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Abstract

Graph Contrastive Learning (GCL), a Self-Supervised
Learning (SSL) architecture tailored for graphs, has shown
notable potential for mitigating label scarcity. Its core idea
is to amplify feature similarities between the positive sample
pairs and reduce them between the negative sample pairs.
Unfortunately, most existing GCLs consistently present sub-
optimal performances on both homophilic and heterophilic
graphs. This is primarily attributed to two limitations of
positive sampling, that is, incomplete local sampling and
blind sampling. To address these limitations, this paper in-
troduces a novel GCL framework with an adaptive positive
sampling module, named grapH contrastivE Adaptive pos-
iTive Samples (HEATS). Motivated by the observation that
the affinity matrix corresponding to optimal positive sam-
ple sets has a block-diagonal structure with equal weights
within each block, a self-expressive learning objective in-
corporating the block and idempotent constraint is pre-
sented. This learning objective and the contrastive learn-
ing objective are iteratively optimized to improve the adapt-
ability and robustness of HEATS. Extensive experiments on
graphs and images validate the effectiveness and generality
of HEATS.

1. Introduction
Self-supervised learning (SSL), has been a highly regarded
methodology within the unsupervised learning field. It gen-
erates supervision signals for model training by extracting

*Chuan Wang and Liang Yang are corresponding authors.

latent data patterns from the unannotated data [8]. As a no-
table branch of SSL, Contrastive Learning (CL) emphasizes
producing the supervision signals using the established rule,
i.e., bringing similar samples (positive samples) closer and
pushing dissimilar samples (negative samples) apart. Based
on this rule, Graph Contrastive Learning (GCL) extends the
applied range to non-Euclidean graphs by employing tech-
niques like graph augmentations and graph encoders. It has
achieved remarkable performance on various downstream
tasks, such as node classification [15, 32].

To generate the discriminative node representations from
GCLs, the positive sample set of each node should contain
all nodes from the same class (i.e., TRUE positive samples),
while the negative ones should consist of nodes from differ-
ent classes (i.e., TRUE negative samples). Subsequently, to
extend the TRUE positive sample sets, certain research en-
deavors in GCLs focus on identifying semantically relevant
samples within node neighborhoods [12, 20, 26, 30, 34],
leveraging the homophily assumption [1, 16]. Despite their
consistent performance improvements on the homophilic
graphs, where adjacent nodes typically belong to the same
class, the improvements are limited. More critically, their
robustness to the heterophilic graphs, where adjacent nodes
tend to be from different classes, is severely constrained.

These drawbacks are attributed to two limitations of pos-
itive sampling. (1) Incomplete local sampling. Most graphs
are sparse, and nodes of the same class are typically situated
beyond each other’s neighborhoods. Therefore, the positive
sample sets for most GCLs tend to be incomplete, which
could lead to the absence of shared information between the
same class. (2) Blind sampling. In dealing with blindness
caused by a lack of supervised guidance, the endeavors of



GCLs to establish the criterion for positive sampling beyond
the neighborhoods are insufficient. Concretely, most GCLs
always center on exploring semantic relevance in neighbor-
hoods utilizing various homophily measures [6, 12, 34]. In
fact, these criteria do not apply beyond neighborhoods be-
cause of their local property. Due to the incompleteness
and blindness of positive sampling, GCLs can not obtain all
TRUE positive sample pairs. This hampers the representa-
tion ability of GCLs, resulting in their poor performances
on both homophilic and heterophilic graphs.

To address these deficiencies, this paper proposes a novel
GCL framework, named grapH contrastivE Adaptive posi-
Tive Sampling (HEATS). The idea is to devise a criterion to
guide global positive sampling. Toward this end, the char-
acteristic of an affinity matrix (termed positive sample ma-
trix) associated with the optimal positive sample set is first
investigated. The conclusion drawn is that the optimal posi-
tive sample matrix obeys the block diagonal property (BDP)
and is idempotent, as depicted in Figure 1(a). To be specific,
this matrix can be decomposed into a batch of diagonal sub-
matrices (blocks), where each block characterizes seman-
tic relevance among nodes from the same class. Moreover,
each block is fully connected and the weights within it are
equal. Motivated by this, a novel positive sampling module
is presented, focusing on constructing such block-diagonal
and idempotent affinity matrices. To capture long-range de-
pendencies, positive sample matrices are generated by opti-
mizing a self-expressive objective incorporating block and
idempotent constraints, leveraging the features of all nodes
within batches. In light of the intrinsic denoising capabil-
ity of GCLs [14, 35], an alternating update mechanism of
matrix construction and contrastive optimization is intro-
duced to obtain reciprocal benefits, thereby improving the
robustness and adaptability of HEATS. In theory, HEATS
has a stricter lower bound on the mutual information (MI)
between node attributes and node embeddings compared to
the baselines that select positive samples from neighbor-
hoods, which guarantees its effectiveness and robustness.

The contributions of this paper are summarized below.
• We investigate the characteristics of an affinity matrix as-

sociated with the optimal positive sample set.
• We present a novel graph contrastive learning framework

HEATS with an adaptive positive sampling module.
• We theoretically analyze the effectiveness and robustness

of the proposed HEATS from a Mutual Information Max-
imization perspective.

• We conduct extensive evaluations to demonstrate the su-
perior performance and generality of HEATS.

2. Preliminaries
This section starts by explaining the notations used through-
out the paper. It then introduces the basic concepts in Graph
Contrastive Learning (GCL).

2.1. Notations

Capital italic letters stand for sets (e.g., set V), capital bold
letters represent matrices (e.g., matrix Q), bold lowercase
letters term vectors (e.g., vector qv), and lowercase letters
denote scalars (e.g., scalar qv,u).

For generality, this paper focuses on attribute undirected
graphs. It considers a graph G(V, E ,X), where the node set
V contains n node instances {(xv,yv)}v∈V . xv ∈ Rf and
yv ∈ Rc denote the attribute and label vector of the node v,
respectively. The node embeddings H ∈ Rn×d are learned
on entire graphs in an unsupervised manner, then utilized
in downstream tasks, such as node classification, where the
labels Y are used for fine-tuning linear classifiers.

2.2. Graph Contrastive Learning

Being typical of a graph-based self-supervised learning SSL
architecture, GCL aims to generate supervised signals based
on a predefined rule. It involves bringing the similar sam-
ples (i.e., positive samples) closer while pushing the dissim-
ilar samples (i.e., negative samples) apart simultaneously.
Take GRACE [32], which is an oft-discussed baseline, as
an example, its architecture is described below.

In line with SimCLR [2], a contrastive learning baseline
in computer vision (CV), GRACE adopts a two-channel ar-
chitecture. For graph G(V, E ,X), both channels are respon-
sible for generating node embeddings (represented as H and
H̃) for its two augmented graphs through graph augmenta-
tions [32] and encoders [11]. The description of these pro-
cesses can be found in the appendix.

Once the node features are obtained, InfoNCE [22] loss,
is calculated as a guide for its update. For node v, the pos-
itive sample of the anchor node (hv) is the same node (h̃v)
in another view, while the negative samples are other nodes
in both views. This contrastive loss (denoted as ℓgc) can be
formulated as

ℓgc(hv, h̃v) = −log
pov

pov +nev
,

pov = e
θ(hv,h̃v)

τ , nev =
∑

t∈V \v

e
θ(hv,ht)

τ +e
θ(hv,h̃t)

τ ,
(1)

where θ(hv, h̃v) = s(f(hv), f(h̃v)), s(, ) terms the cosine
similarity, and f(·) denotes the projection head [2], which
is a two-layer multilayer perceptron (MLP). τ represents a
scalar, which is positively correlated with the uniformity of
the feature distribution. The overall contrastive loss is set as
the average over all nodes based on the mutually symmetric
form of Equation 1. This can be formulated as

Lgrace =
1

2|V |
∑
v∈V

(
ℓgc(hv, h̃v) + ℓgc(h̃v,hv)

)
. (2)

In addition to the above pairwise positive sampling, sev-
eral local positive sampling techniques have been presented
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Figure 1. Overview of the proposed GCL framework, named HEATS, and its design motivation. (a) An intuitive example of the optimal
positive sample matrix for GCLs, where the colors of nodes stand for classes. (b) The proposed HEATS framework with adaptive positive
sampling. The optimal positive sample set should consist of all nodes from the same class. Accordingly, the optimal positive sample matrix
should be block-diagonal, where each block is fully connected and weights within it are equal.

[12, 34]. They propose to add the specified neighbor nodes
into the positive sample sets, leveraging the homophily as-
sumption [1, 16].

3. Methodology

In this section, following the introduction of design motiva-
tion, a graph contrastive learning (GCL) framework, named
grapH contrastivE Adaptive posiTive Sampling (HEATS),
is devised. Subsequently, theoretical analysis of its efficacy
are presented.

3.1. Motivation

As previously discussed in the introduction, existing posi-
tive sampling strategies utilized in GCLs tend to be incom-
plete and blind, leading to a loss of discriminative power of
node representations.

Definition 1. Block Diagonal Property (BDP) [9]. The
given matrix Z ∈ Rn×n satisfies block diagonal property
if it can be decomposed into submatrices as follows:

Z =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · Zk

 ,

where Zi ∈ Rni×ni stands for the i-th square submatrix
(block), and

∑k
i=0 ni = n.

An intuitive and optimal solution is provide target nodes
with positive sample sets that consists of all nodes from the
same class (i.e., optimal positive sample set), as depicted in
Figure 1(a). It is evident that the relationships among these
positive samples can be succinctly expressed as a block di-
agonal matrix, where each block describes the relationships
among a class of nodes. Additionally, this matrix should ex-
hibit the following properties: each block is full connected

and weights within it are equal. Therefore, the optimal pos-
itive sample matrix should be formulated as:

Z =


1
n1

1n11
⊤
n1

0 · · · 0

0 1
n2

1n21
⊤
n2

· · · 0
...

...
. . .

...
0 0 · · · 1

nk
1nk

1⊤
nk

 , (3)

where 1ni ∈ Rni denotes an all-one column vector.

3.2. HEATS framework

Based on the above analysis, this paper devises a novel GCL
framework HEATS, which directs the positive sampling by
employing constructed block diagonal affinity matrices. As
overviewed in Figure 1(b), HEATS consists of two key com-
ponents: (1) Matrix Construction and (2) Contrastive Opti-
mization. These two components engage in an alternating
refinement process, gradually converging to the optimum.

3.2.1 Matrix Construction

This component aims to construct affinity matrices, which
possess inter-class sparsity and intra-class connectivity (i.e.,
obey BDP), to guide the selection of positive samples. Par-
ticularly, it adopts a self-expressive learning objective, com-
monly utilized in subspace clustering [13], to acquire such
affinity matrices. This objective posits that each sample can
be represented by linearly combining all other samples in
the same subspace (i.e., block). This objective can be for-
mulated as the following equation:

argmin
Z,E

O(Z) + λT (E), s.t.X = ZX+E, (4)

where Z denotes the affinity matrix, which depicts the com-
bination coefficients, and E stands for the noise. Moreover,
O and T term the constraint on affinity matrices and noise
matrices, respectively. λ is a hyperparameter that balances
the two terms of the objective function.



To obtain a high-quality affinity matrix, as expressed in
Equation 3, several constraints should be incorporated into
the learning objective: idempotent and k-block. Firstly, the
affinity matrix Z in Equation 3 is idempotent [27] because
of Zi = Zi × Zi = Z2

i . Secondly, the number of blocks in
the affinity matrices should be controlled as k. Furthermore,
the affinity matrices also should be normalized, symmetric,
and non-negative. To achieve these properties and enhance
effectiveness, the self-expressive learning objective can be
reformulated as:

argmin
Z,S

∥Z− S∥2F + γ∥S∥id + λ∥E∥2,1,

s.t. H = ZH+E,

S1n = 1n,S = S⊤,S ≥ 0,Tr(S) = k,

(5)

where S denotes an intermediate-term to mitigate the loss of
representation capability. And, ∥S∥id = ∥S − S2∥2F terms
the idempotent constraint and γ is a scalar that controls the
impacts of this term. The terms S1n = 1n, S = S⊤, and
S ≥ 0 stand for the column-normalized, symmetric, and
nonnegative constraints, respectively. Based on the above
constraints, the term Tr(S) = k is introduced to make the
matrix have k blocks. ∥E∥2,1 =

∑n
j=1

√∑n
i=1([E]ij)2 is

the ℓ2,1-norm of noise, which characterizes sample-specific
outliers. Finally, the affinity matrix, a guide of positive sam-
pling, can be obtained by optimizing Equation 5. Please re-
fer to the appendix for optimization details. Once the affin-
ity matrix M (i.e., Z or S) is obtained, it is necessary to
sparsify it to enhance training efficiency. The sparsification
process can be formulated as:

mv,u =

{
0, mv,u <β,

mv,u, otherwise.

where β denotes the threshold parameter, which is utilized
to indicate filter out the values below it.

Theorem 1. The affinity matrix M, which is generated by
optimizing Equation (5), satisfies the BDP in Definition 1.

Theorem 1 theoretically demonstrates that the proposed
matrix construction strategy aligns with the motivation. For
the proof, please refer to the appendix.

3.2.2 Contrastive Optimization

This subsection delineates the methodology for formulating
the contrastive loss leveraging the constructed affinity ma-
trix M. Firstly, it is utilized to direct the sampling process.
By identifying non-zero values in the vector mv , nodes that
are semantically associated with node v can be marked out.
These nodes collectively constitute the positive sample set
of node v, denoted as PM

v = {u |mv,u>0}. Following the
baselines [2, 32], the negative sample set is composed of

the remaining nodes, that is NM
v = V \ {PM

v ∪ v}. Sec-
ondly, the matrix M is also interpreted as a measure of the
relationships, and the values within it are treated as weights.

In implementation, HEATS follows the baseline GRACE
[32], which is mentioned in Section 2.2. Therefore, the con-
trastive loss of HEATS with respect to anchor node hv can
be reformulated from Equation 1 as

ℓht(hv, h̃v) = −log
pov

pov +nev
,

pov = e
θ(hv,h̃v)

τ +
∑

u∈PM
v

mv,u · e
θ(hv,hu)

τ ,

nev =
∑

t∈NM
v

e
θ(hv,h̃t)

τ +
∑

t∈NM
v

e
θ(hv,ht)

τ ,

(6)

The overall contrastive loss of HEATS, denoted as Lheats,

Lheats =
1

2|V |
∑
v∈V

(
ℓht(hv, h̃v) + ℓht(h̃v,hv)

)
. (7)

In comparison to the existing GCLs [12, 20, 34], the pro-
posed HEATS exhibits several characteristics. (1) General-
ity. Since the positive sample matrices are constructed glob-
ally, that is, independent of the underlying graph topology,
HEATS can be reasonably extended to non-graph domains
such as computer vision (CV). (2) Robustness. Due to the
fact that the positive sample matrix is obtained by optimiz-
ing a robust self-expressive learning objective, as formu-
lated in Equation (5), the robustness is strengthened through
positive sampling on these matrices.

Theorem 2. The contrastive loss of HEATS (Lheats) is a
more stringent estimate of mutual information (MI) between
node attributes and embeddings than that of the local base-
line HomoGCL [12], that is,

Lhomogcl ≤ Lheats ≤ I(X;H, H̃), (8)

where X denotes the node attributes, and H and H̃ repre-
sent the node embeddings in two augmented views.

Theorem 2 demonstrates that the proposed HEATS pro-
vides a refined approximation to the TRUE mutual informa-
tion, enabling it to promote model robustness and stability.

3.2.3 Alternating Update

To enhance the adaptivity of HEATS, the two fundamental
components, matrix construction and contrastive optimiza-
tion, engage in iterative updates in an alternating fashion, as
visually depicted in Figure 1(b). The former is tasked with
solving Equation 5 to construct positive sample matrices in
the feature space. The latter focuses on representation (fea-
ture) learning by optimizing the contrastive loss using these



Table 1. Statistics of twelve graph datasets. Homophily is the edge
homophily in [17].

Dataset Nodes Edges Features Classes Homophily

Cora 2,708 5,278 1,433 7 0.81
CiteSeer 3,327 4,552 3,703 6 0.74
PubMed 19,717 44,324 500 3 0.80
Wiki-CS 11,701 216,123 300 10 0.65
Computers 13,752 245,861 767 10 0.78
Photo 7,650 238,163 745 8 0.83

Cornell 183 295 1,703 5 0.13
Texas 183 309 1,703 5 0.11
Wisconsin 251 499 1,703 5 0.20
Chameleon 2,277 36,101 2,325 5 0.23
Squirrel 5,201 217,073 2,089 5 0.22
Actor 7,600 33,544 931 5 0.22

positive sample matrices, which is formulated as Equation
6. These two components are updated alternately.

The alternating update procedure offers several benefits
to GCLs. (1) Adaptive positive samples. Note that the pos-
itive sample matrices are constructed in the feature space.
Hence, this procedure can continually provide adaptive pos-
itive samples for the subsequent contrastive optimization,
adapting to feature changes. (2) Discriminative node repre-
sentations. GCLs have the denoising ability, to some extent,
which is attributed to the fact that it obtains the invariant in-
formation [28]. As a result, the discriminative feature space
can be provided for the construction of positive sample ma-
trices, eventually resulting in more discriminative features
through contrastive learning. Furthermore, benefits also in-
volve the risk reduction of each component falling into the
local optimum and accelerating the convergence speed.

4. Experiments
In this section, the proposed framework HEATS is validated
by empirically evaluating its performances on node and im-
age classification tasks in the unsupervised setting. Next, an
in-depth understanding of the efficacy of this framework is
provided through several experiment analyses.

4.1. Experiment Setup

Datasets. To illustrate the effectiveness and generality of
the proposed HEATS, twelve non-Euclidean graph datasets,
and three 2-D spatial image datasets are adopted in the ex-
periments. According to graph homophily [17], these graph
datasets can be divided into two categories: six homophilic
graphs, including Cora, CiteSeer, PubMed, Wiki-CS, Com-
puters, and Photo, and six heterophilic graphs, containing
Cornell, Texas, Wisconsin, Chameleon, Squirrel, and Ac-
tor. Moreover, the image datasets are CIFAR-10, STL-10,
and CIFAR-100. The statistics of the graph datasets are pre-
sented in Table 1. Due to space limitations, the introduction
of all datasets is presented in the appendix.
Splitting. To ensure experimental fairness, the dataset split-

ting follows commonly employed schemes. Specifically,
for three homophilic graphs (Cora, CiteSeer, and PubMed)
and all six heterophilic graphs, the training, validation, and
testing sets constitute 48%, 32%, and 20% of the data, re-
spectively. For the remaining homophilic graphs (Wiki-CS,
Computers, and Photo), the proportions amount to 10%,
10% and 80%. Besides, for the CIFAR-10 dataset, 5000 and
1000 images per class are selected for training and testing,
respectively. For the STL-10 dataset, 10500 and 800 images
per class are assigned to the training and testing sets, respec-
tively. For the CIFAR-100 dataset, 500 and 100 images per
class are served in training and testing, respectively.
Baselines. These experiments involve two types of down-
stream tasks: node classification for graphs and image clas-
sification. For the node classification, the baselines include
two types: semi-supervised graph neural networks (GCN
[11], GAT [24] and JKNet [29]), and unsupervised graph
learning models (Deepwalk [18], Node2vec [4], GAE [10],
VGAE [10], DGI [25], MVGRL [5], GRACE [32], GCA
[33], BGRL [21], SELENE [31], and HomoGCL [12]). For
the image classification, the baseline is CL model SimCLR
[2], which is implemented with two backbones (ResNet-18
and ResNet-50) [7]. Please refer to the appendix for an in-
troduction to related works.
Configurations. In the node classification, the proposed
HEATS framework is implemented with the configurations
following GRACE [32]. To be specific, each branch corre-
sponds to an augmented graph, which is initially obtained
through the edge deletion and attribute masking [3], with
the random ratio among {0.2, 0.4, 0.6, 0.8}. Furthermore,
the node features are obtained through a two-layer GCN
[11] encoding and a two-layer MLP [19] projecting, where
both dimensions are 64. The node features are trained by
minimizing the contrastive loss, where the temperature co-
efficient is taken from {0.2, 0.4, 0.6, 0.8, 1}. In this pro-
cess, an Adam optimizer with the learning rate of 0.01
and the weight decay rate among {0, 5 × 10−5} is to be
employed for optimization and regularization, respectively.
Minibatch training is adopted for larger node numbers, such
as PubMed. For the unique parameters of HEATS, namely
γ and λ, both are selected from {1 × 10−3, 1 × 10−2, 1 ×
10−1, 1, 10}. Furthermore, the number of blocks k is se-
lected from a set with no more than the number of classes,
and its impact is analyzed in Section 4.3.2. All experiments
are conducted in PyTorch on a single RTX4090 24GB GPU.
Evaluation Protocol. For both node and image classifica-
tion tasks, the experimental evaluations adopt the standard
linear evaluation protocol [25]. Concretely, all models un-
dergo initial unsupervised pre-training, followed by utilizat-
ing the obtained embeddings to train linear classifiers and
subsequently presenting the test accuracy results. Through-
out the evaluation phases, the Adam optimizer with a learn-
ing rate of 0.01 is utilized. The experiment results are re-



Table 2. Node classification accuracy (mean ± std) is reported for six homophilic datasets. The top-performing unsupervised model is
denoted in bold, and the second-best unsupervised model in underline. The second column specifies the training information.

Model Training Data Cora CiteSeer PubMed Wiki-CS Computers Photo

GCN A, X, Y 85.77± 0.25 73.68± 0.31 88.13± 0.28 76.89± 0.37 86.34± 0.48 92.35± 0.25
GAT A, X, Y 86.37± 0.30 74.32± 0.27 87.62± 0.26 77.42± 0.19 87.06± 0.35 92.64± 0.42
JKNet A, X, Y 85.93± 1.35 74.37± 1.53 87.68± 0.30 79.52± 0.21 85.28± 0.72 92.68± 0.13

DeepWalk A 73.96± 0.12 61.91± 0.42 74.79± 0.98 74.35± 0.06 85.68± 0.06 89.44± 0.11
Node2Vec A 75.87± 0.22 62.54± 0.13 76.49± 0.32 71.79± 0.05 84.39± 0.08 89.67± 0.12
GAE A, X 76.83± 1.22 65.43± 1.13 76.52± 0.33 70.15± 0.01 85.27± 0.19 91.62± 0.13
VGAE A, X 79.36± 0.83 69.18± 0.27 79.17± 0.44 76.63± 0.19 86.37± 0.21 92.20± 0.11
DGI A, X 85.90± 0.57 72.57± 0.23 83.52± 1.24 75.73± 0.13 84.09± 0.39 91.49± 0.25
MVGRL A, X 86.77± 0.33 73.71± 0.48 84.63± 0.73 77.97± 0.18 87.09± 0.27 92.01± 0.13
GRACE A, X 84.79± 0.64 72.94± 0.72 84.51± 0.68 79.16± 0.36 87.21± 0.44 92.65± 0.32
GCA A, X 85.16± 0.51 72.73± 0.45 85.22± 0.73 79.35± 0.12 87.84± 0.27 92.78± 0.17
BGRL A, X 85.37± 0.74 73.45± 0.83 84.61± 0.32 78.74± 0.22 88.92± 0.33 93.24± 0.29
SELENE A, X 85.28± 0.83 73.48± 0.65 84.70± 0.52 78.31± 0.63 88.13± 0.51 92.93± 0.34
HomoGCL A, X 85.02± 0.68 73.67± 0.78 82.33± 0.49 77.47± 0.45 87.84± 0.28 93.59± 0.27

HEATS A, X 87.10± 1.40 75.26± 1.25 85.41± 0.82 79.99± 1.59 89.29± 1.12 94.65± 1.71

ported as an average of over ten random runs.

4.2. Results on benchmark datasets

Results on Homophilic Graphs. Table 2 presents the ex-
perimental results of node classification on six homophilic
graphs. It is evident that compared to all unsupervised base-
line models, the proposed HEATS achieves the best perfor-
mance across all datasets. It even surpasses all supervised
comparison models on datasets other than PubMed. To be
specific, on the CiteSeer dataset, HEATS outperforms the
second-best unsupervised model (i.e., MVGRL) by 1.55%
and the baseline model (i.e., GRACE) by 2.32% in classifi-
cation accuracy. This highlights the effectiveness of HEATS
in exploring positive samples by modeling high-order rela-
tionships.
Results on Homophilic Graphs. A similar phenomenon
can be observed from the experiment results on heterophilic
graphs, as illustrated in Table 3. To be specific, compared to
the baseline model (i.e., GRACE), HEATS achieves perfor-
mance improvements across all datasets. Particularly note-
worthy are improvements in accuracy by 12.11%, 7.29%,
and 15.88% on the Cornell, Texas, and Wisconsin datasets,
respectively. This emphasizes the contribution of the pro-
posed positive sampling based on matrix construction in en-
riching the universality of the baselines. Moreover, HEATS
outperforms other unsupervised baselines on three datasets,
except the Chameleon, Squirrel, and Actor datasets, show-
casing its superior performance.
Visualization. This experiment aims to intuitively demon-
strate the representation ability of the proposed HEATS. For
this purpose, the t-SNE [23] method is exploited to perform
feature reduction and visualization of the trained represen-
tations. Figure 2 exhibits the experiment results (scatter
plots) on three benchmark datasets (i.e., Cora, CiteSeer, and
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Cora CiteSeer Photo

Figure 2. t-SNE visualization of node embeddings from HEATS,
BGRL, and GRACE on Cora, CiteSeer, and Photo datasets.

Photo), where colors stand for the classes of nodes. It can
be observed that compared to all the comparison models
(i.e., GRACE and BGRL), the proposed HEATS framework
is enabled to produce the most informative representations.
As exemplified by the Cora and CiteSeer dataset, compared
to the baseline model (i.e., GRACE), HEATS achieves more
compact clusters in node embeddings. Specifically, the em-
beddings of the same class are closer, while the embeddings
of different classes exhibit more significant differences. The
experiment results emphasize the effectiveness of HEATS
in enhancing representation ability.
Results on Image Datasets. As previously mentioned,
the proposed HEATS designs a positive sampling strategy
from a global perspective, which effectively mitigates graph
structural constraints. In essence, this improves its general-
ity to various domains. To substantiate this claim, the ex-
periment compares a contrastive learning (CL) model tai-
lored for images (i.e., SimCLR) with the proposed variants.



Table 3. Node classification accuracy (mean ± std) is reported for six heterophilic datasets. The top-performing unsupervised model is
denoted in bold, and the second-best unsupervised model in underline. The second column specifies the training information.

Model Training Data Cornell Texas Wisconsin Chameleon Squirrel Actor

GCN A, X, Y 55.14± 7.57 55.68± 9.61 58.42± 5.10 59.82± 2.58 36.89± 1.34 30.64± 1.49
GAT A, X, Y 58.92± 3.32 58.38± 4.45 55.29± 8.71 60.26± 2.50 40.72± 1.55 27.44± 0.89
JKNet A, X, Y 56.49± 3.22 65.35± 4.86 51.37± 3.21 60.31± 2.76 44.24± 2.11 36.47± 0.51

DeepWalk A 39.18± 5.57 46.49± 6.49 33.53± 4.92 47.74± 2.05 32.93± 1.58 22.78± 0.64
Node2Vec A 42.94± 7.46 41.92± 7.76 37.45± 7.09 41.93± 3.29 22.84± 0.72 28.28± 1.27
GAE A, X 58.85± 3.21 58.64± 4.53 52.55± 3.80 33.84± 2.77 28.03± 1.61 28.03± 1.18
VGAE A, X 59.19± 4.09 59.20± 4.26 56.67± 5.51 35.22± 2.71 29.48± 1.48 26.99± 1.56
DGI A, X 63.35± 4.61 60.59± 7.56 55.41± 5.96 39.95± 1.75 31.80± 0.77 29.82± 0.69
MVGRL A, X 64.30± 5.43 62.38± 5.61 62.37± 4.32 51.07± 2.68 35.47± 1.29 30.02± 0.70
GRACE A, X 54.86± 6.95 57.57± 5.68 50.00± 5.83 48.05± 1.81 31.33± 1.22 29.01± 0.78
GCA A, X 55.41± 4.56 59.46± 6.16 50.78± 4.06 49.80± 1.81 35.50± 0.91 29.65± 1.47
BGRL A, X 57.30± 5.51 59.19± 5.85 52.35± 4.12 47.46± 2.74 32.64± 0.78 29.86± 0.75
SELENE A, X 59.94± 5.12 61.87± 4.25 61.87± 4.79 42.13± 2.15 33.28± 0.82 30.12± 0.76
HomoGCL A, X 48.64± 2.59 54.05± 2.32 39.21± 5.75 48.68± 1.16 38.71± 0.85 28.81± 0.78

HEATS A, X 66.97± 6.74 64.86± 4.68 65.88± 5.56 49.96± 1.86 36.24± 1.11 29.91± 1.16

Table 4. Image classification accuracy (mean) of SimCLR and its
HEATS-based variants. ↑ dentoes the performance improvement.

Backbone Method CIFAR-10 STL-10 CIFAR-100

ResNet-18
SimCLR 78.59 78.44 49.60
+HEATS 79.19 78.83 52.62

↑ +0.60 +0.39 +3.02

ResNet-50
SimCLR 75.03 76.73 49.31
+HEATS 77.58 77.80 53.81

↑ +2.55 +1.07 +4.50

The configurations of these variants align with that of the
baselines, including standard parameters such as learning
rate and training epochs. Please refer to the appendix for
experiment setups. Table 4 exhibits the image classifica-
tion results after 30 epochs using ResNet-18 and ResNet-50
backbones. It can be seen that compared to the baseline
(i.e., SimCLR), the proposed HEATS framework consis-
tently improves performance across all three datasets. To
be specific, HEATS showcases superior performance com-
pared to the two baselines utilizing ResNet-18 and ResNet-
50 backbones on the CIFAR-100 dataset by 3.02% and
4.5%, respectively, accentuating the generality to image-
centric tasks. More importantly, it provides valuable in-
sights for applying HEATS in a wide range of domains.

4.3. Further Analysis

4.3.1 Effectiveness Justify

The experiment intends to justify the effectiveness of the
two proposed approaches to enhance positive sampling, i.e.,
matrix construction and alternating updates, to pursue the
block-diagonal matrices. Therefore, three matrices, which
include the adjacent matrix, the matrix computed using the
initial features, and the matrix computed using the features
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Figure 3. Visualization of the adjacent matrices, the matrices com-
puted using the initial features (Matrix 1), and the matrices com-
puted using the learned features after 200 iterations (Matrix 2) on
the Cora and CiteSeer datasets. The nodes are sorted by class. The
weights between nodes are not considered here.

after 200 iterations, are visualized in Figure 3 to provide an
intuitive understanding.

Based on the observations in Figure 3, three significant
conclusions can be drawn. (1) The constructed matrices are
approximately block diagonal. In particular, on all datasets
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Figure 5. Results of GCLs under graph attacks

(i.e., Cora and CiteSeer), the edges between nodes from the
same class outnumber those between nodes from different
classes. This indicates that the proposed HEATS framework
can serve as an effective strategy to obtain more TRUE pos-
itive samples. (2) Compared to the adjacent matrices, the
constructed matrices exhibit denser diagonal blocks. This
implies that the proposed matrix construction approach is
feasible in contrastive learning by offering more TRUE pos-
itive samples beyond graph topology. (3) Compared to the
matrices constructed in the initial feature space, those con-
structed in the updated feature space exhibit a more distinct
block-diagonal structure, e.g., results of the Cora dataset.
This emphasizes the effectiveness of the proposed alternat-
ing update approach. In summary, the experiment confirms
the efficacy of the two proposed approaches in constructing
block-diagonal matrices for positive sample collection.

4.3.2 Hyperparameter Study

The experiment aims to provide a guide on choosing the
parameter k, which represents the number of blocks, by in-
vestigating its impact on the performance. This parameter
is selected from 2 to the number of classes, as setting it to
1 seems ineffective. Figure 4 exhibits the experiment re-
sults on three datasets (i.e., Cora, CiteSeer, and Cornell).
Incorporating the results in Table 2, it can be observed that
HEATS consistently performs well within a specific param-
eter range. For example, on the Cora dataset, when the pa-
rameter selects from the set {4, 5, 6}, HEATS consistently
outperforms the baseline model (i.e., GRACE) by 2.21%,
2.31%, and 2.25%, respectively. This indicates HEATS in-
sensitivity to changes in this parameter. Additionally, with a
small value (e.g., 2), HEATS performs better than the base-
line GRACE, which offers guidance to select the parameter.

4.3.3 Robustness Analysis

This experiment is intended to evaluate the robustness of the
proposed HEATS framework to noise. The topology attack
(adding edges) and the attribute attack (flipping attributes)
are applied to create noisy data on the Cora dataset. Figure
5 shows the performance variation of the GCL, HEATS, and
the baseline GRACE under topology and attribute attacks.

It can be seen from Figure 5a that GRACE is somewhat
resistant to robust against topology attacks, but the perfor-
mance degrades significantly with higher attack levels. For
example, the accuracy decreases by about 2% compared to
the attack-free accuracy at an edge deletion rate of 0.1. This
is attributed to their centers on capturing the invariant infor-
mation from multiple augmented graphs, to some extent, re-
sulting in them being insensitive to topology changes. How-
ever, the accuracy decreases 5% when the edge deletion rate
increases to 0.3. In contrast, HEAT exhibits greater robust-
ness to this attack. Specifically, it achieves about 4.5% in-
crease in accuracy compared to the baseline GRACE when
the edges deletion reaches an extreme 0.2%. This is mainly
due to HEATS incorporating noise simulation and alternat-
ing update approach to extract high-order positive samples,
thereby enhancing the robustness. Furthermore, as shown
in Figure 5b, HEATS consistently outperforms the baseline
GRACE, showcasing its denoising ability.

5. Conclusions
In this paper, a novel graph contrastive learning framework,
named HEATS, is proposed to address two key limitations
of the existing positive sampling techniques: incomplete lo-
cal sampling and blind sampling. Drawing inspiration from
the observation that the affinity matrix associated with the
optimal positive sample set is block-diagonal and idempo-
tent, the idea of constructing such matrices to guide positive
sampling is proposed. To enhance the adaptability and ro-
bustness of HEATS, an approach that alternately updates the
positive sampling and contrastive optimization is proposed.
Extensive experiments reveal the efficacy and robustness of
HEATS. Future research directions include improving the
scalability of the framework to accommodate large datasets
and improving its generality to multimodal data.
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