Diverse Message Passing

Liang Yang
About Me

2000 |
2004 |
2007 |
2007 |
2009 |
2009 |
2010 |
2010 |
2013 |
2016 |
2018 |
2018 |
today

Homepage: http://yangliang.github.io/
Outline

• Existing Message Passing Framework

• Diverse Message Passing
 • Motivations
 • Semi-supervised Task
 • Self-supervised Task

• Theoretical Analysis

• Conclusions
Existing Message Passing

Aggregation-Combination

\[
\bar{h}_v^k = \text{AGGREGATE}^k \left(\{ h_u^{k-1} | u \in \mathcal{N}(v) \} \right),
\]

\[
h_v^k = \text{COMBINE}^k \left(h_v^{k-1}, \bar{h}_v^k \right),
\]

\[
h_v^k = \sigma \left(\left(c_{vv}^k h_v^{k-1} + \sum_{u \in \mathcal{N}(v)} c_{uv}^k h_u^{k-1} \right) W^k \right),
\]

Uniform

In different attribute channels
Diverse Message Passing

(a) Uniform and Blind Message Passing

(b) Diverse and Interactive Message Passing
Motivations - Attribute Diversity

Homophily Rate of Graph

$$\beta = \frac{1}{N} \sum_{v \in V} \frac{\text{Number of } v\text{'s neighbors who have the same label as } v}{\text{Number of } v\text{'s neighbors}}.$$

Homophily Rates of Attributes

$$\beta_f = \frac{1}{\sum_{v \in V} x_{vf}} \sum_{v \in V} \beta_{vf} = \frac{1}{\sum_{v \in V} x_{vf}} \sum_{v \in V} \left(\frac{x_{vf} \sum_{u \in N(v)} x_{uf}}{d_v} \right),$$

Graph-level

- Topology + Node Label

Attribute-level

- Topology + Node Attribute

Node Attribute

- Texas (0.06)
- Wisconsin (0.16)
- Chameleon (0.25)
- Cornell (0.11)
- Actor (0.24)
- Citeseer (0.71)
- Pubmed (0.79)
- Cora (0.83)
Semi-supervised Diverse Message Passing

\(h_v^k = \sigma \left(\left(c_{vv}^k h_v^{k-1} + \sum_{u \in \mathcal{N}(v)} c_{uv}^k h_u^{k-1} \right) w^k \right) \),

\(h_v^k = \sigma \left(\left(c_{vv}^k \oplus h_v^{k-1} + \sum_{u \in \mathcal{N}(v)} c_{uv}^k \oplus h_u^{k-1} \right) w^k \right) \).
Semi-supervised Learning

The first strategy

\[c_{uv}^k = \tanh \left([h_{v}^{k-1} || h_{u}^{k-1}] W_{c}^k \right), \]

Model Complexity \(O\left(F \times F \right) \)

The second strategy

\[c_{v}^k = \tanh \left([h_{v}^{k-1} || \bar{h}_{v}^{k-1}] W_{c}^k \right), \]

\[\bar{h}_{v}^{k} = \text{AGGREGATE}^{k} \left(\{ h_{u}^{k-1} | u \in \mathcal{N}(v) \} \right), \]

Model Complexity \(O\left(F \times F \right) \)
<table>
<thead>
<tr>
<th>Methods</th>
<th>Texas</th>
<th>Wisconsin</th>
<th>Actor</th>
<th>Squirrel</th>
<th>Cham.</th>
<th>Cornell</th>
<th>Citeseer</th>
<th>Pubmed</th>
<th>Cora</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphSAGE</td>
<td>82.43</td>
<td>81.18</td>
<td>34.23</td>
<td>41.61</td>
<td>58.73</td>
<td>75.95</td>
<td>76.04</td>
<td>88.45</td>
<td>86.90</td>
</tr>
<tr>
<td>GCN</td>
<td>64.86</td>
<td>56.86</td>
<td>31.12</td>
<td>32.28</td>
<td>53.51</td>
<td>54.05</td>
<td>75.53</td>
<td>84.71</td>
<td>85.51</td>
</tr>
<tr>
<td>GAT</td>
<td>58.38</td>
<td>55.29</td>
<td>26.28</td>
<td>30.62</td>
<td>54.69</td>
<td>58.92</td>
<td>75.46</td>
<td>84.68</td>
<td>82.68</td>
</tr>
<tr>
<td>SAGE+JK</td>
<td>83.78</td>
<td>81.96</td>
<td>34.28</td>
<td>40.85</td>
<td>58.11</td>
<td>75.68</td>
<td>76.05</td>
<td>88.34</td>
<td>85.96</td>
</tr>
<tr>
<td>Cheby+JK</td>
<td>78.38</td>
<td>82.55</td>
<td>35.14</td>
<td>45.03</td>
<td>63.79</td>
<td>74.59</td>
<td>74.98</td>
<td>89.07</td>
<td>85.49</td>
</tr>
<tr>
<td>GCN+JK</td>
<td>66.49</td>
<td>74.31</td>
<td>34.18</td>
<td>40.45</td>
<td>63.42</td>
<td>64.59</td>
<td>74.51</td>
<td>88.41</td>
<td>85.79</td>
</tr>
<tr>
<td>GCN-Cheby</td>
<td>77.30</td>
<td>79.41</td>
<td>34.11</td>
<td>43.86</td>
<td>55.24</td>
<td>74.32</td>
<td>75.82</td>
<td>88.72</td>
<td>86.76</td>
</tr>
<tr>
<td>MixHop</td>
<td>77.84</td>
<td>75.88</td>
<td>32.22</td>
<td>43.80</td>
<td>60.50</td>
<td>73.51</td>
<td>76.26</td>
<td>85.31</td>
<td>87.61</td>
</tr>
<tr>
<td>GEOM-GCN</td>
<td>67.57</td>
<td>64.12</td>
<td>31.63</td>
<td>38.14</td>
<td>60.90</td>
<td>60.81</td>
<td>77.99</td>
<td>90.05</td>
<td>85.27</td>
</tr>
<tr>
<td>H2GCN</td>
<td>84.86</td>
<td>86.67</td>
<td>35.86</td>
<td>36.42</td>
<td>57.11</td>
<td>82.16</td>
<td>77.04</td>
<td>89.40</td>
<td>86.92</td>
</tr>
<tr>
<td>DMP-Deg</td>
<td>78.38</td>
<td>80.39</td>
<td>33.09</td>
<td>32.46</td>
<td>54.38</td>
<td>83.78</td>
<td>76.87</td>
<td>88.10</td>
<td>86.31</td>
</tr>
<tr>
<td>DMP-2-Sum</td>
<td>78.37</td>
<td>84.31</td>
<td>34.93</td>
<td>32.18</td>
<td>55.92</td>
<td>83.78</td>
<td>76.27</td>
<td>88.15</td>
<td>85.31</td>
</tr>
<tr>
<td>DMP-2-Con</td>
<td>83.78</td>
<td>84.31</td>
<td>34.67</td>
<td>44.28</td>
<td>60.53</td>
<td>83.78</td>
<td>75.97</td>
<td>85.31</td>
<td>85.31</td>
</tr>
<tr>
<td>DMP-1-Posi</td>
<td>86.48</td>
<td>84.31</td>
<td>35.72</td>
<td>34.96</td>
<td>51.53</td>
<td>70.27</td>
<td>75.67</td>
<td>88.10</td>
<td>86.11</td>
</tr>
<tr>
<td>DMP-1-Sum</td>
<td>86.48</td>
<td>86.27</td>
<td>34.21</td>
<td>43.42</td>
<td>50.21</td>
<td>70.27</td>
<td>76.13</td>
<td>88.13</td>
<td>82.28</td>
</tr>
<tr>
<td>DMP-1-Con</td>
<td>89.19</td>
<td>92.16</td>
<td>35.06</td>
<td>47.26</td>
<td>62.28</td>
<td>89.19</td>
<td>76.43</td>
<td>89.27</td>
<td>86.52</td>
</tr>
</tbody>
</table>
Figure 2: Classification accuracy results with various depths.

Figure 3: Distributions of learned weights of sampled attribute dimensions.
Self-supervised Diverse Message Passing

Reduce Model Complexity & Preserve Expressive Power

\[h^k_v = \sigma \left(\left(c^k_{vv} \odot h^{k-1}_v \right) + \sum_{u \in \mathcal{N}(v)} c^k_{uv} \odot h^{k-1}_u \right) w^k \right) \]

\[h^k_v = \sigma \left(m^k_{vv} + \sum_{u \in \mathcal{N}(v)} m^k_{uv} w^k \right) \]

Message

\[m^k_{uv} = \frac{h^{k-1}_v \odot h^{k-1}_u}{\langle h^{k-1}_v, h^{k-1}_u \rangle} \]

Diverse Interactive
Table 3: Node Classification Results in Terms of Accuracy.

<table>
<thead>
<tr>
<th>Method</th>
<th>Cora</th>
<th>CiteSeer</th>
<th>PubMed</th>
<th>Amazon-C</th>
<th>Amazon-P</th>
<th>Coauthor-CS</th>
<th>Coauthor-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLP</td>
<td>58.2±2.1</td>
<td>59.1±2.3</td>
<td>70.0±2.1</td>
<td>44.9±5.8</td>
<td>69.6±3.8</td>
<td>88.3±0.7</td>
<td>88.9±1.1</td>
</tr>
<tr>
<td>LogReg</td>
<td>57.1±2.3</td>
<td>61.0±2.2</td>
<td>64.1±3.1</td>
<td>64.1±5.7</td>
<td>73.0±6.5</td>
<td>86.4±0.9</td>
<td>86.7±1.5</td>
</tr>
<tr>
<td>LP</td>
<td>68.0±0.2</td>
<td>45.3±0.2</td>
<td>63.0±0.5</td>
<td>70.8±0.0</td>
<td>67.8±0.0</td>
<td>74.3±0.0</td>
<td>90.2±0.2</td>
</tr>
<tr>
<td>Chebyshev</td>
<td>81.2±0.5</td>
<td>69.8±0.5</td>
<td>74.4±0.3</td>
<td>62.6±0.0</td>
<td>74.3±0.0</td>
<td>91.5±0.0</td>
<td>92.1±0.3</td>
</tr>
<tr>
<td>GCN</td>
<td>81.5±0.2</td>
<td>70.3±0.3</td>
<td>79.0±0.4</td>
<td>76.3±0.5</td>
<td>87.3±1.0</td>
<td>91.8±0.1</td>
<td>92.6±0.7</td>
</tr>
<tr>
<td>GAT</td>
<td>83.0±0.7</td>
<td>72.5±0.7</td>
<td>79.0±0.3</td>
<td>79.3±1.1</td>
<td>86.2±1.5</td>
<td>90.5±0.7</td>
<td>91.3±0.6</td>
</tr>
<tr>
<td>MoNet</td>
<td>81.3±1.3</td>
<td>71.2±2.0</td>
<td>78.6±2.3</td>
<td>83.5±2.2</td>
<td>91.2±1.3</td>
<td>90.8±0.6</td>
<td>92.5±0.9</td>
</tr>
<tr>
<td>DGI</td>
<td>81.7±0.6</td>
<td>71.5±0.7</td>
<td>77.3±0.6</td>
<td>75.9±0.6</td>
<td>83.1±0.5</td>
<td>90.0±0.3</td>
<td>91.3±0.4</td>
</tr>
<tr>
<td>GMI</td>
<td>80.9±0.7</td>
<td>71.1±0.3</td>
<td>77.0±0.2</td>
<td>76.8±0.1</td>
<td>85.1±0.1</td>
<td>90.1±0.0</td>
<td>OOM</td>
</tr>
<tr>
<td>MVGRL</td>
<td>82.9±0.7</td>
<td>72.6±0.7</td>
<td>79.4±0.3</td>
<td>79.0±0.6</td>
<td>87.3±0.3</td>
<td>88.4±0.3</td>
<td>92.6±0.4</td>
</tr>
<tr>
<td>GRACE</td>
<td>80.0±0.4</td>
<td>71.7±0.6</td>
<td>79.5±1.1</td>
<td>71.8±0.4</td>
<td>81.8±1.0</td>
<td>90.1±0.8</td>
<td>92.3±0.6</td>
</tr>
<tr>
<td>GCA</td>
<td>81.0±0.4</td>
<td>71.9±0.5</td>
<td>80.5±1.1</td>
<td>80.8±0.4</td>
<td>87.1±1.0</td>
<td>91.3±0.4</td>
<td>93.1±0.3</td>
</tr>
<tr>
<td>SubG-Con</td>
<td>82.5±0.3</td>
<td>70.8±0.3</td>
<td>73.1±0.5</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
<td>OOM</td>
</tr>
<tr>
<td>DIMP</td>
<td>83.3±0.5</td>
<td>73.3±0.5</td>
<td>81.4±0.5</td>
<td>83.3±0.4</td>
<td>88.7±0.2</td>
<td>92.1±0.5</td>
<td>94.2±0.4</td>
</tr>
</tbody>
</table>

Table 4: Node Clustering Results in Terms of NMI and ARI.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Cora NMI</th>
<th>Cora ARI</th>
<th>CiteSeer NMI</th>
<th>CiteSeer ARI</th>
<th>Pubmed NMI</th>
<th>Pubmed ARI</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-means</td>
<td>0.321</td>
<td>0.230</td>
<td>0.305</td>
<td>0.279</td>
<td>0.001</td>
<td>0.002</td>
</tr>
<tr>
<td>Spectral</td>
<td>0.127</td>
<td>0.031</td>
<td>0.056</td>
<td>0.010</td>
<td>0.042</td>
<td>0.002</td>
</tr>
<tr>
<td>BigClam</td>
<td>0.007</td>
<td>0.001</td>
<td>0.036</td>
<td>0.007</td>
<td>0.006</td>
<td>0.003</td>
</tr>
<tr>
<td>GraphEnc</td>
<td>0.109</td>
<td>0.006</td>
<td>0.033</td>
<td>0.010</td>
<td>0.209</td>
<td>0.184</td>
</tr>
<tr>
<td>DeepWalk</td>
<td>0.327</td>
<td>0.243</td>
<td>0.088</td>
<td>0.092</td>
<td>0.279</td>
<td>0.299</td>
</tr>
<tr>
<td>GAE</td>
<td>0.429</td>
<td>0.347</td>
<td>0.176</td>
<td>0.124</td>
<td>0.277</td>
<td>0.279</td>
</tr>
<tr>
<td>VGAE</td>
<td>0.436</td>
<td>0.346</td>
<td>0.156</td>
<td>0.093</td>
<td>0.229</td>
<td>0.213</td>
</tr>
<tr>
<td>MGAE</td>
<td>0.511</td>
<td>0.445</td>
<td>0.412</td>
<td>0.414</td>
<td>0.282</td>
<td>0.248</td>
</tr>
<tr>
<td>ARGA</td>
<td>0.449</td>
<td>0.352</td>
<td>0.350</td>
<td>0.341</td>
<td>0.276</td>
<td>0.291</td>
</tr>
<tr>
<td>ARVGA</td>
<td>0.450</td>
<td>0.374</td>
<td>0.261</td>
<td>0.245</td>
<td>0.117</td>
<td>0.078</td>
</tr>
<tr>
<td>GALA</td>
<td>0.577</td>
<td>0.511</td>
<td>0.441</td>
<td>0.446</td>
<td>0.327</td>
<td>0.321</td>
</tr>
<tr>
<td>MVGRL</td>
<td>0.572</td>
<td>0.495</td>
<td>0.469</td>
<td>0.449</td>
<td>0.322</td>
<td>0.296</td>
</tr>
<tr>
<td>DIMP</td>
<td>0.581</td>
<td>0.522</td>
<td>0.471</td>
<td>0.471</td>
<td>0.346</td>
<td>0.328</td>
</tr>
</tbody>
</table>

Table 5: Graph Classification Results in Terms of Accuracy.

<table>
<thead>
<tr>
<th>Method</th>
<th>MUTAG Accuracy</th>
<th>PTC-MR Accuracy</th>
<th>IMDb-B Accuracy</th>
<th>IMDb-M Accuracy</th>
<th>RDT-B Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>GraphSage</td>
<td>85.1±7.6</td>
<td>63.9±7.7</td>
<td>72.3±5.3</td>
<td>50.9±2.2</td>
<td>-</td>
</tr>
<tr>
<td>GCN</td>
<td>85.6±5.8</td>
<td>64.2±4.3</td>
<td>74.0±3.4</td>
<td>51.9±3.8</td>
<td>50.0±0.0</td>
</tr>
<tr>
<td>GIN</td>
<td>89.4±5.6</td>
<td>64.6±7.0</td>
<td>75.1±5.1</td>
<td>52.3±2.8</td>
<td>92.1±2.5</td>
</tr>
<tr>
<td>GAT</td>
<td>89.4±6.1</td>
<td>66.7±5.1</td>
<td>70.5±2.3</td>
<td>47.8±3.1</td>
<td>85.2±3.3</td>
</tr>
<tr>
<td>DeepWalk</td>
<td>83.7±1.5</td>
<td>57.9±1.3</td>
<td>50.7±0.3</td>
<td>34.7±0.2</td>
<td>-</td>
</tr>
<tr>
<td>node2vec</td>
<td>72.6±10.0</td>
<td>58.6±8.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>sub2vec</td>
<td>61.1±15.0</td>
<td>60.0±6.4</td>
<td>55.3±1.5</td>
<td>36.7±0.8</td>
<td>71.5±0.4</td>
</tr>
<tr>
<td>graph2vec</td>
<td>83.2±9.6</td>
<td>60.2±6.9</td>
<td>71.1±0.5</td>
<td>50.4±0.9</td>
<td>75.8±1.0</td>
</tr>
<tr>
<td>Infograph</td>
<td>89.0±11.1</td>
<td>61.7±14.4</td>
<td>73.0±0.9</td>
<td>49.7±0.5</td>
<td>82.5±1.4</td>
</tr>
<tr>
<td>MVGRL</td>
<td>89.7±1.1</td>
<td>62.5±1.7</td>
<td>74.2±0.7</td>
<td>51.2±0.5</td>
<td>84.5±0.6</td>
</tr>
<tr>
<td>GraphCL</td>
<td>86.8±1.3</td>
<td>71.1±0.4</td>
<td>-</td>
<td>89.5±0.8</td>
<td>-</td>
</tr>
<tr>
<td>DIMP</td>
<td>91.5±1.1</td>
<td>64.2±1.2</td>
<td>74.8±0.8</td>
<td>52.0±0.6</td>
<td>91.9±0.6</td>
</tr>
</tbody>
</table>
Theoretical Analysis

Diverse Message Passing can prevent over-smoothing issue

Semi-supervised Task
\[h^k_v = \sigma \left(\left(c^k_{vv} \odot h^{k-1}_v \right) + \sum_{u \in \mathcal{N}(v)} c^k_{uv} \odot h^{k-1}_u \right) W^k \].

The connection between learned propagation weights and graph partition

Self-supervised Task
\[h^k_v = \sigma \left(\left(m^k_{vv} + \sum_{u \in \mathcal{N}(v)} m^k_{uv} \right) W^k \right) \]
\[m^k_{uv} = \frac{h^{k-1}_v \odot h^{k-1}_u}{\langle h^{k-1}_v, h^{k-1}_u \rangle} \].

The connection between inner-product message and community detection
Theoretical Analysis

Diverse Message Passing can prevent over-smoothing issue

Semi-supervised Task
\[h_v^k = \sigma \left(\left(\mathbf{c}_{vv} \odot h_v^{k-1} + \sum_{u \in \mathcal{N}(v)} \mathbf{c}_{uv} \odot h_u^{k-1} \right) \mathbf{W}^k \right) \]

The connection between learned propagation weights and graph partition

Self-supervised Task
\[h_v^k = \sigma \left(\left(\mathbf{m}_{vv}^k + \sum_{u \in \mathcal{N}(v)} \mathbf{m}_{uv}^k \right) \mathbf{W}^k \right) \quad \mathbf{m}_{uv}^k = \frac{h_v^{k-1} \odot h_u^{k-1}}{\langle h_v^{k-1}, h_u^{k-1} \rangle} \]

The connection between inner-product message and community detection
Learned propagation weights vs. Graph partition

Theorem 1. The Uniform Message Passing in Eq. (2) with learnable weights c_{uv} is the gradient descent algorithm of the following objective function with node attribute X being the initialization of H.

$$
\min_{C, H} \sum_{u,v} \left(b_{uv} c_{uv} + \gamma c_{uv}^2 \right) + 2tr(H^T L_C H),
$$

where $b_{uv} = g(a_{uv}, \text{dis}(x_i, x_j))$ denotes the similarity between nodes u and v, according to both the topology a_{uv} and the distance between attributes $\text{dis}(x_i, x_j)$. $A = [a_{uv}]$ is the adjacency matrix of G. C represents the collection of c_{uv}, i.e., the adjacency matrix of the learned graph. L_C stands for the Laplacian matrix of the adjacency matrix C.

Theorem 2. [Ky Fan’s Theorem [30]] There exists

$$
\min_{H \in \mathbb{R}^{N \times F}, H^T H = I} \sum_{f=1}^{F} \sigma_f(L_C),
$$

where $\sigma_f(L_C)$ denotes the f^{th} smallest eigenvalue of the Laplacian matrix L_C.

Theorem 3. [[31, 32]] The multiplicity F of the eigenvalue 0 of the Laplacian matrix L_C equals to the number of connected components in the graph, whose similarity matrix is C.

Learned propagation weights vs. Graph partition

Theorem 1. The Uniform Message Passing in Eq. (2) with learnable weights c_{uv} is the gradient descent algorithm of the following objective function with node attribute X being the initialization of H.

$$h_v^k = \sigma \left(c_{uv}^k h_{uv}^{k-1} + \sum_{u \in \mathcal{N}(v)} c_{uv}^k h_u^{k-1} \right) W^k,$$

$$\min_{C,H} \sum_{u,v} \left(b_{uv} c_{uv} + \gamma c_{uv}^2 \right) + 2tr(H^T L_C H),$$

s.t. $\forall u \sum c_{uv} = 1$, $0 \leq c_{uv} \leq 1$, $H \in \mathbb{R}^{N \times F}$,

where $b_{uv} = g(a_{uv}, \text{dis}(x_i, x_j))$ denotes the similarity between nodes u and v, according to both the topology a_{uv} and the distance between attributes $\text{dis}(x_i, x_j)$. $A = [a_{uv}]$ is the adjacency matrix of G. C represents the collection of c_{uv}, i.e., the adjacency matrix of the learned graph. L_C stands for the Laplacian matrix of the adjacency matrix C.

Theorem 2. [Ky Fan’s Theorem [30]] There exists

$$\min_{H \in \mathbb{R}^{N \times F}, H^T H = I} tr(H^T L_C H) = \sum_{f=1}^F \sigma_f(L_C),$$

where $\sigma_f(L_C)$ denotes the f^{th} smallest eigenvalue of the Laplacian matrix L_C.

Theorem 3. [[31], [32]] The multiplicity F of the eigenvalue 0 of the Laplacian matrix L_C equals to the number of connected components in the graph, whose similarity matrix is C.
Learned propagation weights vs. Graph partition

Theorem 1. The Uniform Message Passing in Eq. (2) with learnable weights c_{uv} is the gradient descent algorithm of the following objective function with node attribute X being the initialization of H.

$$
\begin{equation}
 h^k_v = \sigma \left(\left(c^k_{uv} h^{k-1}_v + \sum_{u \in N(v)} c^k_{uv} h^{k-1}_u \right) W^k \right),
\end{equation}
$$

$$
\begin{equation}
 \min_{C, H} \sum_{u,v} \left(b_{uv} c_{uv} + \gamma c^2_{uv} \right) + 2\text{tr}(H^T L_C H),
\end{equation}
$$

\begin{equation}
 \text{s.t. } \forall u \sum c_{uv} = 1, 0 \leq c_{uv} \leq 1, H \in \mathbb{R}^{N \times F},
\end{equation}

where $b_{uv} = g(a_{uv}, \text{dis}(x_i, x_j))$ denotes the similarity between nodes u and v, according to both the topology a_{uv} and the distance between attributes $\text{dis}(x_i, x_j)$. $A = [a_{uv}]$ is the adjacency matrix of G. C represents the collection of c_{uv}, i.e., the adjacency matrix of the learned graph. L_C stands for the Laplacian matrix of the adjacency matrix C.

Theorem 2. [Ky Fan’s Theorem [30]] There exists

$$
\begin{equation}
 \min_{H \in \mathbb{R}^{N \times F}, H^T H = I} \text{tr}(H^T L_C H) = \sum_{f=1}^{F} \sigma_f(L_C),
\end{equation}
$$

where $\sigma_f(L_C)$ denotes the f^{th} smallest eigenvalue of the Laplacian matrix L_C.

Theorem 3. [[31, 32]] The multiplicity k of the eigenvalue 0 of the Laplacian matrix L_C equals to the number of connected components in the graph, whose similarity matrix is C.

Learned propagation weights vs. Graph partition

Theorem 1. The Uniform Message Passing in Eq. (2) with learnable weights c_{uv} is the gradient descent algorithm of the following objective function with node attribute X being the initialization of H.

\[
\begin{align*}
\min_{C, H} & \sum_{u,v} (b_{uv}c_{uv} + \gamma c_{uv}^2) + 2\text{tr}(H^T L_C H), \\
\text{s.t.} & \forall u \sum c_{uv} = 1, \ 0 \leq c_{uv} \leq 1, \ H \in \mathbb{R}^{N \times F},
\end{align*}
\]

where $b_{uv} = g(a_{uv}, dis(x_i, x_j))$ denotes the similarity between nodes u and v, according to both the topology a_{uv} and the distance between attributes $dis(x_i, x_j)$. $A = [a_{uv}]$ is the adjacency matrix of G. C represents the collection of c_{uv}, i.e., the adjacency matrix of the learned graph. L_C stands for the Laplacian matrix of the adjacency matrix C.

Theorem 2. [Ky Fan’s Theorem [30]] There exists

\[
\min_{H \in \mathbb{R}^{N \times F}, H^T H = I} \text{tr}(H^T L_C H) = \sum_{f=1}^{F} \sigma_f(L_C),
\]

where $\sigma_f(L_C)$ denotes the f^{th} smallest eigenvalue of the Laplacian matrix L_C.

Theorem 3. [[31, 32]] The multiplicity k of the eigenvalue 0 of the Laplacian matrix L_C equals to the number of connected components in the graph, whose similarity matrix is C.

Learned propagation weights vs. Graph partition

\[
\begin{align*}
\mathbf{h}_v^k &= \sigma \left(c_{uv}^k \mathbf{h}_v^{k-1} + \sum_{u \in \mathcal{N}(v)} c_{uv}^k \mathbf{h}_u^{k-1} \right) \mathbf{W}^k,
\end{align*}
\]
Learned propagation weights vs. Graph partition

Theorem 4. The Uniform Message Passing in Eq. (2) actually partitions graph into F connected components based on the similarity $b_{uv} = g(a_{uv}, \text{dis}(x_i, x_j))$ via

$$\min_{C} \sum_{u,v} (b_{uv}c_{uv} + \gamma c_{uv}^2)$$

(12)

$$s.t. \forall u \sum_c c_{uv} = 1, 0 \leq c_{uv} \leq 1, \text{rank}(L_C) = N - F.$$

(13)

Theorem 5. The Diverse Message Passing in Eq. (4) actually partitions graph into 2 connected components (F groups) based on each similarity $b^{(f)}_{uv} = g(a_{uv}, \text{dis}(x_{ij}, x_{jj}))$ via

$$\min_{C^{(f)}} \sum_{u,v} \left(b^{(f)}_{uv}c^{(f)}_{uv} + \gamma (c^{(f)}_{uv})^2 \right), f = 1, ..., F.$$

(14)

$$s.t. \forall u \sum_c c^{(f)}_{uv} = 1, 0 \leq c^{(f)}_{uv} \leq 1, \text{rank}(L^{(f)}_C) = N - 2.$$

(15)
Theoretical Analysis

Diverse Message Passing can prevent over-smoothing issue

Semi-supervised Task

$$h^k_v = \sigma \left(\left[c^k_{vv} \odot h^{k-1}_v \right] + \sum_{u \in \mathcal{N}(v)} \left[c^k_{uv} \odot h^{k-1}_u \right] W^k \right).$$

The connection between learned propagation weights and graph partition

Self-supervised Task

$$h^k_v = \sigma \left(\left[m^k_{vv} \right] + \sum_{u \in \mathcal{N}(v)} \left[m^k_{uv} \right] W^k \right), \quad m^k_{uv} = \frac{h^{k-1}_v \odot h^{k-1}_u}{\langle h^{k-1}_v, h^{k-1}_u \rangle},$$

The connection between inner-product message and community detection
Inner-product message vs Community detection

Theorem 1. The diverse and interactive message passing in Eqs. (7) and (8) is equivalent to the expectation-maximization (EM) algorithm to maximize the likelihood of generating graph from community structure \(\{ \mathbf{h}_u \}_{u=1}^N \) via Poisson distribution in (Ball, Karrer, and Newman 2011) as follows

\[
P \left(\mathcal{G} \mid \{ \mathbf{h}_u \}_{u=1}^N \right) = \prod_{u < v} \frac{(\mathbf{h}_u^T \mathbf{h}_v)^{a_{uv}}}{a_{uv}!} \exp \left(-\mathbf{h}_u^T \mathbf{h}_v \right) \tag{13}
\]

\[
\times \prod_u \frac{(1/2 \mathbf{h}_u^T \mathbf{h}_u)^{a_{uu}/2}}{(a_{uu}/2)!} \exp \left(-\frac{1}{2} \mathbf{h}_u^T \mathbf{h}_u \right).
\]

\[
\log P \left(\mathcal{G} \mid \{ \mathbf{h}_u \} \right) \geq \sum_{u,v,z} \left[a_{uv} q_{uv}(z) \log \frac{h_{uz} h_{vz}}{q_{uv}(z)} - h_{uz} h_{vz} \right]:
\]

Message

\[
m_{uv}^k = \frac{\mathbf{h}_v^{k-1} \otimes \mathbf{h}_u^{k-1}}{\langle \mathbf{h}_v^{k-1}, \mathbf{h}_u^{k-1} \rangle},
\]

Passing

\[
h_v^k = \sigma \left(m_{vv}^k + \sum_{u \in \mathcal{N}(v)} m_{uv}^k \mathbf{W}^k \right)
\]

\[
q_{uv}(z) = \frac{h_{uz} h_{vz}}{\sum_z h_{uz} h_{vz}} = \frac{h_{uz} h_{vz}}{\langle \mathbf{h}_u, \mathbf{h}_v \rangle}.
\]

\[
h_{uz} = \frac{\sum_v a_{uv} q_{uv}(z)}{\sum_v h_{vz}}.
\]
Conclusions

Semi-supervised Task

\[h_u^k = \sigma \left(c_{uu}^k \odot h_u^{k-1} + \sum_{u \in \mathcal{N}(v)} c_{uv}^k \odot h_u^{k-1} \right) W^k \]

Learned propagation weights vs. Graph partition

Self-supervised Task

\[h_v^k = \sigma \left(m_{vv}^k + \sum_{u \in \mathcal{N}(v)} m_{uv}^k \right) W^k \]

\[m_{uv}^k = \left< h_v^{k-1}, h_u^{k-1} \right> \]

Inner-product message vs. Community detection

Diverse Message Passing can prevent over-smoothing issue