
Why Do Attributes Propagate in Graph Convolutional Neural Networks?

Liang Yang1,2,3, Chuan Wang2∗, Junhua Gu1,3, Xiaochun Cao2, Bingxin Niu1,3

1School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
2State Key Laboratory of Information Security, Institute of Information Engineering, CAS, Beijing, China
3Hebei Province Key Laboratory of Big Data Calculation, Hebei University of Technology, Tianjin, China
yangliang@vip.qq.com, {wangchuan, caoxiaochun}@iie.ac.cn, {jhgu hebut, niubingxin666}@163.com

Abstract
Many efforts have been paid to enhance Graph Convolutional
Network from the perspective of propagation under the phi-
losophy that “Propagation is the essence of the GCNNs”.
Unfortunately, its adverse effect is over-smoothing, which
makes the performance dramatically drop. To prevent the
over-smoothing, many variants are presented. However, the
perspective of propagation can’t provide an intuitive and uni-
fied interpretation to their effect on prevent over-smoothing.
In this paper, we aim at providing a novel explanation to
the question of “Why do attributes propagate in GCNNs?”.
which not only gives the essence of the oversmoothing, but
also illustrates why the GCN extensions, including multi-
scale GCN and GCN with initial residual, can improve the
performance. To this end, an intuitive Graph Representation
Learning (GRL) framework is presented. GRL simply con-
strains the node representation similar with the original at-
tribute, and encourages the connected nodes possess similar
representations (pairwise constraint). Based on the proposed
GRL, exiting GCN and its extensions can be proved as dif-
ferent numerical optimization algorithms, such as gradient
descent, of our proposed GRL framework. Inspired by the
superiority of conjugate gradient descent compared to com-
mon gradient descent, a novel Graph Conjugate Convolu-
tional (GCC) network is presented to approximate the solu-
tion to GRL with fast convergence. Specifically, GCC adopts
the obtained information of the last layer, which can be rep-
resented as the difference between the input and output of the
last layer, as the input to the next layer. Extensive experiments
demonstrate the superior performance of GCC.

Introduction
Graph Neural Networks (GNNs) (Wu et al. 2020; Xu et al.
2019) have become a hot topic in deep learning for their po-
tentials in modeling irregular data. GNNs have been widely
used and achieved state-of-the-art performance in many
fields, such as computer vision, natural language processing
(Yang et al. 2020), traffic forecasting, chemistry and med-
ical analysis, etc. Existing GNNs fall into two categories,
spectral methods (Defferrard, Bresson, and Vandergheynst
2016) and spatial ones (Hamilton, Ying, and Leskovec 2017;
Gilmer et al. 2017; Yang et al. 2019b,a; Jin et al. 2019, 2020,
2021).
∗Corresponding author.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Graph Convolutional Network (GCN) (Kipf and Welling
2017), which is a simple, well-behaved and insightful GNN,
bridges above two perspectives by proving that the propa-
gation can be motivated from a first-order approximation of
spectral graph convolutions. Recently progress also demon-
strates the equivalent of spatial and spectral ones (Balcilar
et al. 2020). Many efforts have been paid to enhance GCN
from the perspective of propagation (Gilmer et al. 2017),
such as learnable propagation weights in Graph Attention
Network (GAT) (Velickovic et al. 2018), Gated Attention
Network (GaAN) (Zhang et al. 2018) and Probabilistic GCN
(Yang et al. 2020), structural neighbourhood in Geom-GCN
(Pei et al. 2020) and multi-scale (multi-hop) combination in
N-GCN (Abu-El-Haija et al. 2019a), MixHop (Abu-El-Haija
et al. 2019b), LanczosNet (Liao et al. 2019) and Krylov
GCN (Luan et al. 2019). The common philosophy of them
is: “Propagation is the essence of the GCNNs”. And, the
success of GCNs attributes to the Laplacian smoothing in-
duced by the propagation (Li, Han, and Wu 2018).

Unfortunately, the most serious issue of GNNs is the
over-smoothing, which makes the performance dramatically
drop, caused by the multiple propagations via stacking mul-
tiple graph convolution layers. Recently, (Oono and Suzuki
2020) shows the the exponential loss of expressive power of
GNNs by generalizing the forward propagation of a GCN
as a specific dynamical system. To prevent over-smoothing,
two kinds of methods are proposed. On one hand, meth-
ods in the first category constrain the propagation. Disen-
tangled GCN (Ma et al. 2019) makes each attribute only
be propagated on part of the edges. DropEdge (Rong et al.
2020) randomly removes a certain number of edges from
the input graph at each training epoch to reduce the ad-
verse effect of message passing. On the other hand, meth-
ods in the second category constrain the propagation re-
sult with the original attributes. PageRank-GCN (Klicpera,
Bojchevski, and Günnemann 2019) integrates personalized
PageRank to GCN to combine the original attribute. JKNet
(Xu et al. 2018) employs dense connections for multi-hop
message passing, while DeepGCN (Li et al. 2019) and (GC-
NII) (Chen et al. 2020) incorporates residual layers into
GCNs to facilitate the development of deep architectures.
However, the perspective of propagation can’t provide an in-
tuitive and unified interpretation to their effect on preventing
over-smoothing.

In this paper, we aim at providing a novel explanation to
the question of

Why do attributes propagate in GCNNs?

which not only gives the essence of the oversmoothing, but
also illustrates why the GCN extensions, including multi-
scale GCN and GCN with initial residual, can improve the
performance. To this end, an intuitive Graph Representa-
tion Learning (GRL) framework is presented by assuming
the topology is accuracy. GRL simply constrains the node
representation similar with the original attributes, and en-
courages the connected nodes possess similar representa-
tions (pairwise constraint). Then, by taking consideration the
noisy topology, a Robust GRL is obtained by introducing
a robust estimation to the pairwise (similarity) constraint.
The solution to GRL can be obtained by solving a positive
semidefinite linear system, while that to Robust GRL itera-
tively solves linear system and refines pairwise similarity.

According to the proposed GRL and Robust GRL, exit-
ing GCN and its extensions can be proved as different nu-
merical optimization algorithms, such as gradient descent,
of our proposed Graph Representation Learning framework.
Specifically, GCN with initial residual can be seen as the
gradient descent solution of GRL, multi-scale GCN as the
high-order approximation to the analytic solution of GRL.
Furthermore, the attention mechanism adopted in GCNNs
can be regarded as the gradient descent solution to Robust
GRL. Therefore, it provides insights of GCN and its vari-
ants from the perspective of numerical optimization that:

The propagation as well as its weight learning are not
the essence of the GCNs, but induced by the numerical
optimization of pairwise similarity requirement.

Based on this finding, a novel Graph Conjugate Convo-
lutional (GCC) network is presented to approximate the so-
lution to GRL with fast convergence. Specifically, inspired
by the superiority of conjugate gradient descent compared
to common gradient descent, the GCC building block, i.e.,
Graph Conjugate Convolutional layer, adopts the obtained
information of the last layer, which can be represented as
the difference between the input and output of the last layer,
as the input to the next layer. It can significantly alleviates
the overfitting issue caused by the accumulation effect of
residual connection in GCN.

The main contribution of this paper are summarized as
follows:

• We introduce a novel Graph Representation Learning
(GRL) framework and its extension, Robust GRL, to take
consideration of noisy topology.

• We explain the GCN and its variants from the perspec-
tive of the numerical optimization of pairwise similarity
requirement, under GRL framework.

• We propose the Graph Conjugate Convolutional (GCC)
network, which essentially sublimes the propagation.

• We experimentally verify the superiority of GCC on tras-
ductive and inductive tasks.

Preliminaries
In this section, the notations are given. Then, gradient de-
scent for linear system, which will be used to explain some
existing graph neural networks (GNNs), is provided. Finally,
some classic and recently proposed GNNs are reviewed.

Notations
A network can be represented by an attributed graph G =
(V, E ,X). V = {vi|i = 1, ..., N} is a set of |V| = N
vertices, where vn is associated with a feature xn ∈ RK .
X ∈ RK×N is the collection of the features, each column of
which corresponds to one node. E stands for a set of edges,
each of which connects two vertices in V . The adjacency
matrix A = [aij] ∈ RN×N is employed to represent the net-
work topology, where aij = 1 if an edge exists between the
vertices vi and vj , and vice versa. If the network is allowed
to contain self-edges, then ann = 1, otherwise ann = 0.
an, which denotes the nth column of A, can be utilized to
represent the neighbourhood of vertex vn. dn =

∑
j anj is

the degree of vertex vn, and D = diag(d1, d2, ..., dN) is the
degree matrix of the adjacency matrix A. The graph Lapla-
cian and its normalized form are defined as L = D−A and
L = D−

1
2 LD−

1
2 , respectively.

Gradient Descent for Linear System
Symmetric positive definite linear systems

Au = x, (1)

where x,u ∈ RN are N -dimensional vectors and A ∈
RN×N are symmetric (A = AT) and positive definite
(A � 0), are widely used in science and engineering, such as
regularized least-squares and elliptic PDE. Note that, differ-
ent from the notation in linear algebra, u is unknown while
A and x are given in this paper in order to be consistent
with those used in graph neural networks. Matrix A is pos-
itive definite, i.e., A � 0, if and only if uTAu > 0 for
any non-zero vector u. Unfortunately, its analytic solution
u∗ = A−1x is computationally expensive, since it requires
O(N3) operations. Gradient descent methods for symmetric
positive definite linear systems benefit from the structure of
A, such as sparse and low-rank characteristics. It minimizes
the equivalent convex function

f(u) =
1

2
uTAu− uTx (2)

with the following iterative updating rule,

u(t+1) = u(t) − µt∇f(u(t)) = u(t) + µt(x−Au(t)),
(3)

where µt denotes the step size in the tth iteration. In prac-
tice, the conjugate gradient (CG) method is the most widely
used iterative method to solve the symmetric positive def-
inite linear systems (Golub and Van Loan 1996). CG aug-
ments the common gradient descent in Eq. (3) with the mo-
mentum term as

u(t+1) = u(t) − µt∇f(u(t)) + κt(u
(t) − u(t−1))

= u(t) + µt(x−Au(t)) + κt(u
(t) − u(t−1)), (4)

which achieves faster convergence than common one.
Another approximation algorithm is to approximate the

inverse of A. By denoting the characteristic polynomial of
the square matrix A as

∆(s) = |sI−A| = sN + α1s
N−1 + α2s

N−N + ...+ αN ,

where I is the identity matrix and |A| stands for the determi-
nant of matrix A. Cayley-Hamilton theorem (Decell 1965)
states that every matrix satisfies its own characteristic equa-
tion, that is

∆(A) = AN + α1A
N−1 + α2A

N−N + ...+ αNI = 0.

Thus, the inverse of matrix A can be expressed as

A−1 = − 1

αN
AN−1 − α1

αN
AN−2 − ...− αN−1

αN
I,

And (I−A)−1 can be expressed as

(I−A)−1 = βN−1A
N−1 + βN−2A

N−2 + ...+ β0I,
(5)

Thus, the analytic solution x∗ = A−1b can also be obtained
as

u∗ = −
N−1∑
k=0

αN−k−1

αN
Akx,

by letting α0 = 1. Thus, u∗ can be approximated with P <
N terms.

Graph Convolutional Neural Networks
Graph Convolutional Network (GCN) (Kipf and Welling
2017) simplifies previous Graph Convolutional Neural Net-
works (GCNNs) and motivate the convolutional architecture
via a localized first-order approximation of spectral graph
convolutions as

H(t+1) = ReLU
(
W(t+1)H(t)Â

)
, (6)

where W(l) is a layer-specific trainable weight matrix.
H(t) = [h(t)] ∈ RF×N denotes the representation of tth

layer with H(0) = X. ReLU(.) = max(0, .) is a nonlin-
ear activation function. Â = D̃−

1
2 ÃD̃−

1
2 , Ã = A + I,

and D̃ is the degree matrix of Ã. According to GCN (Kipf
and Welling 2017), the adoption of D̃−

1
2 ÃD̃−

1
2 instead

of I + D−
1
2 AD−

1
2 , where the two terms are for self-loop

and propagation, respectively, is just a renormalization trick.
Thus, Eq. (7) can be written as

H(t+1) = ReLU
(
W(t+1)H(t)(I + Ā)

)
, (7)

where Ā = D−
1
2 AD−

1
2 is the symmetric Random-Walk

Markov Matrix and is just for propagation without self-loop.
The node-wise of Eq. (7) can be written as

h
(t+1)
i = σ

(
W(t+1)

∑
N(i)∪{i}

αijh
(t)
j

)
, (8)

where the propagation weight αij fixed. N(i) denotes the
neighbourhoods of node vi. σ(.) stands for nonlinear func-
tion, such as ReLU and softmax function. The GCN model
is only parameterized by the weight matrices W(t), which
can be learned by minimizing the cross-entropy between the
ground truth and predictive labels on labelled nodes as

F = −
∑
vi∈Vl

K∑
k=1

zik ln yik, (9)

where Y = [yik] = H(L) is the output of last layer. Al-
though GCN gain significant performance improvement, its
main drawback is the fixed propagation weights αij .

Multi-scale Extensions. SGC (Wu et al. 2019) simplifies
GCN by successively removing nonlinear mapping fucntion
and collapsing weight matrices between consecutive layers,
and the resulting model is equivalent to

H(L) = WXÂL, (10)

which is equivalent to adopting L-hop information. ÂL de-
notes the L matrix multiplication of Â. A natural extension
is to employ multiple-hop information. N-GCN (Abu-El-
Haija et al. 2019a) and MixHop (Abu-El-Haija et al. 2019b)
concatenate the results of multiple hops as

H(t+1) =

P

‖
j=0

σ
(
W(j)H(t)Âj

)
, (11)

where ‖ stands for the concatenation. LanczosNet (Liao
et al. 2019) and Krylov GCN (Luan et al. 2019) propose to
sum the results of multiple hops as

H(t+1) = σ

(
P∑

j=0

W(j)H(t)Âj

)
, (12)

and some algorithms, such as Lanczos algorithm and Trun-
cated Krylov algorithm, are adopted to speedup the compu-
tation.

Initial Residual in GCN. Recently GCN with Initial
residual and Identity mapping (GCNII) (Chen et al. 2020)
proposes to alleviate the over-smoothing issue in GCN by
adding initial residual to each graph convolutional layer as

Ht+1 = σ
(
W(t+1)

(
(1− γt)HtÂ + γtX

))
, (13)

= σ
(
W(t+1)

(
(1− γt)Ht + (1− γt)HtĀ + γtX

))
where γt is hyperparameter. Note that, similar to GCN, the
Â consists of two parts, i.e, diagonal for self-loop and non-
diagonal for propagatio The term γtX ensures that the final
representation of each node retains at least a fraction of the
input layer X even if we stack many layers. By stacking
multiple GCN layer with Initial residua, the performance is
significantly improved.

Learning Propagation Weight. Based on the propagation
perspective of GCN (Gilmer et al. 2017), many efforts have
been paid to make propagation learnable. Graph Attention
Network (GAT) (Velickovic et al. 2018), Gated Attention
Network (GaAN) (Zhang et al. 2018) and Probabilistic GCN
(Yang et al. 2020) model the propagation weights as the
function of the attributes of connecting nodes via normal-
ized attention mechanism as

αij = exp(eij)/
∑
k∈Ni

exp(eik). (14)

where eij denotes the similarity between nodes vi and vj .
The similarity function of attributes can be specifies as

eGAT
ij = LeakyReLU(b[Whi||Whj]) (15)

eGaAN
ij = (Whi)

TO(Whj) (16)

ePGCN
ij = −(Whi −Whj)

TΣ(Whi −Whj) (17)

where b, O and Σ are learnable parameters. Some efforts
have been paid to simplify them, such as setting O as iden-
tity matrix, i.e., O = I or constraining Σ as diagonal matrix.

Graph Representation Learning Framework
In this section, an intuitive graph representation learning
framework is first provided followed by the extension to
considering noisy graph topology.

Framework Overview
Given an attributed graph G = (V, E ,X), the following two
requirements are natural to obtain the node representation.
1) Unary Constraint. The representation of node vi, de-
noted as ui, should be similar with its original attribute xi.
2) Pairwise Constraint. Connected nodes should possess
similar representation. Thus, the objective function can be
formulated as

C(U) =

N∑
i=1

sim(xi,ui) + λ
∑

(i,j)∈E

oijdis(ui,uj), (18)

where the first term is for the first requirement with similar-
ity measurement sim(., .) and the second term for the second
requirement with the distance function dis(., .) and the de-
gree of similarity oij . For simplicity, Euclidean distance is
adopted as the measurement as

C(U) =

N∑
i=1

||xi − ui||22 + λ
∑

(i,j)∈E

oij ||ui − uj ||22, (19)

where the second term can be seen as the graph regular-
ization (?) with graph structure as O = [oij]. Sometimes,
the inner product can also be employed as the the similarity
function as

L(U) = −2

N∑
i=1

xT
i ui + λ

∑
(i,j)∈E

oij ||ui − uj ||22. (20)

By denoting U = [ui] ∈ RF×N as the collection of node
representation, the solution to Eqs. (19) and (20) can be ob-
tain by solving the following linear least-squares problem

U(I + M) = X, (21)
UM = X, (22)

where I is the identity matrix. And the Laplacian matrix M
is

M = λ
∑

(i,j)∈E

oij(ei − ej)(ei − ej)
T = λ(DO −O), (23)

where ei is an indicator vector with the ith element as 1
and DO = diag(O1) is the degree matrix of asymmetric
matrix O = [oij] ∈ RN×N . Thus, both M and I + M are
symmetric and positive semidefinite, and Eqs. (21) and (22)
can be directly solved via

U = X(I + M)−1, U = XM−1. (24)

Unfortunately, these analytic solutions are computationally
expensive due to the inverse operation.

Noisy Graph Topology
The second requirement in the previous subsection, i.e., con-
nected nodes being similar, is debatable, since the noisy con-
nections is inevitable in real-world data. Thus, the second
term in Eq. (19), which is used to model the similarity of the
connected nodes, can be reformulated to incorporate some
preference as

C(U) =

N∑
i=1

||xi − ui||22 + λ
∑

(i,j)∈E

oijρ(||ui − uj ||2),

(25)

where ρ(·) is a penalty to model the desired preference. For
example, `0 norm, i.e., ρ(y) = δ(y 6= 0) with δ(.) as Dirac
delta function, and its convex relaxation `1 norm is adopted
for clustering, which requires the observation from the same
latent cluster to collapse into a single point. To alleviate
the noisy connection, the function ρ(·) should automatically
prune spurious inter-cluster connections while maintaining
intra-cluster ones. According to the duality between robust
estimation and line processes (), an auxiliary variable lij is
introduced for each observed connection (i, j) ∈ E and ob-
jective function in Eq. (25) should be equivalent to

C(U,L) =

N∑
i=1

||xi − ui||22

+λ
∑

(i,j)∈E

oij
(
lij ||ui − uj ||22 + ψ(lij)

)
, (26)

where L = [lij] ∈ RN×N is the collection of lij and ψ(lij)
is the penalty of pruning edge (i, j). Thus, ψ(lij) should
tend to be 0 when the edge (i, j) is maintained, and tend to
be 1 when the edge (i, j) is pruned. A broad variety of robust
estimators ρ(·) have corresponding penalty functions ψ(lij)
such that Eqs. (25) and (26) are equivalent with respect to U.
Optimizing either of the two objectives yields the same set

of representatives U. According to (Shah and Koltun 2017),
a well-known Geman-McClure estimator (Geman and Mc-
Clure 1987) is adopted as

ρ(y) =
µy2

µ+ y2
(27)

where µ is a hyperparameter. It is equivalent to setting the
penalty function ψ(lij) in Eq. (26) as

ψ(lij) = µ
(√

lij − 1
)2
, (28)

which satisfies the requirement to ψ(lij) on penalizing the
edge pruning. ψ(lij) achieves its maximum penalty, if edge
(i, j) is pruned, i.e., lij = 0.

Since the objective function in Eq. (26) is biconvex on U
and L, then it can be optimized by alternatively updating U
and L. When L is fixed, objective function can be minimized
with respect to U via Eqs. (21) and (22) by setting oij =
oij lij . When U is fixed, L can be obtained by minimizing
the second term in Eq. (26) as

lij =

(
µ

µ+ ||ui − uj ||22

)2

. (29)

Since the refined pairwise similarity between nodes vi and
vj is oij lij , lij plays the role of re-weighting the original
similarity according to their latent space distance ||ui−uj ||.
Thus, Robust GRL may gradually refine the noisy topology
and obtain the robust node representation.

Analysis of Existing GCNNs
Previous researches illustrate that the success of GCN and
its variants mainly attribute to their essence of smoothing
from the spatial perspective (Li, Han, and Wu 2018). In this
section, existing GCNNs are analyzed under the proposed
graph representation learning (GRL) framework by compar-
ing the solution to GRL and the propagation in GCNNs.

According to the SGC (Wu et al. 2019), weight matrices
between consecutive layers can be collapsed and the non-
linear mapping function can be removed. Thus, our analy-
sis focuses on the propagation strategy and its combination
mechanism without the weight matrix and nonlinear map-
ping function.
Theorem 1. The scheme of GCN with initial residual in
Eq. (13) is equivalent to solving the Graph Representation
Learning in Eq. (20), where pairwise similarity O = [oij]
is set as the symmetric Random-Walk Markov Matrix Ā =

D−
1
2 AD−

1
2 , with gradient descent.

Proof. Based on the gradient descent for linear system in
Eq. (3), the solution to UM = X, which is equivalent to the
Graph Representation Learning in Eq. (20), can be obtained
iteratively as

U(t+1) = U(t) + µt(X−U(t)M) = U(t)(I− µtM) + µtX.
(30)

According to Eq. (23) and O = Ā = D−
1
2 AD−

1
2 , M =

DO −O is the Laplacian matrix of the similarity matrix A,
and DO = I. Then, Eq. (30) can be reformulated as

U(t+1) = (1− µt)U
(t) + µtU

(t)Ā + µtX. (31)

The three terms in the right hand side, i.e., U(t), U(t)Ā and
X, correspond to the self-loop H(t), propagation H(t)Ā and
residual X in the Residual GCN in Eq. (13), thus they are
equivalent.

Corollary 1. The term X in gradient descent is important to
properly approximate the solution to GRL. Thus, the initial
residual is important in GCNs.

Theorem 1 and Corollary 1 illustrate the importance of the
initial residual connection in (GCNII) (Chen et al. 2020). It
shows that the reason why GCN layers with initial resid-
ual connection can outperforms the original GCN is because
it can approximates the solution to GRL. In contrast, if the
residual connection X lacks, the approximation error of each
gradient descent step can’t be ignored, thus the cumulative
error is very significant in approximating the solution to
GRL. Thus, stacking of GCN without initial residual con-
nection degrades the performance.

Theorem 2. The scheme of the multi-scale extension to
GCN in Eq. (12) is equivalent to solving the Graph Rep-
resentation Learning in Eq. (20), where pairwise similarity
O = [oij] is set as the symmetric Random-Walk Markov Ma-
trix with self-loop Â = D̃−

1
2 ÃD̃−

1
2 , with the higher order

approximation to the inverse of M in Eq. (5).

Proof. Based on the Caley-Hamilton theorem in Eq. (5),
(I−A)−1 can be expressed as the summation of finite terms
as

(I−A)−1 ≈
J∑

j=0

βjA
j , (32)

where J < N . Since Eq. (24) shows that U = XM−1,
where M = DO − O = I − Â, is the analytic solution
to the problem of the Graph Representation Learning in Eq.
(20), we get

U = X(I−A)−1 ≈
J∑

j=0

βjXÂj . (33)

Thus, the approximation solution to GRL is equivalent to the
multi-scale extension to GCN in Eq. (12).

Theorems 1 and 2 demonstrate that the propagations in
GCNs are equivalent to the optimization steps (gradient de-
scent step or high order approximation step) of the our pro-
posed Graph Representation Learning. That is, they are in-
duced by the numerical optimization of pairwise similar-
ity requirement. Thus, the pairwise similarity constraints,
which determines how to propagate, is the key to GNNs.

Next, the attention mechanism, such as GAT (Velickovic
et al. 2018), GaAN (Zhang et al. 2018) and PGCN (Yang
et al. 2020), is compared with our proposed Graph Repre-
sentation Learning with noisy topology refinement.

Corollary 2. The solution to our proposed Robust Graph
Representation Learning with noisy topology refinement
shown in Eq. (25) with ρ(·) as in Eq. (27) is similar to the
GCNNs with learnable propagation weight as Eq. (17).

… … …

Propagation

Propagation

Propagation

Attributes

Propagation

Propagation

Propagation

Attributes

Propagation

Propagation

Propagation

Attributes

+

- Ht-1

X X X

Ht

Ht+1

(a) GCN (b) GCN with Initial Residual (c) GCC

Figure 1: The architectures of GCN, GCN with Initial Resid-
ual and our proposed GCC.

Both of Robust GRL and GCNNs with learnable propaga-
tion weight iteratively propagate attribute and learn weight
(refine similarity). Thus, this corollar ycan be illustrated
with following two steps. 1) GCNNs with learnable prop-
agation weight perform the similar propagation as GCNNs
without learnable propagation weight shown in Eq. (8). 2)
The weight learning function in GCNNs shown in Eq. (17)
is similar to the similarity refinement function oij lij , where
lij is determined in Eq. (29). That is, b†oth of them are the
monotonically decreasing function of ||ui − uj ||2.

Corollary 2 demonstrates that the learning of propagation
weights is also induced by the pairwise similarity robust es-
timation function ρ(·). Therefore, both propagation and its
wights learning in GCNs are determined and induced by
the numerical optimization of pairwise similarity objective
function. In other words, it provides insights of GCN and its
variants from the perspective of numerical optimization that

The propagation as well as its weight learning are not
the essence of the GCNs, but induced by the numerical
optimization of pairwise similarity requirement.

Graph Conjugate Convolutional Network
According to the explanation to the GCN and its variants
from the perspective of the numerical optimization algo-
rithms of our proposed GRL framework in previous section,
a novel Graph Conjugate Convolutional (GCC) network is
presented to approximate the solution to GRL with fast con-
vergence. The Graph Conjugate Convolutional (GCC) net-
work is constructed by stacking multiple novel Graph Con-
jugate Convolutional layer. The design of Graph Conjugate
Convolutional layer is inspired by fast convergence of con-
jugate gradient descent compared to the common gradient
descent. According to the difference between conjugate gra-
dient descent in Eq. (4) from common gradient descent in
Eq. (3), each Graph Conjugate Convolutional layer consists
of three components as

H(t+1) = σ
(
W(t+1)

(
(1− γt)H(t)Â + γtX

+κt(H
(t) −H(t−1))

))
, (34)

Table 1: Datasets.

Datasets Nodes Edges Classes Attributes

Texas 183 328 5 1,703
Cornell 195 304 5 1,703

Wisconsin 262 530 5 1,703
Chameleon 2,277 36,101 4 2,325

Cora 2,708 5,429 7 1,433
Citeseer 3,312 4,732 6 3,703
Pubmed 19,729 44,338 3 500

PPI 56,944 818,716 121 50

where the first two terms are the same as in GCNII in Eq.
(13). They act as the propagation, including self-loop, and
initial residual. The third term κt(H

(t) −H(t−1)) is the dif-
ference between the representation in tth and (t−1)th layer,
as shown in Figure 1(c).

Note that this term is very different from just adding H(t)

term as in GCN (Kipf and Welling 2017). GCN has shown
that just adding H(t), which is equivalent to the residual con-
nection as ResNet (He et al. 2016), can’t improve the perfor-
mance as stacking many layers. This may be caused by that
the accumulation effect of representation in low-level layers
induces the overfitting as layers increase. In contrast, our in-
troduced term κt(H

(t) −H(t−1)) only adopts the obtained
information of the tth layer, which can be represented as the
difference between the input and output of the tth layer as
shown in the purple arrow of Figure 1(c), as the input to the
(t+ 1)th layer. Thus, it can alleviate the issue in the residual
connection.

Besides, our proposed Graph Conjugate Convolutional
layer can be employed by other propagation based GCNNs,
since it essentially sublimes the propagation process. For ex-
ample, Graph Conjugate Attention (GCA) network can be
obtained by replacing its propagation part with our proposed
Graph Conjugate Convolution according to Corollary 2. Fur-
thermore, our proposed GCC and GCA can be applied to
both transductive and inductive semi-supervised node clas-
sification tasks.

Evaluations
In this section, the performance of our proposed GCC and
GCA is experimentally evaluated on transductive and induc-
tive semi-supervised node classification task.

Experimental Setup
Dataset: For transductive learning task, two kinds of
networks, citation networks and webpage networks, are
adopted. Cora, Citeseer, and Pubmed are citation network
benchmark datasets (Sen et al. 2008), where nodes and
edges denote research papers and undirected citations, re-
spectively. In addition to the network structure, node con-
tent, which is represented by the bag-of-word representation
of the documents, is available. According to the disciplines,
papers are categorized into various classes. Texas, Cornell
and Wisconsin are webpage networks from WebKB, where

Table 2: Comparison on transductive node classification in terms of AC (%).

Methods Cora Citeseer Pubmed Texas Cornell Wisconsin Chameleon

GCN 81.5 71.1 79.0 52.1 52.7 45.8 28.2
GAT 83.1 70.8 78.5 58.3 54.3 49.4 42.9

PR-GCN 83.3 71.8 80.1 65.4 73.5 69.0 54.3
JKNet 81.1 69.8 78.1 56.4 57.3 48.8 60.1

DropEdge 83.5 72.7 79.5 57.8 61.6 50.2 61.7
GCNII 85.5 73.4 80.2 69.4 74.8 74.1 60.6

GCC 86.1 74.3 81.1 71.15 76.44 75.37 61.95
GCA 86.3 73.6 81.1 71.62 76.72 74.87 61.27

Table 3: Results on PPI.

Methods PPI

GraphSAGE 61.27
VR-GCN 97.80

GAT 97.32
JKNet 97.61

GeniePath 98.52
Cluster-GCN 99.33

GCNII 99.53

GCC 99.60
GCA 99.58

nodes and edges represent web pages and hyperlinks, re-
spectively. Node features are the bag-of-words representa-
tion of web pages. The web pages were manually classified
into the five categories. Chameleon is a page-page network
on specific topics in Wikipedia, where nodes, edges and fea-
tures have the similar meaning as in WebKB. For inductive
learning task, 24 Protein-Protein Interaction (PPI) networks
are employed (Hamilton, Ying, and Leskovec 2017). Dataset
statistics are summarized in Table 1.
Baselines: For transductive learning task, the baselines fall
into two categories. GCN (Kipf and Welling 2017) and GAT
(Velickovic et al. 2018) are two basic models, which may
induce over-smoothing and overfitting. Besides, other 5 re-
cently proposed method to overcome the oversmoothing is-
sue are employed. They are PR-GCN (Klicpera, Bojchevski,
and Günnemann 2019), JKNet (Xu et al. 2018), DropEdge
(Rong et al. 2020) and GCNII (Chen et al. 2020). Note that
although edge dropping strategy in (Rong et al. 2020) can
be applied to many other basic model, such as GCN, DropE-
dge is used to represent to the combination of edge dropping
and IncepGCN proposed in (Rong et al. 2020). IncepGCN
is the extension of inception network (Szegedy et al. 2016)
to GNN by combining 1-hop, 2-hop and 3-hop graph con-
volutional operations in one IncepGCN layer. For inductive
learning, in additional to the GAT (Velickovic et al. 2018),
JKNet (Xu et al. 2018) and GCNII (Chen et al. 2020), other
4 state-of-the-art methods, i.e., GeniePath (Liu et al. 2019),
Cluster-GCN (Chiang et al. 2019) GraphSAGE (Hamilton,
Ying, and Leskovec 2017) and VR-GCN (Chen, Zhu, and
Song 2018), are employed.
Parameter Setting: Adam SGD optimizer (Kingma and Ba
2015) is adopted with learning rate as 0.001. Besides, early
stopping with a patience of 100 epochs and `2 regulariza-
tion (0.0006) is employed to prevent overfitting. γt = 0.1
and κt = 0.2 for transductive learning, while γt = 0.45 and
κt = 0.32 in inductive learning. Similar to GCNII (Chen
et al. 2020) identity mapping is employed to enhance the
learnable mapping W. The number of layers (depth) is se-
lected from 8, 16 and 32. Its impact on performance will be
investigated in the last subsection.

Experimental Results Analysis
Transductive Learning: The fixed split for training, valida-
tion and testing introduced in (Yang, Cohen, and Salakhut-
dinov 2016), i.e., 20 nodes per class for training, 500 nodes

for validation and 1,000 nodes for testing, are adopted for
three citation network Cora, Citeseer, and Pubmed. For each
webpage network, i.e., Chameleon, Texas, Cornell and Wis-
consin, nodes in each class is randomly split into 60%, 20%,
and 20% for training, validation and testing. The results in
term of accuracy (AC) are shown in Table 2. It demonstrates
that our proposed GCC and GCA consistently outperform
the state-of-the-art GNNs. They possess the ability to extract
more information from high-order neighbourhoods. The per-
formance improvement mainly due to the fast convergence
of the conjugate part in GCC. From propagation perspective,
it prevents the over-smoothing caused by inaccurate approx-
imation. The impacts of the depth on performance are given
in the Appendix.
Inductive Learning: Following (Velickovic et al. 2018),
The 24 graphs are divided to 20 graph for training, 2 graphs
for validation and 2 graphs for testing. The results in terms
of F1 score are shown in Table 3. GCC defeats other state-of-
the-art with 8 graph conjugate convolutional layers. It illus-
trates that GCC can effectively combine multi-hop informa-
tion with efficient graph conjugate convolutional operation.
This efficiency may attributes to that graph conjugate convo-
lution integrates the gained information (difference between
output and input) in each graph convolutional layer as shown
in Figure 1(c).

Conclusions
In this paper, the propagation, which induces over-
smoothing issue in Graph Convolutional Network (GCN)
and its variant, is investigated. To this end, an intuitive Graph
Representation Learning (GRL) framework, which simply
constrains the node representation similar with the original
attribute, and encourages the connected nodes possess simi-
lar representations (pairwise constraint), is presented. Based
on GRL, we show that the propagation as well as its weight
learning are not the essence of the GCNs, but induced by the
numerical optimization of pairwise similarity requirement.
Thus, inspired by the superiority of conjugate gradient de-
scent compared to common gradient descent, a novel Graph
Conjugate Convolutional (GCC) network, which adopts the
obtained information of the last layer as the input to the
next layer, is presented. Extensive experiments on transduc-
tive and inductive semi-supervised node classification task
shows that GCC can enjoy the deep network via effectively
and efficiently multi-hop information combination.

Acknowledgments
This work was supported in part by the National Natural
Science Foundation of China under Grant 61972442, Grant
U1936208 and Grant 61802282, in part by the Key Research
and Development Project of Hebei Province of China under
Grant 20350802D and 20310802D; in part by the Natural
Science Foundation of Hebei Province of China under Grant
F2020202040, in part by the Hebei Province Innovation Ca-
pacity Enhancement Project under Grant 199676146H, in
part by the Natural Science Foundation of Tianjin of China
under Grant 20JCYBJC00650, and in part by the Key Pro-
gram of the Chinese Academy of Sciences under Grant
QYZDB-SSW-JSC003.

References
Abu-El-Haija, S.; Kapoor, A.; Perozzi, B.; and Lee, J.
2019a. N-GCN: Multi-scale Graph Convolution for Semi-
supervised Node Classification. In UAI, 310.

Abu-El-Haija, S.; Perozzi, B.; Kapoor, A.; Alipourfard, N.;
Lerman, K.; Harutyunyan, H.; Steeg, G. V.; and Galstyan,
A. 2019b. MixHop: Higher-Order Graph Convolutional Ar-
chitectures via Sparsified Neighborhood Mixing. In ICML,
volume 97, 21–29.

Balcilar, M.; Renton, G.; Héroux, P.; Gauzere, B.; Adam,
S.; and Honeine, P. 2020. Bridging the Gap Between Spec-
tral and Spatial Domains in Graph Neural Networks. arXiv
preprint arXiv:2003.11702 .

Chen, J.; Zhu, J.; and Song, L. 2018. Stochastic Training of
Graph Convolutional Networks with Variance Reduction. In
ICML, 941–949.

Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; and Li, Y. 2020.
Simple and Deep Graph Convolutional Networks. In ICML.

Chiang, W.; Liu, X.; Si, S.; Li, Y.; Bengio, S.; and Hsieh,
C. 2019. Cluster-GCN: An Efficient Algorithm for Train-
ing Deep and Large Graph Convolutional Networks. In
SIGKDD, 257–266.

Decell, Jr, H. P. 1965. An application of the Cayley-
Hamilton theorem to generalized matrix inversion. SIAM
review 7(4): 526–528.

Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional Neural Networks on Graphs with Fast Local-
ized Spectral Filtering. In NIPS, 3837–3845.

Geman, S.; and McClure, D. 1987. Statistical methods for
tomographic image reconstruction. Bulletin of the Interna-
tional Statistical Institute 52(4): 5–21.

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural Message Passing for Quantum
Chemistry. In ICML, 1263–1272.

Golub, G. H.; and Van Loan, C. F. 1996. Matrix Compu-
tations (3rd Ed.). USA: Johns Hopkins University Press.
ISBN 0801854148.

Hamilton, W. L.; Ying, Z.; and Leskovec, J. 2017. Inductive
Representation Learning on Large Graphs. In NIPS, 1024–
1034.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In CVPR, 770–778.

Jin, D.; Liu, Z.; Li, W.; He, D.; and Zhang, W. 2019. Graph
Convolutional Networks Meet Markov Random Fields:
Semi-Supervised Community Detection in Attribute Net-
works. In AAAI, 152–159.

Jin, D.; Song, X.; Yu, Z.; Liu, Z.; Zhang, H.; Cheng, Z.;
and Han, J. 2021. BiTe-GCN: A New GCN Architecture
via Bidirectional Convolution of Topology and Features on
Text-Rich Networks. In WSDM.

Jin, D.; Yu, Z.; He, D.; Yang, C.; Yu, P. S.; and Han, J. 2020.
GCN for HIN via Implicit Utilization of Attention and Meta-
paths. arXiv preprint arXiv:2007.02643 .

Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In ICLR.

Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Classi-
fication with Graph Convolutional Networks. In ICLR.

Klicpera, J.; Bojchevski, A.; and Günnemann, S. 2019. Pre-
dict then Propagate: Graph Neural Networks meet Personal-
ized PageRank. In ICLR.

Li, G.; Müller, M.; Thabet, A. K.; and Ghanem, B. 2019.
DeepGCNs: Can GCNs Go As Deep As CNNs? In ICCV,
9266–9275. doi:10.1109/ICCV.2019.00936.

Li, Q.; Han, Z.; and Wu, X. 2018. Deeper Insights Into
Graph Convolutional Networks for Semi-Supervised Learn-
ing. In AAAI, 3538–3545.

Liao, R.; Zhao, Z.; Urtasun, R.; and Zemel, R. S. 2019.
LanczosNet: Multi-Scale Deep Graph Convolutional Net-
works. In ICLR.

Liu, Z.; Chen, C.; Li, L.; Zhou, J.; Li, X.; Song, L.; and Qi,
Y. 2019. GeniePath: Graph Neural Networks with Adaptive
Receptive Paths. In AAAI, 4424–4431.

Luan, S.; Zhao, M.; Chang, X.; and Precup, D. 2019. Break
the Ceiling: Stronger Multi-scale Deep Graph Convolutional
Networks. In NeurIPS, 10943–10953.

Ma, J.; Cui, P.; Kuang, K.; Wang, X.; and Zhu, W. 2019. Dis-
entangled Graph Convolutional Networks. In ICML, 4212–
4221.

Oono, K.; and Suzuki, T. 2020. Graph Neural Networks Ex-
ponentially Lose Expressive Power for Node Classification.
In ICLR.

Pei, H.; Wei, B.; Chang, K. C.-C.; Lei, Y.; and Yang, B.
2020. Geom-GCN: Geometric Graph Convolutional Net-
works. In ICLR.

Rong, Y.; Huang, W.; Xu, T.; and Huang, J. 2020. DropE-
dge: Towards Deep Graph Convolutional Networks on Node
Classification. In ICLR.

Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Gallagher, B.;
and Eliassi-Rad, T. 2008. Collective Classification in Net-
work Data. AI Magazine 29(3): 93–106.

Shah, S. A.; and Koltun, V. 2017. Robust continuous clus-
tering. PNAS 114(37): 9814–9819.

Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2016. Rethinking the Inception Architecture for Com-
puter Vision. In CVPR, 2818–2826.
Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph Attention Networks. In
ICLR.
Wu, F.; Jr., A. H. S.; Zhang, T.; Fifty, C.; Yu, T.; and Wein-
berger, K. Q. 2019. Simplifying Graph Convolutional Net-
works. In ICML, 6861–6871.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Yu, P. S.
2020. A comprehensive survey on graph neural networks.
IEEE TNNLS 1–14.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
Powerful are Graph Neural Networks? In ICLR.
Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.; and
Jegelka, S. 2018. Representation Learning on Graphs with
Jumping Knowledge Networks. In ICML, 5449–5458.
Yang, L.; Guo, Y.; Gu, J.; Jin, D.; Yang, B.; and Cao,
X. 2020. Probabilistic Graph Convolutional Network via
Topology-Constrained Latent Space Model. IEEE Transac-
tions on Cybernetics 1–14.
Yang, L.; Kang, Z.; Cao, X.; Jin, D.; Yang, B.; and Guo, Y.
2019a. Topology Optimization based Graph Convolutional
Network. In IJCAI, 4054–4061.
Yang, L.; Wu, F.; Gu, J.; Wang, C.; Cao, X.; Jin, D.; and
Guo, Y. 2020. Graph Attention Topic Modeling Network.
In WWW, 144–154.
Yang, L.; Wu, F.; Wang, Y.; Gu, J.; and Guo, Y. 2019b.
Masked Graph Convolutional Network. In IJCAI, 4070–
4077.
Yang, Z.; Cohen, W. W.; and Salakhutdinov, R. 2016. Revis-
iting Semi-Supervised Learning with Graph Embeddings. In
ICML, 40–48.
Zhang, J.; Shi, X.; Xie, J.; Ma, H.; King, I.; and Yeung, D.
2018. GaAN: Gated Attention Networks for Learning on
Large and Spatiotemporal Graphs. In UAI, 339–349.

