
Bi-GCN: Binary Graph Convolutional Network

Junfu Wang1,2, Yunhong Wang2, Zhen Yang 1,2, Liang Yang 3, Yuanfang Guo 1,2*

1 State Key Laboratory of Software Development Environment, Beihang University, China
2 School of Computer Science and Engineering, Beihang University, China
3 School of Artificial Intelligence, Hebei University of Technology, China

{wangjunfu,yhwang,yangzhen7,andyguo}@buaa.edu.cn,yangliang@vip.qq.com

Abstract

Graph Neural Networks (GNNs) have achieved tremen-
dous success in graph representation learning. Unfortu-
nately, current GNNs usually rely on loading the entire at-
tributed graph into network for processing. This implicit
assumption may not be satisfied with limited memory re-
sources, especially when the attributed graph is large. In
this paper, we pioneer to propose a Binary Graph Convo-
lutional Network (Bi-GCN), which binarizes both the net-
work parameters and input node features. Besides, the orig-
inal matrix multiplications are revised to binary operations
for accelerations. According to the theoretical analysis, our
Bi-GCN can reduce the memory consumption by an aver-
age of ∼30x for both the network parameters and input
data, and accelerate the inference speed by an average of
∼47x, on the citation networks. Meanwhile, we also de-
sign a new gradient approximation based back-propagation
method to train our Bi-GCN well. Extensive experiments
have demonstrated that our Bi-GCN can give a compara-
ble performance compared to the full-precision baselines.
Besides, our binarization approach can be easily applied to
other GNNs, which has been verified in the experiments.

1. Introduction
In the past few years, Graph Neural Networks (GNNs),

which can learn effective representations from irregular
data, have given excellent performances in various graph-
based tasks [18, 28, 31, 30]. Considering the superior rep-
resentation abilities of these newly developed GNNs, re-
searchers have also applied them to many tasks, including
natural language processing [33], computer vision [24], etc.

Unfortunately, the current success of GNNs is attributed
to an implicit assumption that the input of GNNs contains
the entire attributed graph. If the entire graph is too large to
be fed into GNNs due to limited memory resources, in both

*Corresponding author.

(a) (b)

Figure 1. Performances on the Cora dataset. Note that the model
size is measured in bits and the number of cycle operations, which
will be introduced in Sec. 5, is employed to reflect the inference
speed. Bi-GCN gives the fastest inference speed and the lowest
memory consumption with comparable accuracy.

the training and inference process, which is highly likely
when the scale of the graph increases, the performances of
GNNs may degrade drastically.

To tackle this problem, an intuitive solution is sampling,
e.g., sampling a subgraph with a suitable size to be entirely
loaded into GNNs. The sampling based methods can be
classified into two categories, neighbor sampling [12, 5]
and graph sampling [4, 6, 34]. Neighbor sampling selects a
fixed number of neighbors for each node in the next layer
to ensure that every node can be sampled. Thus, it can be
utilized in both the training and inference process. Unfor-
tunately, when the number of layers increases, the problem
of neighbor explosion [34] arises, such that both the train-
ing and inference time will increase exponentially. Differ-
ent from neighbor sampling, graph sampling samples a set
of subgraphs in the training process, which can avoid the
problem of neighbor explosion. However, it cannot guar-
antee that every node can be at least sampled once in the
whole training/inference process. Thus it is only feasible
for the training process, because the testing process usually
requires GNNs to process each node in the graph.

Another feasible solution is compressing the size of the
input graph data and the GNN model to better utilize the
limited memory and computational resources. Several ap-
proaches have been proposed to compress the convolutional

neural networks (CNNs), such as designing shallow net-
works [2], pruning [9], designing compact layers [27] and
quantizing the parameters [15]. In quantization-based meth-
ods, binarization [15, 22, 21] has achieved a great success in
many CNN-based practical vision tasks when a faster speed
and a lower memory consumption is desired.

However, compared to the CNN compression methods,
the compression of GNNs possesses unique challenges.
Firstly, since the input graph data is usually much larger
than the GNN models, the compression of the loaded data
demands more attention. Secondly, the GNNs are usually
shallow, e.g., the standard GCN [18] only has 2 layers,
which contain less redundancies, thus the compression will
be more difficult to be achieved. At last, the nodes tend to
be similar to its neighbors in the high-level semantic space,
while they tend to be different in the low-level feature space,
which is different from the grid-like data, such as images,
videos, etc. This characteristic requires the compressed
GNNs to possess sufficient parameters for representations.
In general, the tradeoff between the compression ratio and
accuracy in the compressed GNNs requires careful designs.

To tackle the memory and complexity issues, SGC [29],
which is a 1-layered GNN, compresses GCN [18] by re-
moving nonlinearities and collapsing weight matrices be-
tween consecutive layers. This shallow GNN can accelerate
both the training and inference processes with comparable
performance. Although SGC compresses the network pa-
rameters, it does not compress the loaded data, which is the
major memory consumption when processing the graphs
with GNNs.

In this paper, to alleviate the memory and complexity is-
sue, we pioneer to propose a binarized GCN, named Binary
Graph Convolutional Network (Bi-GCN), which is a sim-
ple yet efficient approximation of GCN [18], by binarizing
the parameters and node attribute representations. Specifi-
cally, the binarization of the weights is performed by split-
ting them into multiple feature selectors and maintaining
a scalar per selector to further reduce the quantization er-
rors. Similarly, the binarization of the node features can
be carried out by splitting the node features and assigning
an attention weight to each node. By employing those ad-
ditional scalars, more efficient information can be learned
and retained efficiently. After binarizing the weights and
node features, the computational complexity and the mem-
ory consumptions induced by the network parameters and
input data can be largely reduced. Since the existing binary
back propagation method [22] has not considered the rela-
tionships among the binary weights, we also design a new
back propagation method by tackling this issue. An intuitive
comparison between our Bi-GCN and the baseline methods
is shown in Figure 1, which demonstrates that our Bi-GCN
can achieve the fastest inference speed and lowest memory
consumption with a comparable accuracy compared to the

standard full-precision GNNs.
Our proposed Bi-GCN can reduce the redundancies in

the node representations while maintain the principle infor-
mation. When the number of layers increases, Bi-GCN also
gives a more obvious reductions of the memory consump-
tions of the parameters and effectively alleviates the over-
fitting problem. Besides, our binarization approach can be
easily applied to other GNNs.

The contributions are summarized as follows:

• We pioneer to propose a binarized GCN, named Bi-
nary Graph Convolutional Network (Bi-GCN), which
can significantly reduce the memory consumptions by
∼30x for both the network parameters and input node
attributes, and accelerate the inference by an average
of ∼47x, on the citation networks, theoretically.

• We design a new back propagation method to effec-
tively train our Bi-GCN, by considering the relation-
ships among the binary weights in the back propaga-
tion process.

• With respect to the significant memory reductions and
accelerations, our Bi-GCN can also give a comparable
performance compared to the standard GCN on four
benchmark datasets.

2. Related Work
2.1. Sampling Based GNNs

Sampling is an effective method that allows GNNs to
process larger graphs with limited memory. Current sam-
pling methods can be categorized into two categories,
neighbor sampling [12, 5] and graph sampling [4, 6, 34].
GraphSAGE [12] gives an empirical number of the sam-
pled neighbors and extends the GNNs to inductive learning.
VRGCN [5] reduces the sampling size by maintaining the
embedding of each node from the previous iteration, which
requires a doubled memory consumption. Meanwhile, Fast-
GCN [4] samples a subgraph in each layer to accelerate
the training process, which sacrifices the classification ac-
curacy. ClusterGCN [6] groups the nodes by graph clust-
ing methods, which demands additional complexity for the
clustering. GraphSAINT [34] proposes an edge sampling
method with low variance and apply GCN [18] to the sam-
pled subgraphs. Besides, DropEdge [23] generates the sub-
graphs randomly and DropConnection [13] adaptively sam-
ples the subgraphs, to alleviate the overfitting problem.

2.2. CNN Binarization Methods

Convolutional Neural Networks (CNNs) suffer from cer-
tain issues, such as high computational costs and etc. Bina-
rization, as a promising type of techniques in network com-
pression, has been widely utilized to reduce the memory and

computation costs for CNNs. BinaryConnect [7] binarizes
the network parameters and replaces most of the floating-
point multiplications with floating-point additions. Bina-
rynet [8] further binarizes the activation function and uses
the XNOR (not-exclusive-OR) operations to accelerate the
inference process. XNOR-Net [22] proposes a scalar based
binarization approach and successfully applies it to the pop-
ular CNNs, such as ResNet [14] and GoogLeNet [26].

3. Preliminaries

3.1. Notations

Here, we define the notations utilized throughout this
paper. We denote an undirected attributed graph as G =
{V, E , X} with the vertex set V = {vi}Ni=1 and edge set
E = {ei}Ei=1. Each node vi contains a feature Xi ∈ Rd.
X ∈ RN×d is the collection of all the features in all the
nodes. A = [aij] ∈ RN×N is the adjacency matrix which
reveals the relationships between each pair of vertices, i.e.,
the topology information of G. di =

∑
j aij stands for the

degree of node vi and D = diag(d1, d2, . . . , dn) represents
the degree matrix corresponding to the adjacency matrix A.
Then, Â = A + I is the adjacency matrix of the original
topology with self-loops and D̂ is its corresponding degree
matrix with D̂ii =

∑
j âij . Note that we employ the super-

script ”(l)” to represent the l-th layer, e.g., H(l) is the input
node features to the l-th layer.

3.2. Graph Convolutional Network

Graph Convolutional Network (GCN) [18] has become
the most popular graph neural network in the past few years.
Since our binarization approach takes GCN as the basis
GNN, we give a brief review of GCN here.

Given an undirected graph G, the graph convolution op-
eration can be described as

H(l+1) = σ(ÃH(l)W (l)), (1)

where Ã = D̂−
1
2 ÂD̂−

1
2 is a sparse matrix, and W (l) ∈

Rd
(l)
in×d

(l)
out contains the learnable parameters. Note that

H(l+1) is the output of the l-th layer and the input of the
(l + 1)-th layer, and H(0) = X . σ is the non-linear activa-
tion function, e.g., ReLU.

From the perspective of spatial methods, the graph con-
volution layer in GCN can be decomposed into two steps,
where ÃH(l) is the aggregation step and H(l)W (l) is the
feature extraction step. The aggregation step tends to con-
strain the node attributes in the local neighborhood to be
similar. After that, the feature extraction step can easily ex-
tract the commonalities between the neighboring nodes.

GCN typically utilizes a task-dependent loss function,
e.g., the cross-entropy loss for the node classification tasks,

which is defined as

L = −
∑

vi∈Vlabel

C∑
c=1

Yi,clog(Ỹi,c), (2)

where V label stands for the set of the labelled nodes, C de-
notes the number of classes, Y represents the ground truth
labels, and Ỹ = softmax(H(L)) are the predictions of the
L-layered GCN.

4. Binary Graph Convolutional Network
In this section, we propose our Binary Graph Convolu-

tion Network (Bi-GCN), a binarized version of the standard
GCN. As mentioned in previous section, a graph convolu-
tion layer can be decomposed into two steps, aggregation
and feature extraction. In Bi-GCN, we only focus on bina-
rizing the feature extraction step, because the aggregation
step possesses no learnable parameters (which yields negli-
gible memory consumption) and it only requires a few cal-
culations (which can be neglected compared to the feature
extraction step). Therefore, the aggregation step of the orig-
inal GCN is maintained. For the feature extraction step, we
binarize both the network parameters and node features to
reduce the memory consumptions. To reduce the compu-
tational complexities and accelerate the inference process,
the XNOR (not-exclusive-OR) and bit count operations are
utilized, instead of the traditional floating-point multiplica-
tions. Finally, we design an effective back-propagation al-
gorithm for training our binarized graph convolution layer.

4.1. Binarization of the Feature Extraction Step

Based on the vector binarization algorithm [22], we
can perform the binarization to the feature extraction step
Z(l) = H(l)W (l) in the graph convolution shown in Eq. 1.
Note that for this feature extraction (matrix multiplication),
we adopt the bucketing [1] method to generalize the binary
inner product operation to the binary matrix multiplication
operation. Specifically, we split the matrix into multiple
buckets of consecutive values with a fixed size and perform
the scaling operation separately.

4.1.1. Binarization of the Parameters
Since each column of the parameter matrix of the l-th

layerW (l) serves as a feature selector in the computation of
Z(l), each column ofW (l) is splitted as a bucket, i.e., a vec-
tor. Let α(l) = (α

(l)
1 , α

(l)
2 , ..., α

(l)

d
(l)
out

), which are the scalars

for each bucket. Let B(l) = (B
(l)
1 , B

(l)
2 , ..., B

(l)

d
(l)
out

) ∈

{−1, 1}d
(l)
in×d

(l)
out be the binarized buckets of W (l). Then,

based on the vector binarization algorithm, the optimalB(l)

and α(l) can be easily calculated by

B
(l)
j = sign(W

(l)
:,j), (3)

Figure 2. An example of binary feature extraction step. Both the input features and parameters will be binarized to binary matrices. ⊗
denotes the binary matrix multiplication defined in Sec. 4 and � represents the element-wise multiplication.

α
(l)
j =

1

d
(l)
out

||W (l)
:,j ||1, (4)

where W (l)
:,j represents the j-th column of W (l). It can be

approximated via

W
(l)
:,j ≈ W̃

(l)
:,j = α

(l)
j B

(l)
j . (5)

Based on Eq. 5, the graph convolution operation with bina-
rized weights can then be described as

H(l+1) ≈ H(l+1)
p = σ(ÃH(l)W̃ (l)), (6)

where H(l+1)
p is the binary approximation of H(l+1) with

the binarized parameters W̃ (l). The binarization of the pa-
rameters can reduce the memory consumption by a factor
of ∼30x, compared to the parameters with full precision,
which will be proven in Sec. 5.

4.1.2. Binarization of the Node Features
Due to the over-smoothing issue [20] induced by the cur-

rent graph convolution operation, current GNNs are usu-
ally shallow, e.g., the vanilla GCN only contains 2 graph
convolution layers. Although the future GNNs may pos-
sess a larger model, the data sizes of commonly employed
attributed graphs are usually much larger than the current
model size. To reduce the memory consumption of the in-
put data, which is mostly induced by the node features, we
also perform binarization to the node features which will be
processed by the graph convolutional layers.

To binarize the node features, we split H(l) into row
buckets based on the constraints of the matrix multiplica-
tion to compute Z(l), i.e., each row of H(l) will conduct
an inner product with each column of W (l). Let β(l) =

(β
(l)
1 , β

(l)
2 , ..., β

(l)
N) denote the scalars for each bucket in

H(l). Let F (l) = (F
(l)
1 ;F

(l)
2 ; ...;F

(l)
N) ∈ {−1, 1}N×d

(l)
in

be the binarized buckets. Then, with the vector binarization
algorithm, the optimal β and F can be computed by

β
(l)
i =

1

N
||H(l)

i,: ||1, (7)

F
(l)
i = sign(H

(l)
i,:), (8)

whereH(l)
i,: represents the i-th row ofH(l). Then, the binary

approximation of H(l) can be obtained via

H
(l)
i,: ≈ H̃

(l)
i,: = β

(l)
i F

(l)
i . (9)

Intuitively, β can be considered as the node-weights for the
feature representations. At last, the graph convolution oper-
ation with binarized weights and node features can be for-
mulated as

H(l+1) ≈ H(l+1)
ip = ÃH̃(l)W̃ (l). (10)

Note that this binarization of the node features, i.e., the
input of the graph convolutional layer, also possesses the
ability of activation, thus we do not employ specific acti-
vation functions (such as ReLU). Similar to the binariza-
tion of the weights, the memory consumption of the loaded
attributed graph data can be reduced by a factor of ∼30x
compared to the vanilla GCN.

4.1.3. Binary Operations
With the binarized graph convolutional layers, we can

accelerate the calculations by employing the XNOR and
bit-count operations instead of the floating-point additions
and multiplications. Let ζ(l) represent the approximation of
Z(l). Then,

Z
(l)
ij ≈ ζ

(l)
ij = β

(l)
i α

(l)
j F

(l)
i,: ·B

(l)
:,j . (11)

Algorithm 1 Back propagation process for training a bina-
rized graph convolutional layer

Input: Gradient of the layer above ∂L
∂H(l+1)

Output: Gradient of the current layer ∂L
∂H(l)

1: Calculate the gradients of W̃ (l) and H̃(l)

∂L
∂ζ(l)

= ÃT · ∂L
∂H(l+1)

∂L
∂W̃ (l)

= (H̃(l))T · ∂L
∂ζ(l)

∂L
∂H̃(l)

= ∂L
∂ζ(l)

· W̃ (l)

2: Calculate ∂L
∂H(l) via Eq. 14

3: Calculate ∂L
∂W (l) via Eq. 15

4: Update W̃ (l) with the gradient ∂L
∂W (l)

5: return ∂L
∂H(l)

Since each element of F (l) and B(l) is either -1 or 1, the
inner product between these two binary vectors can be re-
placed by the binary operations, i.e., XNOR and bit count
operations. Then, Eq. 11 can be re-written as

ζ
(l)
ij = β

(l)
i α

(l)
j F

(l)
i,: ~B

(l)
:,j , (12)

where ~ denotes a binary multiplication operation using the
XNOR and a bit count operations. The detailed process is
illustrated in Figure 2. Therefore, the graph convolution
operation in the vanilla GCN can be approximated by

H(l+1) ≈ H(l+1)
b = Ãζ(l), (13)

where ζ(l) is calculated via Eq. 12 and H(l+1)
b is the fi-

nal output of the l-th layer with the binarized parameters
and inputs. By employing this binary multiplication opera-
tion, the original floating point calculations can be replaced
with identical number of binary operations and a few extra
floating-point calculations. It will significantly accelerate
the processing speed of the graph convolutional layers.

4.2. Binary Gradient Approximation Based Back
Propagation

The key parts of our training process include the choice
of the loss function and the back-propagation method for
training the binarized graph convolutional layer. The loss
function employed in our Bi-GCN is the same as the vanilla
GCN, as shown in Eq. 2. Since the existing back prop-
agation method [22] has not considered the relationships
among the binary weights, to perform the back-propagation
for the binarized graph convolutional layer, the gradient cal-
culation is desired to be newly designed.

To calculate the actual propagated gradient for the l-th
layer, the binary approximated gradient ∂L

∂H̃(l)
is employed

to approximate the gradient of the original one as [15, 22],

∂L
∂H(l)

≈ ∂L
∂H̃(l)

1| ∂L
∂H̃(l)

|<1. (14)

Note that 1|r|<1 is the indicator function, whose value is 1
when |r| < 1, and vice versa. This indicator function serves
as a hard tanh function which preserves the gradient infor-
mation. If the absolute value of the gradients becomes too
large, the performance will be degraded. Thus, the indicator
function also serves to kill certain gradients whose absolute
value becomes too large.

The gradient of network parameters is computed via an-
other gradient calculation approach. Here, a full-precision
gradient is employed to preserve more gradient information.
If the gradient of the binarized weights ∂L

∂W̃ (l)
is obtained,

∂L
∂W

(l)
ij

can then be calculated as

∂L
∂W

(l)
ij

=
∂L

∂W̃
(l)
:,j

·
∂W̃

(l)
:,j

∂W
(l)
ij

=
1

d
(l)
in

B
(l)
ij

∑
k

∂L
∂W̃

(l)
kj

·B(l)
kj + α

(l)
j ·

∂L
∂W̃

(l)
ij

·
∂B

(l)
ij

∂W
(l)
ij

.

(15)
To compute the gradient for the sign function sign(·),

the straight-through estimator (STE) function [3] is em-
ployed, where ∂sign(r)

∂r = 1|r|<1. The back-propagation
process is summarized in Algorithm 1.

5. Analysis
In this section, we theoretically analyze the performance

of our Bi-GCN, i.e., the compression ratio of the model size
and the loaded data size, as well as the acceleration ratio,
respectively, compared to the full-precision (32-bit floating-
point representation) GCN.

5.1. Model Size Compression

Let the parameters of each layer in the full-precision
GCN be denoted as W (l) ∈ Rd

(l)
in×d

(l)
out , which contains

(d
(l)
in ×d

(l)
out) floating-point parameters. On the contrary, the

l-th layer in our Bi-GCN only contains (d(l)in × d
(l)
out) binary

parameters and d(l)out floating-point parameters. Therefore,
the size of the parameters can be reduced by a factor of

PC(l) =
32d

(l)
ind

(l)
out

d
(l)
ind

(l)
out + 32d

(l)
out

=
32d

(l)
in

d
(l)
in + 32

. (16)

According to Eq. 16, the compression ratio of the pa-
rameters for the l-th layer is depending on the dimension
of input node features. For example, a 2-layered Bi-GCN,
whose hidden layer contains 64 neurons, can achieve a
∼31x model size compression ratio compared to the full-
precision GCN on Cora dataset. Although the memory
consumption of the network parameters is smaller than the
input data for the vanilla GCN, our binarization approach
still contributes. Currently, many efforts have already been

made to construct deeper GNNs [19, 23, 10]. As the num-
ber of layers increases, the reductions on the memory con-
sumptions will become much larger and this contribution
will become more significant.

5.2. Data Size Compression

Currently, the loaded data tends to contribute the major-
ity of the memory consumptions. In the commonly em-
ployed datasets, the node features tends to contribute the
majority of the loaded data. Thus, a binarization of the
loaded node features can largely reduce the memory con-
sumptions when GNNs process the datasets. Note that the
data size of the node features is employed as an approxi-
mation of the entire loaded data size in this paper, because
the edges in commonly processed attribute graph is usually
sparse and the size of the division mask is also small.

Let the loaded node features be denoted as X ∈ RN×d,
where N is the number of nodes and d is the number of
features per node. Then, the full-precisionX containsN×d
floating-point values. In our Bi-GCN, the loaded dataX can
be binarized, and N × d binary values and N floating-point
values can be obtained. Thus, the size of the loaded data X
can be reduced by a factor of

DC =
32Nd

Nd+ 32N
=

32d

d+ 32
. (17)

According to Eq. 17, the compression ratio of the loaded
data size is depending on the dimension of the node fea-
tures. In practical, Bi-GCN can achieve an average reduc-
tion of memory consumption with a factor of ∼30x, which
indicates that a much bigger attributed graph can be en-
tirely loaded with identical memory consumption. For some
inductive datasets, we can then successfully load the en-
tire graph or use a bigger sub-graph than that in the full-
precision GCN. The results of data size compression can be
found in Tables 2 and 3.

5.3. Acceleration

After the analysis of memory consumptions, the analy-
sis of acceleration of our Bi-GCN, compared to GCN, is
performed. Let the input matrix and the parameters of the
l-th layer possess the dimensions N × d(l)in and d(l)in × d

(l)
out,

respectively. The original feature extraction step in GCN
requires Nd(l)ind

(l)
out addition and Nd

(l)
ind

(l)
out multiplication

operations. On the contrary, the binarized feature extraction
step in our Bi-GCN only requires Nd(l)ind

(l)
out binary opera-

tions and 2Ndout floating-point multiplication operations.
According to [22], the processing time of performing one
cycle operation, which contains one multiplication and one
addition, can be utilized to perform 64 binary operations.
Then, the acceleration ratio for the feature extraction step

of the l-th layer can be calculated as

S
(l)
fe =

Nd
(l)
ind

(l)
out

1
64Nd

(l)
ind

(l)
out + 2Nd

(l)
out

=
64d

(l)
in

d
(l)
in + 128

. (18)

As can be observed from Eq. 18, the dimension of the node
features d(l)in determines the acceleration efficiency for the
feature extraction step.

For the aggregation step, the sparse matrix multiplica-
tion contains |E|d(l)out floating-point addition and |E|d(l)out
floating-point multiplication operations. If we let the av-
erage degree of the nodes be deg, then |E| = Ndeg/2.

Then, the complete acceleration ratio of the l-th graph
convolutional layer can be approximately computed via

S
(l)
full =

Nd
(l)
ind

(l)
out + |E|d

(l)
out

1
64Nd

(l)
ind

(l)
out + 2Nd

(l)
out + |E|d

(l)
out

=
64d

(l)
in + 32deg

d
(l)
in + 128 + 32deg

.

(19)

Note that the average degree deg is usually small in the
benchmark datasets, e.g., deg ≈ 2.0 in the Cora dataset.
When processing a graph with a low average node degree,
the computational cost for the aggregation step, i.e., 32deg,
usually possesses negligible effect on the acceleration ratio.
Thus, the acceleration ratio of the l-th layer can be approx-
imately computed via

S
(l)
full ≈ S

(l)
fe . (20)

Therefore, when deg is small, the acceleration ratio mainly
depends on the input dimension of the binarized graph con-
volutional layers, according to Eqs. 18 and 20. The input di-
mension of the first graph convolutional layer equals to the
dimension of the node features in the input graph. The input
dimensions of the other graph convolutional layers equal to
the dimensions of the hidden layers. Since the dimension of
the input node features is usually large, the acceleration ra-
tio tends to be high for the first layer, e.g., ∼59x on the Cora
dataset. In general, the layer with a larger input dimension
tends to require more calculations and can thus save more
calculations with our binarization. For example, the accel-
eration ratio of a 2-layered Bi-GCN on the Cora dataset can
achieve ∼59x acceleration ratio for the first layer and ∼21x
for the second layer. In total, our 2-layered Bi-GCN can
achieve ∼53x acceleration ratio on the Cora dataset.

6. Evaluations
In this section, we evaluate the proposed binarization ap-

proach and our Bi-GCN on benchmark datasets for the node
classification task1. Note that the memory consumptions

1More experiments can be found in the supplimentary material.

Table 1. Datasets
Dataset Nodes Edges Classes Features

Cora 2,708 5,429 7 1,433
PubMed 19,711 44,338 3 500

Flickr 89,250 899,756 7 500
Reddit 232,965 11,606,919 41 602

(a) (b)
Figure 3. Comparisons of accuracy and validation loss on Cora.

(a) (b)
Figure 4. Comparisons of memory consumption and inference
speed on Cora.

and the number of cycle operations are ideally estimated
based on the specific settings of the methods and datasets.

6.1. Datasets

We conduct our experiments on four commonly em-
ployed datasets. For the transductive learning task,
two commonly utilized citation networks, i.e., Cora and
PubMed [25], which are also employed by GCN [18], are
utilized. We adopt the same data division strategy as [32].
For the inductive learning task, Flickr and Reddit are em-
ployed. We adopt the same data division strategy as Graph-
SAINT [32] for Flickr and GraphSAGE [12] for Reddit.
The datasets are summarized in Table 1.

6.2. Setups

For the transductive learning task, we select a 2-layered
GCN [18] with 64 neurons in the hidden layer as the base-
line. Our Bi-GCN is obtained by binarizing this GCN. The
evaluation protocol in [18] is applied. In the training pro-
cess, GCN and Bi-GCN are both trained for a maximum of
1000 epochs with an early stopping condition at 100 epochs,
by using the Adam [17] optimizer with a learning rate of
0.001. The dropout layers are utilized in the training pro-
cess with a dropout rate of 0.4, after binarizing the input
of the intermediate layer. We initialize the full-precision
weights by Xavier initialization [11]. A standard batch nor-

malization [16] (with zero mean and variance being one) is
applied to the input feature vectors in Bi-GCN. Note that
we also investigate the influences of different model depths
on classification performance. All the hyperparameters are
set to be identical to the 2-layered case.

For the inductive learning task, we select the inductive
GCN [12], GraphSAGE [12] and GraphSAINT [34] as our
baselines. Note that a 2-layered GraphSAINT model is em-
ployed for fair comparisons. The settings from their own
literatures are employed. We will binarize all the feature
extraction steps to generalize their corresponding binarized
version. The hyper-parameters in our binarized models are
set to be identical to their full-precision version.

6.3. Results

6.3.1. Comparisons
The results of the transductive learning tasks are shown

in Table 2. As can be observed, our Bi-GCN gives a com-
parable performance compared to the full-precision GCN
and other baselines. Meanwhile, our Bi-GCN can achieve
an average of ∼47x faster inference speed and ∼30x lower
memory consumption than the vanilla GCN, FastGCN, and
GAT. Besides, the proposed Bi-GCN is more effective than
SGC, especially on the size of the loaded data.

For the inductive learning tasks, our binarized GNNs can
significantly save the memory consumptions of both the
loaded data and models, and reduce the amount of calcu-
lations with comparable performance, as shown in Table 3.
The original data size of Reddit is 534.99M, while our bi-
narized GNNs only demand 17.61M to load the data, which
proves the significance of our binarization approach. Note
that the acceleration ratios of binarized GNNs on Reddit
dataset are only ∼ 10x, because the average node degree is
large, as discussed in Sec 5.3. In general, these results indi-
cate that our binarization approach is efficient and it can be
successfully generalized to different GNNs.

6.3.2. Ablation Study
Here, an ablation study is performed to verify the ef-

fectiveness of the binarizations applied to the parameters
and node features. As can be observed from Table 2, the
prediction performances tend to vary less when the bina-
rization is performed only to the node features. This phe-
nomenon indicates that there exists many redundancies in
the full-precision features and our binarization can maintain
the majority portion of effective information for node classi-
fication. Meanwhile, the prediction results of binarizing the
network parameters indicate that the binarized parameters
cannot represent as much information as the full-precision
parameters. However, if both the node attributes and pa-
rameters are binarized, a comparable performance can be
achieved, compared to GCN. It reveals that the binarized
network parameters can be effectively trained by the bina-

Table 2. Transductive learning results.(M.S., D.S., and C.O. are the abbreviations of Model Size, Data Size and Cycle Operations.)

Networks
Cora PubMed

Accuracy M.S. D.S. C.O. Accuracy M.S. D.S. C.O.

GCN 81.4 ± 0.4 360K 14.8M 2.50e8 79.0 ± 0.3 125.75K 37.6M 6.38e8
Bi-GCN(binarize features only) 81.1 ± 0.4 360K 0.47M 2.50e8 79.4 ± 1.0 125.75K 1.25M 6.38e8
Bi-GCN(binarize weights only) 78.3 ± 1.5 11.53K 14.8M 2.50e8 75.5 ± 1.4 4.19K 37.6M 6.38e8

Bi-GCN 81.2 ± 0.8 11.53K 0.47M 4.67e6 78.2 ± 1.0 4.19K 1.25M 1.55e7

GAT 83.0 ± 0.7 360.55K 14.8M 2.51e8 79.0 ± 0.3 126.27K 37.6M 6.44e8
FastGCN 79.8 ± 0.3 360K 14.8M 2.50e8 79.1 ± 0.2 125.75K 37.6M 6.38e8

SGC 81.0 ± 0.0 39.18K 14.8M 2.72e7 78.9 ± 0.0 5.86K 37.6M 2.98e7

Table 3. Inductive learning results. (M.S., D.S., and C.O. are the abbreviations of Model Size, Data Size and Cycle Operations.)

Networks
Reddit Flickr

F1-micro M.S. D.S. C.O. F1-micro M.S. D.S. C.O.

inductiveGCN 93.8 ± 0.1 643.00K 534.99M 4.18e10 50.9 ± 0.3 507.00K 170.23M 1.18e10
Bi-inductiveGCN 93.1 ± 0.2 21.25K 17.61M 4.18e9 50.2 ± 0.4 16.87K 5.66M 4.65e8

GraphSAGE 95.2 ± 0.1 1286.00K 534.99M 8.01e10 50.9 ± 1.0 1014.00K 170.23M 2.34e10
Bi-GraphSAGE 95.3 ± 0.1 42.51K 17.61M 4.92e9 50.2 ± 0.4 33.74K 5.66M 6.93e8

GraphSAINT 95.9 ± 0.1 1798.00K 534.99M 1.13e11 52.1 ± 0.1 1526.00K 170.23M 3.53e10
Bi-GraphSAINT 95.7 ± 0.1 139.62K 17.61M 1.04e10 50.8 ± 0.2 65.25K 5.66M 1.28e9

rized features, i.e., Bi-GCN can successfully reduce the re-
dundancies in the node representations, such that the useful
cues can be learned well by a light-weighted binarized net-
work. For the memory and computational costs, binarizing
the weights and features separately will reduce the mem-
ory consumption. If the binarization is performed to both of
them, the inference process can also be accelerated.

6.3.3. Effects of Different Model Depths

Figure 3(a) shows the transductive results of GCN and
Bi-GCN on Cora with different model depths. As can be ob-
served, Bi-GCN is more suitable for constructing a deeper
GNN than the original GCN. The accuracy of GCN has
dropped sharply when it consists of three or more graph
convolutional layers. On the contrary, the performance of
our Bi-GCN declines slowly. According to Figure 3(b),
GCN will quickly be bothered by the overfitting issue, as
the number of layers increases. However, our Bi-GCN can
effectively alleviate this overfitting problem. Figure 4 illus-
trates the comparisons of memory consumption and infer-
ence speed. Since SGC contains only one layer, its memory
consumption will not change with the increase of the num-
ber of aggregations. When the number of layers increases,
Bi-GCN can save more memories. For the acceleration re-
sults, the ratio between GCN and Bi-GCN tends to decrease
slightly when the number of layers increases, while the ac-
tual reduced computational costs increases. Note that the
required operations in SGC do not increase obviously be-
cause it only contains one feature extraction layer.

7. Conclusion

In this paper, we propose a binarized version of GCN,
named Bi-GCN, by binarizing the network parameters and
the node attributes (input data). The floating-point opera-
tions have been replaced by binary operations for inference
acceleration. Besides, we design a new gradient approxima-
tion based back-propagation method to train the binarized
graph convolutional layers. Based on our theoretical anal-
ysis, Bi-GCN can reduce the memory consumptions by an
average of ∼30x for both the network parameters and node
attributes, and accelerate the inference speed by an average
of ∼47x, on the citation networks. Experiments on sev-
eral datasets have demonstrated that our Bi-GCN can give
a comparable performance to GCN in both the transductive
and inductive tasks. Besides, Our binarization approach can
be easily applied to other GNNs and achieve comparable re-
sults to their full-precision version.

Acknowledgment

This work was supported in part by the National Natural
Science Foundation of China under Grant 61802391, Grant
U20B2069 and Grant 61972442, in part by the Natural Sci-
ence Foundation of Tianjin of China under Grant 20JCY-
BJC00650, in part by the Natural Science Foundation of
Hebei Province of China under Grant F2020202040, in part
by State Key Laboratory of Software Development Envi-
ronment (SKLSDE-2020ZX-18), and in part by the Funda-
mental Research Funds for Central Universities.

References
[1] Dan Alistarh, Demjan Grubic, Jerry Li, Ry-

ota Tomioka, and Milan Vojnovic. QSGD:
communication-efficient SGD via gradient quantiza-
tion and encoding. In NIPS, pages 1709–1720, 2017.

[2] Jimmy Ba and Rich Caruana. Do deep nets really need
to be deep? In NIPS, pages 2654–2662, 2014.

[3] Yoshua Bengio, Nicholas Léonard, and Aaron
Courville. Estimating or propagating gradients
through stochastic neurons for conditional computa-
tion. arXiv preprint arXiv:1308.3432, 2013.

[4] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast
learning with graph convolutional networks via impor-
tance sampling. In ICLR, 2018.

[5] Jianfei Chen, Jun Zhu, and Le Song. Stochastic train-
ing of graph convolutional networks with variance re-
duction. In ICML, pages 941–949, 2018.

[6] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy
Bengio, and Cho-Jui Hsieh. Cluster-gcn: An efficient
algorithm for training deep and large graph convolu-
tional networks. In ACM SIGKDD, pages 257–266,
2019.

[7] Matthieu Courbariaux, Yoshua Bengio, and Jean-
Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In
NIPS, pages 3123–3131, 2015.

[8] Matthieu Courbariaux, Itay Hubara, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. Binarized neural
networks: Training deep neural networks with weights
and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016.

[9] Emily L. Denton, Wojciech Zaremba, Joan Bruna,
Yann LeCun, and Rob Fergus. Exploiting linear struc-
ture within convolutional networks for efficient evalu-
ation. In NIPS, pages 1269–1277, 2014.

[10] Claudio Gallicchio and Alessio Micheli. Fast and deep
graph neural networks. In AAAI, pages 3898–3905,
2020.

[11] Xavier Glorot and Yoshua Bengio. Understanding
the difficulty of training deep feedforward neural net-
works. In AISTATS, pages 249–256, 2010.

[12] William L. Hamilton, Zhitao Ying, and Jure Leskovec.
Inductive representation learning on large graphs. In
NIPS, pages 1024–1034, 2017.

[13] Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin
Boluki, Mingyuan Zhou, Nick Duffield, Krishna
Narayanan, and Xiaoning Qian. Bayesian graph neu-
ral networks with adaptive connection sampling. arXiv
preprint arXiv:2006.04064, 2020.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
IEEE CVPR, pages 770–778, 2016.

[15] Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. Binarized neural
networks. In NIPS, pages 4107–4115, 2016.

[16] Sergey Ioffe and Christian Szegedy. Batch normal-
ization: Accelerating deep network training by reduc-
ing internal covariate shift. In ICML, pages 448–456,
2015.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In ICLR, 2015.

[18] Thomas N. Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. In
ICLR, 2017.

[19] Guohao Li, Matthias Müller, Ali K. Thabet, and
Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In IEEE ICCV, pages 9266–9275, 2019.

[20] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper
insights into graph convolutional networks for semi-
supervised learning. In AAAI, pages 3538–3545, 2018.

[21] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang,
Wei Liu, and Kwang-Ting Cheng. Bi-real net: En-
hancing the performance of 1-bit cnns with improved
representational capability and advanced training al-
gorithm. In ECCV, pages 747–763, 2018.

[22] Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi. Xnor-net: Imagenet classifi-
cation using binary convolutional neural networks. In
ECCV, pages 525–542, 2016.

[23] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou
Huang. Dropedge: Towards deep graph convolutional
networks on node classification. In ICLR, 2020.

[24] Victor Garcia Satorras and Joan Bruna Estrach. Few-
shot learning with graph neural networks. In ICLR,
2018.

[25] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise
Getoor, Brian Galligher, and Tina Eliassi-Rad. Col-
lective classification in network data. AI magazine,
29(3):93–93, 2008.

[26] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich.
Going deeper with convolutions. In IEEE CVPR,
pages 1–9, 2015.

[27] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott E. Reed, Dragomir Anguelov, Dumitru
Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
Going deeper with convolutions. In IEEE CVPR,
pages 1–9, 2015.

[28] Petar Velickovic, Guillem Cucurull, Arantxa
Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

[29] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christo-
pher Fifty, Tao Yu, and Kilian Q. Weinberger. Simpli-
fying graph convolutional networks. In ICML, pages
6861–6871, 2019.

[30] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. How powerful are graph neural networks? In
ICLR, 2019.

[31] Liang Yang, Zesheng Kang, Xiaochun Cao, Di Jin,
Bo Yang, and Yuanfang Guo. Topology optimization
based graph convolutional network. In IJCAI, pages
4054–4061, 2019.

[32] Zhilin Yang, William W. Cohen, and Ruslan Salakhut-
dinov. Revisiting semi-supervised learning with graph
embeddings. In ICML, pages 40–48, 2016.

[33] Liang Yao, Chengsheng Mao, and Yuan Luo. Graph
convolutional networks for text classification. In
AAAI, pages 7370–7377, 2019.

[34] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava,
Rajgopal Kannan, and Viktor K. Prasanna. Graph-
saint: Graph sampling based inductive learning
method. In ICLR, 2020.

