where Θ = {σ2, πg, πu} is a parameter vector. The negative log-likelihood func-
tional of Eq. (2) is given as follows:

L(U ,V , Θ) = −
∑

i,j

log

(

πgN (Oij |U iV
T
j , σ

2) +
πu

256

)

. (3)

By applying Lemma 1 on L(U ,V , Θ), we have:

C(U ,V , Θ, Φ) =
∑

i,j

Φg
ij(logΦ

g
ij−log πgN (Oij |U iV

T
j , σ

2))+Φu
ij(logΦ

u
ij−log

πu

256
),

(4)
with an additional variable (hidden parameter) Φ.

Lemma 1. (Commutativity of Log-Sum operations. [11]) Given two functions
πk(x) > 0 and pk(x) > 0, we have:

−log

K
∑

k=1

πk(x)pk(x) = min
Φ(x)∈∆+

−
K
∑

k=1

Φk(x) log(πk(x)pk(x))+

K
∑

k=1

Φk(x) logΦk(x),

where Φ(x) = {Φ1(x), Φ2(x), , ..., ΦK (x)} are hidden parameters, and ∆+ =

{Φ(x) : 0 < Φk(x) < 1, and
∑K

k=1 Φk(x) = 1} is a convex relaxation of a charac-
teristic function decomposition.

As can be seen from Eq. (4), minimizing C(U ,V , Θ, Φ) will give a minimizer
of L(U ,V , Θ), which can be processed easily and efficiently as it becomes a
quadratic function by interchanging the logarithm and summation operations.
The following propositions further show good properties of C(U ,V , Θ, Φ) that
inspire the design of our method.

1 Although these residuals may be not pure Gaussian, our method can effectively
handle this issue thanks to the smoothness, which will be demonstrated in Sec. 3.
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Proposition 1. Both C(U ,V , Θ, Φ) and L(U ,V , Θ) have the same global min-
imizer (U∗,V ∗, Θ∗) if Φ ∈ ∆+.

Moreover, if the following Alternating Direction Minimizing (ADM) strategy
is employed to minimize C(U ,V , Θ, Φ):

Φt+1 = argmin
Φ∈∆+

C(U t,V t, Θt, Φ);

(U t+1,V t+1, Θt+1) = argmin
U ,V ,Θ

C(U ,V , Θ, Φt+1),
(5)

the energy of L(U ,V , Θ) will gradually decrease as the two steps iterate (Propo-
sition 2). That is to say, the local convergence of the problem is guaranteed.

Proposition 2. The sequence (U t,V t, Θt) computed by (5) leads to

L(U t+1,V t+1, Θt+1) ≤ L(U t,V t, Θt). (6)

We observe that the foreground objects, such as cars and pedestrians, should
appear to be spatially coherent and move smoothly in temporal. Thus, impos-
ing a temporal-spatial smoothness constraint on foreground would boost the
performance of foreground detection. Let us here revisit the model of the ob-
served matrix O from another viewpoint, i.e. O = PΩ(B) + PΩ⊥(F ), where
PΩ(·) is the orthogonal projection operator on the support Ω ∈ {0, 1}m×n, and
Ω⊥ ∈ {0, 1}m×n stands for the complementary support of Ω. Based on the above
observation, it is intuitive to enforce the temporal-spatial smoothness on the sup-
port Ω (or Ω⊥ equivalently). But, the binary support is unknown in advance,
that is to say, directly operating on the unknown binary support is extremely
difficult. Moreover, the residual reflects the difference between the observation
and the background, rather than the support of foreground object. Therefore,
it is still improper to impose the temporal-spatial smoothness on the residual
component R without assumptions.

Alternatively, as we have introduced, the hidden variable Φ can perform as
the term with the smoothness property. In this work, we only take into account
Φg because Φu performs actually the same as Φg due to Φg + Φu = 1. Please
consider an extreme case that if the Gaussian function of mean 0 and variance
σ2 goes to 0 infinitesimally, each Φg

ij equals to 1 if Oij = U iV
T
j , otherwise 0. For

our problem, we relax the restrict binary requirement of support to a continuous
value range (0, 1)2, in which σ2 controls the width of the interface between 0
and 1. As a consequence, the regularization of smoothness on foreground can be
achieved by imposing the anisotropic total variation on Φg, which is defined as:

‖Φg‖tv =
∑

i,j

|[DhΦ
g]ij |+ |[DvΦ

g]ij |+ |[DtΦ
g]ij |, (7)

2 The reason why the range is (0, 1) instead of [0, 1] is to satisfy Φ ∈ ∆+ introduced
in Lemma 1. This can be easily done by adding a very small ǫ = 10−7 to Φu and Φg,
then normalizing them by letting their summation be 1.
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where Dh, Dv and Dt are the forward finite difference operators in horizontal,
vertical and temporal directions, respectively. By slightly transforming the form
of (7), we have ‖Φg‖tv = ‖DΦg‖1, where D = [DT

h ,D
T
v ,D

T
t ]

T .
By putting all the concerns aforementioned together, we can naturally for-

mulate the problem of robust foreground detection in the following shape:

min
U ,V ,Θ,Φ

C(U ,V , Θ, Φ) + λ‖DΦg‖1, (8)

where λ is the weight of the smoothness regularizer.

2.2 Optimization

As can be seen from Eq. (8), it is difficult to directly optimize because the
total variation regularizer breaks the linear structure of Φg. To efficiently and
effectively solve the problem, we introduce two auxiliary variables to make the
problem separable, which gives the following constraint minimizing problem:

min
U ,V ,Θ,Φ

C(U ,V , Θ, Φ) + λ‖T ‖1, s. t. W = Φg,T = DW . (9)

For the above constraint minimizing problem, the penalty technique [10] can be
adopted to change the constraint problem (9) into the unconstraint one in the
following shape:







Q(U ,V , Θ, Φ,T ,W ) = C(U ,V , Θ, Φ) + λ‖T ‖1 +
µ

2
‖W − Φg‖2F

+ < X,W − Φg > +
µ

2
‖T −DW‖2F+ < Y ,T −DW >,

(10)

where ‖·‖F denotes the Frobenius norm,< ·, · > represents matrix inner product,
X and Y are the Lagrangianmultipliers, and µ is a positive penalty scalar. Below
are the solutions of the sub-problems based on the ADM strategy.

Φ sub-problem: For computing Φ̂u
ij

(t+1)
, we take derivative of Q with re-

spect to Φu
ij with the unrelated terms fixed and set it to zero, then obtain:

Φ̂u
ij

(t+1)
= argmin

Φu
ij

Q(U (t),V (t), Θ(t), Φu, Φg(t),T (t),W (t)) =
πu(t)

256 exp (1)
. (11)

Similarly, the problem corresponding to Φ̂g
ij turns out to be:











































Φ̂g
ij

(t+1)
= argmin

Φ
g
ij

Q(U (t),V (t), Θ(t), Φu(t+1), Φg,T (t),W (t))

= argmin
Φ

g
ij

−Φg
ij log

πg(t)

√
2πσ2(t)

exp (
−(Oij −U

(t)
i V

(t)T
j )2

2σ2(t)
)

+ Φg
ij logΦ

g
ij +

µ(t)

2
(W

(t)
ij − Φg

ij)
2 +X

(t)
ij Φ

g
ij ,

(12)
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However, the quadratic term in (12), i.e. µ(t)

2 (W
(t)
ij − Φg

ij)
2, destroys the closed

form solution of Φg
ij . For addressing this difficulty, we introduce pixel-wise weight-

s η
(t)
ij such that η

(t)
ij =

W
(t)
ij

−Φ
g(t)
ij

2 to approximate the original quadratic term.

That is to say, we replace µ(t)

2 (W
(t)
ij −Φg

ij)
2 with µ(t)η

(t)
ij (W

(t)
ij −Φg

ij). Thus, the
solution of (12) can be easily computed by:

Φ̂g
ij

(t+1)
=

πg(t) exp (
−(Oij−U

(t)
i V

(t)T
j )2

2σ2(t) )
√
2πσ2(t) exp (1− µ(t)η

(t)
ij −X

(t)
ij )

. (13)

The final Φ
u(t+1)
ij and Φ

g(t+1)
ij are obtained by enforcing their summation to be

1, thus we have:

Φ
u(t+1)
ij =

√
2πσ2(t)πu(t) exp (−µ(t)η

(t)
ij −X

(t)
ij )

√
2πσ2(t)πu(t) exp (−µ(t)η

(t)
ij −X

(t)
ij ) + 256πg(t) exp (

−(Oij−U
(t)
i

V
(t)T
j

)2

2σ2(t) )

,

Φ
g(t+1)
ij =

256πg(t) exp (
−(Oij−U

(t)
i

V
(t)T
j

)2

2σ2(t) )
√
2πσ2(t)πu(t) exp (−µ(t)η

(t)
ij −X

(t)
ij ) + 256πg(t) exp (

−(Oij−U
(t)
i

V
(t)T
j

)2

2σ2(t) )

.

(14)

Θ sub-problem: Here, we focus on updating the parameters of the mixed
model including σ2, πg and πu. The update can be directly calculated via setting
the derivatives of Q with respect to σ2, πg and πu, respectively, to be zero. More
specifically, each of σ2, πg and πu updates via:

πg(t+1) =

∑

ij Φ
g(t+1)
ij

mn
, πu(t+1) =

∑

ij Φ
u(t+1)
ij

mn
,

σ2(t+1) =

∑

ij Φ
g(t+1)
ij (Oij −U iV j)

2

∑

ij Φ
g(t+1)
ij

.

(15)

T sub-problem: By discarding the constant terms, its closed form solution
can be found by:



































T
(t+1) = argmin

T

Q(U (t),V (t), Θ(t+1), Φ(t+1),T ,W (t))

= argmin
T

λ‖T ‖1 +
µ(t)

2
‖T −DW

(t)‖2F+ < Y
(t),T −DW

(t) >

= S λ

µ(t)
(DW

(t) − Y
(t)

µ(t)
),

(16)
where Sε>0(·) represents the shrinkage operator, the definition of which on s-
calars is: Sε(x) = sgn(x)max(|x|−ε, 0). The extension of the shrinkage operator
to vectors and matrices is simply applied element-wisely.
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W sub-problem: As can be seen below, the W sub-problem is a classic
least squares problem, thus the optimal W (t+1) can be calculated easily.































W
(t+1) = argmin

W

Q(U (t),V (t), Θ(t+1), Φ(t+1),T (t+1),W )

= argmin
W

µ(t)

2
‖W − Φg(t+1)‖2F+ < X

(t),W − Φg(t+1) >

+
µ(t)

2
‖T (t+1) −DW ‖2F+ < Y

(t),T (t+1) −DW > .

(17)

Traditionally, the optimal estimation of W (t+1) can be simply obtained by com-

puting (I +D
T
D)−1(DT (T (t+1) + Y

(t)

µ(t) ) +Φg(t+1) − X
(t)

µ(t) ). But, due to the size

of matrix (I + D
T
D), it is computationally expensive to compute its inverse.

Thanks to the block circulant structure of the matrix, it can be efficiently and
exactly solved through applying 3D FFT on it, like:

W
(t+1) = F−1

(F(DT (T (t+1) + Y
(t)

µ(t) ) + Φg(t+1) − X
(t)

µ(t) )

1+ |F(Dh)|2 + |F(Dv)|2 + |F(Dt)|2
)

, (18)

where F(·) and F−1(·) stand for the 3D Fourier transform and the inverse 3D
Fourier transform operators, respectively. | · |2 is the element-wise square and
the division also performs element-wisely. Notice that the denominator in (18)
only needs to be computed once.

U -V sub-problem: In this sub-problem, we jointly seek the optimal solu-
tions for U

(t+1) and V
(t+1). By keeping the elements related to U and V and

dropping the others, the sub-problem can be rewritten as:



















(U (t+1),V (t+1)) = argmin
U ,V

Q(U ,V , Θ(t+1), Φ(t+1),T (t+1),W (t+1))

= argmin
U ,V

∑

ij

Φ
g(t+1)
ij

2σ2(t+1)
(Oij −U iV

T
j )

2 = argmin
U ,V

‖Ω ⊙ (O −UV
T )‖2F ,

(19)

where ⊙ represents the Hadamard product of two matrices, Ω performs as a

weight matrix3 and Ωij =
√

Φ
g(t+1)
ij /(2σ2(t+1)). We can see that (19) is actually

the weighted ℓ2 low rank matrix factorization problem. The update of U and V

can follow the rules introduced in existing methods, such as WLRA [16].
Besides, there are two multipliers and µ need to be updated, which can be

simply done via:

X
(t+1) = X

(t) + µ(t)(W (t+1) − Φg(t+1)),

Y
(t+1) = Y

(t) + µ(t)(T (t+1) −DW
(t+1)), µ(t+1) = min{ρµ(t), ζ},

(20)

where ρ > 1 is a constant, and ζ is a predefined threshold (e.g. 10).

3 By a slight abuse of notations, we reuse the notation Ω to represent the weight
matrix for being consistent with the concept of support.
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Algorithm 1: Robust Foreground Detection

Input: The observation O

Initialization: Randomly initialize U
(0), V (0), Φg(0) = a1, a ∈ (0, 1),

πg(0) ∈ (0, 1) and σ2 > 0. Set T (0), W (0), X(0), Y (0) to be zero matrices.
Φu(0) = 1− Φg(0), πu(0) = 1− πg(0). Compute |F(Dh)|

2, |F(Dv)|
2 and

|F(Dt)|
2, µ(0) = 0.1, ρ = 1.25, t = 0.

while not converged do

Update Φ
(t+1) via Eq. (14);

Update Θ
(t+1) via Eq. (15);

Update T
(t+1) via Eq. (16);

Update W
(t+1) via Eq. (18);

Update U
(t+1) and V

(t+1) via the rules introduced in [16];
Update X

(t+1), Y (t+1) and µ(t+1) via Eq. (20);
t = t+ 1;

end

Output: Optimal solution (U (t), V (t), Φ(t), Θ(t)).

For clarity, we summarize the whole procedure of optimization in Algo-
rithm 1. The algorithm terminates when ‖Φg(t+1) − Φg(t)‖F ≤ δ‖Φg(t)‖F with
δ = 10−3, or the maximal number of iteration is reached. Please notice that,
as the elements in Φu are real numbers rather than binaries, but very close to
either 0 or 1. For foreground detection, the binary mask is required. To this end,
we simply predefine a threshold (0.9 for all of experiments) to binarize Φu.

3 Simulations and Experiments

To quantitatively and qualitatively evaluate the performance of our proposed
method, we conduct simulations on synthetic data and experiments on real se-
quences in this section. The simulations concentrate on revealing the effect of
parameters involved in Algorithm 1, the convergence with random initializations
and the robustness to different types of noise, such as Speckle, Gaussian, Salt &
Pepper and Poisson. We also perform experiments on real videos, allowing us to
compare against a large number of alternative approaches.

Parameter Effect. There are two parameters, i.e. λ and r, involved in our
algorithm. In this part, we focus on evaluating the effect of r with λ = 5 fixed,
while the effect of λ is tested latter together with the robustness to different nois-
es. To better visualize the data, the observation is composed of 1D images. The
background matrix is generated via B0 = U0V

T
0 , where both U0 and V 0 are

1000×Rank (an example background matrix is shown in Fig. 1 (f) correspond-
ing to the case bounded by the dashed box in Fig. 1 (b)), and the observation
(Fig. 1 (d)) is obtained by adding the foreground with a mask (Fig. 1 (e)) to
the background. The foreground on each column shifts downward for 1 pixel
per column. The foreground ratio controls the foreground width, taking the case
with foreground ratio 0.4 for example (Fig. 1 (e)), the maximal width in the ob-
servation is actually 0.8. In addition, the entries in both the background and the
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(h) Our Mask


0.4


0.8


(e) GT Mask
(d) Observation
 (f) GT Background
 (i) Our Background
(g) GT Difference


Foreground Ratio = 0.4 & Rank = 6


(b)

r


Foreground Ratio = 0.6 & Rank = 4


(c)

r


Foreground Ratio = 0.2 & Rank = 4


(a)

r


F-Measure

Mean Error


Fig. 1. The effect of parameter r. (a)-(c) are the results with respect to (Foreground
Ratio: 0.2, Ground Truth Rank: 4), (0.4, 6) and (0.6, 4), respectively. (d)-(i) correspond
to one trial of the case bounded by the dashed box in (b). The recovered background (i)
is with only 0.0083 Mean Error and the estimated mask (g) is with 0.9906 F-Measure.

(a) 
WS
 (b) 
Cur
 (c) 
Fou
 (d) 
Hal
 (e) 
SM
 (f) 
Lob
 (g) 
Esc
 (h) 
Tre


Fig. 2. Sample images from each sequence of the Star dataset.

foreground are sampled from the uniform distribution [0, 255]. To quantitative-
ly reveal the recovery performance of both the background and the foreground
mask, we employ Mean Error4 and F-Measure5 as our metrics. For each certain
foreground ratio and r, we independently execute the algorithm for 10 times,
and the average results are reported in Fig. 1 (a)-(c), as can be seen from which,
we find that as r increases to the ground truth rank, the F-Measure and the
Mean Error sharply increases and decreases, respectively. After that, the per-
formance changes very smoothly in a relatively large range, which indicates the
insensitivity of r. For the rest experiments, we set r = 7.

Performance Comparison on Real Sequences. We here compare our
method against numerous state of the art approaches, i.e. GMM [18], SOBS [12],
DP-GMM [6], PCP [2], DECOLOR [29] and GRASTA [7], on the dataset Star
[9]. The Star contains 9 real world videos, which has a variety of scenarios includ-
ing WaterSurface (WS: outdoor, dynamic background, lingering person), Curtain
(Cur: indoor, light switch, people), Fountain (Fou: outdoor, dynamic background,
people), Hall (Hal: indoor, static background, crowd), Lobby (Lob: indoor, light
switch, people), Escalator (Esc: indoor, dynamic background, crowd), BootStrap
(BS: indoor, static background, crowd) and Trees (Tre: outdoor, dynamic back-

4 Mean Error is computed via computing the mean of the absolute sum of pixel-wise
differences between the recovered background and the ground truth.

5 F-Measure is defined as 2·precision·recall/(precision+recall).
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method WS Cur Fou Hal SM Lob Esc BS Tre mean

GMM [18] .7948 .7580 .6854 .3335 .5363 .6519 .1388 .3838 .0757 .4842
SOBS [12] .8247 .8178 .6554 .5943 .6677 .6489 .5770 .6019 .6960 .6760

DP-GMM [6] .9090 .8203 .7049 .5484 .6522 .5794 .5055 .6024 .7567 .6754
PCP [2] .4137 .6193 .5679 .5917 .7234 .6989 .6728 .6582 .3406 .5874

DECOLOR [29] .8866 .8255 .8598 .6424 .6525 .6149 .6994 .5869 .8096 .7308
GRASTA [7] .7310 .6591 .3786 .5817 .7142 .5550 .4697 .6146 .2504 .5505

Our Method .8796 .8976 .7544 .6673 .7407 .8029 .6353 .6841 .6779 .7489

Table 1. Performance comparison in terms of F-Measure.

(a) Original


(b) GT Mask


(c) Iter. 3
 (d) Iter. 7
 (e) Iter. 10


(f) Iter. 15
 (g) Iter. 24
 (h) Final Mask


Fig. 3. Mask Evolution. (a) the original frame. (b) the Ground Truth (GT) mask. (c)-
(g) are the estimations of the 3th, 7th, 10th, 15th and 24th iterations, respectively. (h) is
the final mask. Lighter colors in (c)-(g) indicate higher possibilities of being foreground,
while darker ones stand for lower.

ground, cars). Sample images from each sequence of Star are provided in Fig. 2.
In the comparison, we fix λ = 5, which is suggested by the Robustness analysis
detailed latter. As for the other competitors, the codes are downloaded from the
authors’ websites and the parameters are all set as default. Please note that,
for PCP and GRAST, the raw results are the residuals instead of the masks,
so the post processing of binarization is essential to give the final foreground
masks. To this end, we assume the absolute residuals in each frame satisfy a
Gaussian distribution N (η̃, σ̃). Therefore, we adaptively compute the threshold
t = η̃ + σ̃. With the threshold, the estimation of the mask is done via: if the
absolute residual is larger than t, then the mask is 1, otherwise 0. The perfor-
mance comparison in terms of F-Measure is given in Table 1, as can be viewed
from which, our method performs stably and robustly for every sequence with
high F-Measure. The average F-Measure of our method over the whole dataset
is the clear evidence demonstrating the proposed method significantly outper-
forms the others. Figure 3 displays the changes of Φu (mask), without loss of
generality, on the sequence of WaterSurface, as our algorithm iterates. Figure
3 (c)-(g) reveal that the estimation gradually eliminates the noise and becomes
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stable. From Fig. 3 (h), we observe that the final mask obtained by our method
is very close to the GT mask. Note that, although the F-Measure of DECOLOR
is slightly behind our method, its computational cost is much higher than ours,
please see the comparison in the next paragraph.

Time Comparison. We here provide a comparison of time among our
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Fig. 4: Time Comparison

method, PCP [2] and DECOLOR [29], which
are all implemented in Matlab (the core part of
DECOLOR is implemented in C++). The time
comparison is conducted on a PC running Win-
dows 7 32bit operating system with Intel Core
i7 3.4 GHz CPU and 4.0 GB RAM. As can be
seen from Fig. 4, as the matrix size increases,
the time required by DECOLOR quickly grows
up. In contrast with DECOLOR, PCP and our
method are much lighter. For instance, in the
case of the matrix size with 1000× 1000, both

PCP and our method spend about 24s while DECOLOR costs about 90s. Please
notice that, the computational time of DECOLOR with respect to 1500× 1500
is not provided in Fig. 4, since DECOLOR runs out of memory. In other word-
s, our method requires less memories than DECOLOR. For the larger matrix
(1500 × 1500), as shown in the picture, the time load of PCP becomes much
heavier than that of our method.

Convergence. The initialization of U (0), V (0), Φg(0), πg(0) and σ2 in Al-

Convergence Evaluation


Fig. 5: Convergence Evaluation

gorithm 1 is random. To reveal the proposed
algorithm can converge efficiently and stably
with random initializations, we test 5 different
initializations on, without loss of generality, the
WS sequence. It is hard to visualize data with
dimensions more than 3. Therefore, in Fig. 5,
we choose πu, σ2 and iteration number to show,
which is also capable to reflect the converging
trend and speed of Algorithm 1. The initializa-
tions are indeed scattered in the σ2-πu plane
at the beginning of loop, as shown in Fig. 5.
Rapidly, within only 3 iterations, the 5 curves

are gathering as shown in the upper (4×) zoomed in patch. At the 5th iteration,
we can see, from the lower (16×) zoomed in patch, that the algorithm gives al-
most the same estimations of σ2 and πu for different cases. In all the experiments
present in this paper, we set the maximal number of iteration to 35, which works
sufficiently well.

Robustness to Noise. Although we simply assume the residual caused
by the factors expect for the foreground satisfies a Gaussian distribution, the
smoothness can make the algorithm survives from various noise types. This part
aims to demonstrate the robustness of our method to different types of noise
including Speckle, Gaussian, Salt & Pepper and Poisson with different levels. The
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(a) Speckle Noise
 (b) Gaussian Noise
 (c) Salt & Pepper Noise
 (d) Poisson Noise


Fig. 6. Robustness to different noise types with varying λ values. The upper row gives
the F-Measures, while the lower row shows four groups of visual results correspond-
ing to the cases marked by green dashed boxes. Each group has four sub-images: the
sample input (top-left), the estimated foreground mask (top-right), the recovered back-
ground (bottom-left) and the noise component (bottom-right). The noise level differs
for different types of noises, please refer to their definitions.

upper row of Figure 6 shows the F-Measures with respect to different types of
noise. As can be seen in Fig. 6 (a), as λ increases to 10, the speckle noise variance
that our method can handle reaches 0.03. But when λ = 30, the performance
drops because the results are over smoothed, which is further confirmed by the
rest cases. Figure 6 (b) corresponds to the white Gaussian noise, from which we
can find that the proposed algorithm robustly processes the noise on the 0.0125
level using a large value range of λ. Even though Salt & Pepper noise heavily
deviates from the Gaussian assumption, Figure 6 (c) shows that, by setting
λ = 5, our method is robust to process the case with 15% pixels polluted by
such noise. The reason why the F-Measure decreases as the λ increases from 5 is
that the smoothness makes masks dilated or eroded. For the Poisson noise, the
results given in Fig. 6 (d) demonstrate the robustness of our method to the 1010

scale with λ under 10. Since the definitions of these noises are different, so are
the noise levels. The lower row of Fig. 6 offers the visual results corresponding
to the cases marked by the dashed green boxes in the upper row, from which
we can see that even though the input images are severely perturbed by noises,
our method can robustly recover the backgrounds, the foreground masks and
the noise components. Please zoom in to see more details.

4 Conclusion and Future Work

In real world scenarios, foreground detection is difficult as videos may contain not
only static backgrounds, but also noises, dynamic backgrounds and camouflage
foregrounds. In this paper, we have shown how to harness three structural pri-
ors of the background and foreground, including the arbitrariness of foreground
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appearance, the spatial-temporal smoothness of foreground, and the correlation
of background, for robustly detecting foreground objects, which are achieved by
assuming the foreground satisfies the uniform distribution, smoothing the fore-
ground via total variation regularization, and imposing the correlation constraint
on the background, respectively. We have formulated the problem in a unified
optimization framework and proposed a novel ALM-ADM based algorithm to
effectively and efficiently seek the optimal solution. The effect of parameters,
the convergence and the robustness to noises of the proposed algorithm have
been analyzed. Besides, compared to the state of the art alternatives, the exper-
imental results on real sequences have demonstrated the clear advantages of the
proposed method in terms of accuracy, robustness and efficiency.

Currently, our algorithm processes sequences in a batch fashion. For appli-
cations with the online requirement, it is more desirable to design its online
version, which actually can be done by reconstructing a new coming frame using
the existing background model, referring to the foreground mask of the latest
frame to achieve the temporal smoothness, and then updating the model in an
incremental way. We leave this extension as our future work.
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