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Abstract

In network analysis, community detection and network em-
bedding are two important topics. Community detection tends
to obtain the most noticeable partition, while network embed-
ding aims at seeking node representations which contains as
many diverse properties as possible. We observe that the cur-
rent community detection and network embedding problems
are being resolved by a general solution, i.e., “maximizing
the consistency between similar nodes while maximizing the
distance between the dissimilar nodes”. This general solution
only exploits the most noticeable structure (facet) of the net-
work, which effectively satisfies the demands of the commu-
nity detection. Unfortunately, most of the specific embedding
algorithms, which are developed from the general solution,
cannot achieve the goal of network embedding by exploring
only one facet of the network. To improve the general solution
for better modeling the real network, we propose a novel net-
work embedding method, Multi-facet Network Embedding
(MNE), to capture the multiple facets of the network. MNE
learns multiple embeddings simultaneously, with the Hilbert
Schmidt Independence Criterion (HSIC) being the a diver-
sity constraint. To efficiently solve the optimization problem,
we propose a Binary HSIC with linear complexity and solve
the MNE objective function by adopting the Augmented La-
grange Multiplier (ALM) method. The overall complexity is
linear with the scale of the network. Extensive results demon-
strate that MNE gives efficient performances and outperforms
the state-of-the-art network embedding methods.

Introduction
In real world, many complex systems, such as the gene reg-
ulatory network and human relations, can be described by
a network model. A common property of these networks
is the presence of community (modular/cluster) structures
(Girvan and Newman 2002), in which the nodes are densely
connected within each of the communities and seldomly
connected across the communities. In the past decades, nu-
merous algorithms, which usually classify nodes into clus-
ters (communities) directly, have been proposed for com-
munity detection (Fortunato 2010; Malliaros and Vazirgian-
nis 2013). Compared to the techniques in computer vision
and natural language processing field, which usually per-
form feature extraction and then a machine learning step
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(such as regression, classification, clustering, etc.), commu-
nity detection algorithms are usually End-to-End without ex-
plicitly seeking the node representations. Hence, it requires
specially designed algorithms rather than directly adopting
the existing techniques in other fields. To alleviate the above-
mentioned issue, network embedding, which learns the node
representations regardless of the specific network analysis
tasks, becomes popular (Perozzi, Al-Rfou, and Skiena 2014;
Tang et al. 2015; Cao, Lu, and Xu 2015; Wang, Cui, and Zhu
2016; Ou et al. 2016).

In general, community detection and network embedding
possess different objectives. Community detection usually
obtains the most noticeable cluster or one specific cluster
with labels and node attributes. Network embedding, on the
other hand, aims to represent nodes by vectors which en-
codes as many diverse properties as possible, because the
subsequent task is unknown and may focuses on any prop-
erties. For example, embedding methods need to exploit dif-
ferent properties of user in the social network, such as hob-
bies (political views) to recommend entertainment products
(predict the result of presidential election).

However, we observe that the current community detec-
tion and network embedding problems are being resolved
by a general solution. On one hand, stochastic community
detection and graph cuts tend to reconstruct the (normal-
ized) adjacency matrix with the node membership matrix. It
is equivalent to maximizing the membership consistency of
each pair of the directly connected nodes while maximizing
the membership distance of each pair of the un-connected
nodes. On the other hand, inspired by the Skip-gram model
and negative sampling, network embedding maximizes the
embedding similarity of neighbouring nodes in the random
walk, while maximizes the embedding distance for each ran-
domly sampled pair of nodes, which are highly unlikely to
be similar. Therefore, a general solution, “maximizing the
consistency between similar nodes while maximizing the dis-
tance between the dissimilar nodes”, can be summarized for
the existing community detection and network embedding
problems. This general solution, which exploits the most
noticeable structure (facet) of the network, can explicitly
achieves the objective of community detection.

Hence, a key issue, “Do network embedding algorithms
really achieve their goal?”, has been seldomly considered.
Similar to community detection, network embedding algo-



rithms developed from the general solution obtain the em-
bedding which only represents one noticeable facet of the
network but ignore the need for diversity.

However, the network in real world possesses multiple
facets and can be partitioned based on various principles,
each of which has reasonable explanations. To exploit the
multiple diverse facets of the network in real situations, we
propose a novel network embedding approach, Multi-facet
Network Embedding (MNE). Instead of dividing the net-
work into only one group of communities which only re-
veals one facet of the network, MNE partitions the network
into many diverse groups of communities and represents the
nodes via multiple embeddings. Specifically, MNE factor-
izes one network proximity matrix to obtain multiple pairs
of node and context embeddings to model the multiple facets
of the network. To improve the diversities of different facets,
we propose a Binary Hilbert-Schmidt Independence Crite-
rion (B-HSIC) term, which reduces the complexity of HSIC
from O(N2) to O(N). Further, we augment the objective
function with an auxiliary variable and solve it with a linear
complexity by employing the Augmented Lagrange Multi-
plier (ALM) method.

The contributions of this paper are summarized as fol-
lows:

• We observe that there exists similarities and dissimilari-
ties among the existing network embedding and commu-
nity detection algorithms. Based on our observation, we
summarize a general solution for the community detec-
tion and network embedding problems.

• Since the general solution can only model a single facet of
the network when it is applied to the network embedding
problem, we propose Multi-faceted Network Embedding
(MNE) to capture the multiple facets of the network.

• We propose a new regularization term, Binary Hilbert-
Schmidt Independence Criterion, with linear complexity
to enforce the diversities among different embeddings.

• We propose an efficient optimization approach to opti-
mize the objective function with a linear complexity by
adopting the ALM approach.

From Detection to Representation
Here, an undirected and unweighted graph G = (V,E) is
considered, where V = {v1, v2, ..., vN} is the set of N ver-
tices, and E = {eij} is the set of M edges. The adjacency
matrix of G is defined as a nonnegative symmetric matrix
A = [aij ] ∈ RN×N

+ , where aij = 1 if vertices i and j are
connected or aij = 0 otherwise. Note that aii = 0 for all
1 ≤ i ≤ N . The degree matrix of G is defined by a diagonal
matrix D = diag(d1, d2, ..., dN ) where di =

∑
j aij is the

degree of node vi. The Laplacian matrix ofG is a symmetric
matrix defined as L = D−A.

Stochastic Community Detection
Intuitively, community detection (graph partition) is to ob-
tain a group of K modules or communities {Vi}Ki=1, which

are the subgraphs (of G) whose vertices are densely con-
nected with each other in the same subgraph. The commu-
nities may be either disjoint (Vi ∩ Vj = ∅ for i 6= j) or
overlapping (Vi ∩ Vj 6= ∅).

From the stochastic perspective (Psorakis et al. 2011), aij
can be considered as the probability of the vertices i and j
being connected. This probability can be further considered
to be determined by the probability that vertices i and j gen-
erate edges belonging to the same community. The latent
variables U = [uik] ∈ RN×K

+ (V = [vik] ∈ RN×K
+ ) are

introduced, where uik (vik) represents the probability that
node i belongs to the in- (out-) community k. Then the prob-
ability, that vertices i and j is connected by a link belong-
ing to the community k, is uikvjk, and the probability that
they are connected is: âij = uivj

T =
∑K

k=1 uikvjk. There-
fore, the community detection problem can be formulated as
a matrix factorization. The objective function based on the
square loss function is

||A−UVT ||2F (1)

=
∑

(i,j)∈E

(1− uivj
T )2 +

∑
(i,j)/∈E

(0− uivj
T )2,

which is often employed to quantify the reconstruction er-
ror. If the in-community and out-community are merged, i.e.
U = V, (Psorakis et al. 2011) simplifies Eq. (1) to∑

(i,j)∈E

(1− uiuj
T )2 +

∑
(i,j)/∈E

(0− uiuj
T )2. (2)

By defining the normalized first-order similarity matrix as
S = D−1/2AD−1/2, (Yang et al. 2012) considers the tth-
order similarity between nodes as (αS)t, where α ∈ (0, 1) is
a decay parameter controlling the similarity scale. The over-
all similarity matrix is obtained by summing over R high-
order similarities as

B =

R∑
t=1

(αS)t = αS + α2S2 + ...+ αRSR. (3)

By factoring the similarity matrix B according to Eq. (2), the
community based on high-order similarities can be obtained.

Graph Cuts
Normalized Cut (NCut) (Shi and Malik 2000), one of the
commonly-employed spectral clustering techniques, aims to
minimize the number of links between the detected commu-
nity and its complementary set as

NCut(V1, V2, ..., VK) =

K∑
k=1

link(Vi, V̄i)

vol(Vi)
,

where V̄i is the complement of Vi (Vi∪V̄i = V, Vi∩V̄i = ∅),
vol(A) =

∑
i∈A di and link(A,B) = 1

2

∑
i∈A,j∈B aij .

Then, it is relaxed to minimize Tr(UTLU) subjecting to
UTDU = I, whose solution yields U to consist the eigen-
vectors corresponding to the K largest eigenvalues of the
normalized adjacency matrix Q = D−1A. The eigenvalue
decomposition (EVD) of Q is defined as

Q = D−1A = YΛYT , (4)



where Λ = diag{λ1, λ2, ..., λN}, λ1 ≥ λ2 ≥ ... ≥ λN are
the N eigenvalues of D−1A and Y = [Y1,Y2, ....,YN ]
contains the corresponding eigenvectors. Let ΛK denote the
diagonal matrix with the largest K eigenvalues in Λ and
YK ∈ RN×K be the corresponding eigenvectors. Accord-
ing to (Tian et al. 2014), Theorem 1 can be obtained.
Theorem 1 (Tian et al. 2014). YKΛKYT

K is the best recon-
struction of matrix D−1A in terms of the Frobenuis norm
among all rank-k matrices.

It indicates that NCut can be regarded as a process of ma-
trix reconstruction for the matrix D−1A.

Network Embedding
Different from community detection which directly finds a
group of modules, network embedding aims to obtain the
representation for each node which can be employed in fu-
ture processing steps such as clustering, classification, link
prediction, recommendation, etc. In network embedding, a
representation (embedding) matrix H = [hip] ∈ RN×P ,
where hi ∈ RP is the P -dimensional embedding of vertex i,
is defined. Next, DeepWalk, LINE and GreRep are selected
as the examples to briefly introduce network embedding.

DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) is mo-
tivated by the fact that the frequency of the vertices, ap-
pearances in the short random walks follows a power-law
distribution (i.e. scale-free). This power-law is also obeyed
by the word frequency in natural languages. Based on this
interesting observation, DeepWalk employs Skip-gram, a
word representation model (Mikolov et al. 2013), to learn
the representations of the nodes. The Skip-gram model, as
shown in Eq. (5), achieves the embedding by maximizing
the co-occurrence probabilities among the nodes which ap-
pear within a window in the random walk.∏

vi∈Walk

[ ∏
vj∈Window(vi)

p(vj |vi; H,C)

]
, (5)

where Walk is a random walk and Window(vi) is
the content of node vi. C = [cip] ∈ RN×P is the
corresponding content embedding. The condition prob-
ability p(vj |vi; H) is modeled as p(vj |vi; H,C) =
exp (hic

T
j )/
∑

j′∈C exp (hic
T
j′). With the logarithm of Eq.

(5) and negative sampling, the final objective function can
be obtained as follows.∑
(vj ,vi)∈D

log σ(hic
T
j ) + λEvj′∼P (V ) log σ(−hic

T
j′), (6)

where σ(x) = 1/(1 + exp(−x)) and D contains all the
(node.content) pairs extracted from the random walk.
vj′ ∼ P (V ) represents that the negative pairs are sampled
according to the distribution of nodes V . (Yang et al. 2015)
shows that Skip-gram with softmax is equivalent to factoriz-
ing a matrix M = [mij ] ∈ RN×N with

mij = log
N(vi, vj)

N(vi)
= log

[Q + Q2 + ...+ QW ]ij
W

, (7)

whereW is the size of the context window and Q = D−1A.
Here Qt can be interpreted as the tth order similarity, i.e.,

the average probability that the vertex i walks to vertex j
with t steps. Thus, mij is the logarithm of the average prob-
ability that vertex i walks to vertex j within W steps.

node2vec (Grover and Leskovec 2016) generalizes Deep-
Walk with the combination of BFS and DFS random walks.
It possesses the same objective function Eq. (6) as Deep-
Walk except for the set D of (node, content) pairs.

GraRep (Cao, Lu, and Xu 2015) obtains the tth-order
embedding Ht by respectively factorizing each log Qt, 1 ≤
t ≤W via singular value decomposition (SVD)

log Qt = (D−1A)t = UΣVT , (8)

and concatenates them to construct the final embedding.
This is different from DeepWalk and TADW (Yang et al.
2015) which average all the W high-order similarities Eq.
(7) as a overall similarity and factorize it to obtain the em-
bedding.

LINE (Tang et al. 2015) learns the node representations
by preserving the first- and second-order proximities, and
combines them to form the final representations. It defines
the first- and second proximities as

1st proximity :
∑

(vi,vj)∈E

aij log
1

1 + exp(−hihT
j )
,

2nd proximity :
∑

(vi,vj)∈E

aij log
exp(hih

T
j )∑

vj′∈V
exp(hihT

j′)
. (9)

To facilitate the optimization, LINE also adopts the negative
sampling, and formulates the final objective function for the
second-order proximity as∑
(vj ,vi)∈E

log σ(hih
T
j ) + λEvj′∼P (V ) log σ(−hih

T
j′), (10)

where σ(x) = 1/(1 + exp(−x)). Different from DeepWalk,
where node pairs are sampled within the W -sized window
in the random walk, LINE samples the node pairs from the
network links.

A General Solution
From the objective functions of DeepWalk in Eq. (6) (LINE
in Eq. (10)) and the asymmetric matrix factorizations in
Eq. (1) (symmetric matrix factorization in Eq. (2)), we can
conclude that the objective functions of the community de-
tection methods and network embedding methods are both
formed by two components as∑

(vi,vj)∈S

sim(hi, cj) +
∑

(vi,vj)∈DS

dis(hi, cj), (11)

where S contains pairs of similar nodes and DS contains
pairs of dissimilar nodes. The first component in Eq. (11)
maximizes the consistencies between the each pair of sim-
ilar nodes, such as −(1 − uivj

T )2 in community detection
and log σ(hic

T
j ) in network embedding. The second compo-

nent maximizes the distances between each pair of the dis-
similar nodes. The community detection and network em-
bedding methods can also be considered to be similar from



Table 1: Comparisons of the community detection and network embedding algorithms.

Objective Functions:∑
(vi,vj)∈S sim(hi, cj) +

∑
(vi,vj)∈DS dis(hi, cj)

Matrix Factorization Formulation

sim() dis() S DS
Matrix to be
factorized

Factorization
Formulation

Community
Detection

−(1− hicj
T )2

−(1− hihj
T )2

−(0− hicj
T )2

−(0− hihj
T )2

(vi, vj) ∈ E (vi, vj) /∈ E A or
∑

t(αS)t †
Symmetric /
Asymmetric

Graph Cuts - - - - Q † EVD

DeepWalk log σ(hic
T
j ) log σ(−hic

T
j )

Random walk
window D

Random
sampling log Q+Q2+...+QW

W Asymmetric

node2vec log σ(hic
T
j ) log σ(−hic

T
j )

Random walk
(BFS & DFS)

Random
sampling - Asymmetric

LINE (2nd) log σ(hih
T
j ) log σ(−hih

T
j ) (vi, vj) ∈ E

Random
sampling log Q Symmetric

GraRep - - - - log Q, .... log QW SVD
† S = D−1/2AD−1/2 and Q = D−1A are the normalized adjacency matrces.

the perspective of matrix factorization. As can be observed,
both GraRep in Eq. (8) and NCut in Eq. (4) factorize the
normalized adjacency matrix Q = D−1A, while most of
the network embedding methods factorize a combination of
Q. We summarize our observations in Table 1.

In summary, Eq. (11) can be considered as a general solu-
tion to the current problems of community detection and net-
work embedding. This general solution exploits the most no-
ticeable structure (facet) of the network, which best achieves
the objective of Eq. (11). This character exactly meets the
needs of the community detection.

Multi-faceted Network Embedding
Although Eq. (11) summarizes the current solutions to the
community detection and network embedding problems, it
still possesses weakness that the current general solution can
only reveal a single facet of the network, i.e., it can only cap-
ture one aspect of the network. In this section, we propose a
novel network embedding model, named Multi-faceted Net-
work Embedding (MNE), to capture multiple aspects of the
network. Firstly, MNE is formulated as a matrix factoriza-
tion with Hilbert-Schmidt Independence Criterion (HSIC).
Then the scalability of HSIC is improved by proposing an
approximate Binary-HSIC. At last, we optimize the objec-
tive function via ALM and analyze its complexity.

Formulations
Following the notations in the previous section, network em-
bedding is equivalent to factorizing the proximity matrix
M = [mij ] ∈ RN×N into the product of embedding matrix
H = [hij ] ∈ RN×P and context matrix C = [cij ] ∈ RN×P

by minimizing

LMF = ||M−HCT ||2F + λ(||H||2F + ||C||2F ),

which only explores a single facet of the network by dividing
the network into one group of communities. To exploit mul-
tiple facets of the network, the network should be divided

into multiple groups of communities. Therefore, the prox-
imity matrix is factorized to obtain multiple pairs of node
and context embeddings as

LMMF =

Z∑
i

||M−H(i)C
T
(i)||

2
F + λ(||H(i)||2F + ||C(i)||2F ),

where Z is the number of facets to be explored. H(i) ∈
RN×K(i) and C(i) ∈ RN×K(i) , i ∈ {1, 2, 3..., Z} denote
the K(i)-dimensional node and context embeddings which
encode the information of the ith facets of the network. This
objective function induces a trivial solution that all H(i)s are
similar, due to the lack of characterizing the relationships
among different facets of the network.

To resolve this issue, the relationships among different
facets can be utilized to remove the redundancies and se-
lect the most diverse facets for the embedding, due to the
fact that only finite number of facets will be encoded. In-
tuitively, more diverse the facets are, better representation
of the nodes can be obtained. Taking Facebook100 dataset
as an example, each network gives the relationship of stu-
dents from one university. Network can be partitioned ac-
cording to students’ department, major, high school and year
of enrollment, etc. If the highly correlated facets, such as de-
partments and majors, are selected together, the embedding
results appear to be redundant. Therefore, the network parti-
tions still require the selected facets to be diverse. To achieve
diversity, we propose a regularization term to penalize the
similarities between each two groups of the partitions as

Lsimilarity =
∑
i 6=j

Sim(H(i),H(j)), (12)

where Sim(H(i),H(j)) measures the similarity between the
different groups of communities.
Remark 1: The obtained multiple embeddings can jointly
improve the performances of many classification tasks. Al-
though the multiple embeddings correspond to the multiple



facets of the network, it is difficult to assign specific seman-
tic labels to each embedding. Therefore, the performance of
any specific classification cannot be improved by employing
only one of the embeddings.
Remark 2: Although LINE and GraRep can also obtain
multiple embeddings, MNE possesses two major differences
compared to them. Firstly, LINE and GraRep obtain the
different embeddings separately and ignore the redundan-
cies in the embeddings, while MNE explicitly constrains
the embeddings to be diverse. Secondly, GraRep obtains
multiple embeddings by exploring multiple proximity matri-
ces which induce high complexities (at least O(N2)), while
MNE computes with only 1st-order sparse proximity matrix.

Binary-HSIC
Let the embeddings H(i) and H(j) contain N data points
(H(i)p, H(j)p), p = {1, 2, 3, ..., N} which drawn from
variable (x,y) ∈ X ⊗ Y , respectively. The diversity be-
tween H(i) and H(j) is measured by the independence be-
tween x and y. Here, the Hilbert-Schmidt Independence
Criterion (HSIC) is considered to measure the dependence
as in (Gretton et al. 2005). HSIC computes the Frobe-
nius norm of the cross-covariance operator over the do-
main X ×Y in Hilbert space HSIC(x,y,F ,G) = ||Cxy||2F
where Cxy = Exy[(φ(x)−µx))⊗ (ϕ(y)−µy)]. φ(x) and
ϕ(y) are functions from X and Y to kernel space F and
G with k1(xi,xj) =< φ(xi), φ(xj) > and k2(yi,yj) =<
φ(yi), φ(yj) >. µx = Ex[φ(x)] and µy = Ey[φ(y)]. By
letting φ(x) = x and ϕ(y) = y, HSIC can be estimated by

HSIC(H(i),H(j)) = (N − 1)−2 Tr(K1RK2R)

=
1

(N − 1)2
Tr(HT

(i)[Ĥ(j)Ĥ
T
(j)]H(i)),

where K1 = H(i)H
T
(i) and K2 = H(j)H

T
(j) are Gram ma-

trices, R = I − 1
N eeT maintains zero mean for the Gram

matrix with I being the identity matrix and e is a column
vector with every element being 1. Ĥ(j) = RH(j) is the
modified H(j) with zero mean for each row. If we denote
G(j) = Ĥ(j)Ĥ

T
(j), the (p, q) element of G(j), whose value

varies from −1 to 1, is the similarity between H(j)p and
H(j)q . Note that minimizing HSIC(H(i),H(j)) reduces the
similarity between K1 = H(i)H

T
(i) and G(j), i.e., HSIC

constrains the similarity matrices from different facets to
be diverse for better robustness to the scale and rotation
transformations, rather than directly constrains embedding
diverse. Unfortunately,, computing G(j) demands O(N2K)
floating point operations, where N is the number of nodes
and K is the number of embedding dimensions.

To reduce the complexity of computing G(j), we intro-
duce a Binary Hilbert-Schmidt Independence Criterion (B-
HSIC). Instead of directly computing the embedding simi-
larity matrix G(j), we compute the binary similarity matrix
Ĝ(j) according to a fast clustering result

Ĝ(j)pq =

{
1 if p, q belong to the same cluster
0 otherwise . (13)

Algorithm 1: Multifaceted Network Embedding
Input: Network proximity matrix M, the number of

facet Z, embedding dimension
Ki, i ∈ {1, 2..., Z} in ith facet and positive real
parameters λ and α

Initialization: Random matrix
H(i),C(i)X(i),Q(i) ∈ RN×ki and ρ = 1.1
while not converged do

for i ∈ {1, 2..., Z} do
Compute TiXi and TiHi via Eq. (25);
Update C(i) via Eq. (21);
Update H(i) via Eq. (22);
Update X(i) via Eq. (23);
Update Multiplier Q(i) and ν via Eq. (24);

end
end
Output: Multifaceted Network Embedding

H(i), i ∈ {1, 2..., Z}

This clustering result can be obtained via any efficient clus-
tering algorithms. Here, K-means is selected as it only re-
quires O(NK) operations. Then, we define B-HSIC as

B-HSIC(H(i)|H(j)) =
1

(N − 1)2
Tr(HT

(i)Ĝ(j)H(i)),

where H(j) is fixed and the similarity between H(i) and
H(j) is minimized by varying H(i). By letting

Sim(H(i),H(j)) = B-HSIC(H(i)|H(j)) + B-HSIC(H(j)|H(i)),

we can rewrite Eq. (12) as

Lsimilarity =
∑
i

∑
j 6=i

B-HSIC(H(i)|H(j))

=
∑
i

∑
j 6=i

Tr(HT
(i)Ĝ(j)H(i)) =

∑
i

Tr(HT
(i)T(i)H(i)),

where T(i) =
∑Z

j=1,j 6=i Ĝ(j). Then, the overall objective
function is

L = LMMF + αLsimilarity

=

Z∑
i

[
||M−H(i)C

T
(i)||

2
F + λ(||H(i)||2F + ||C(i)||2F )

+ αTr(HT
(i)T(i)H(i)

]
, (14)

where α is the parameter which controls the tradeoff be-
tween LMMF and Lsimilarity .

Optimization
The classic strategy to solve Eq. (14) is to directly employ
the alternating direction method which iteratively minimizes
the objective function by considering one variable at a time
while fixing the others. Specifically, minimizing Eq. (14)
with respect to C(i) and H(i) is equivalent to minimizing

||M−H(i)C
T
(i)||

2
F + λ||C(i)||2F , (15)

||M−H(i)C
T
(i)||

2
F + λ||H(i)||2F + αTr(HT

(i)T(i)H(i), (16)



which are both convex. By differentiating the two objective
functions with respect to C(i) and H(i) respectively and set-
ting them to zero, the optimal solution C∗(i) and H∗(i) satisfy

C∗(i)(λI + HT
(i)H(i)) = MTH(i), (17)

(λI + αT(i))H
∗
(i) + H∗(i)(C

T
(i)C(i)) = MC(i). (18)

Eq. (18) is a standard Sylvester equation (Bartels and Stew-
art 1972). Although it possesses a unique solution, this
classic optimization approach requires O(N3) operations,
which induces an inability to process large-scale networks.
Here, we propose an efficient algorithm with Augmented
Lagrangian method (ALM) (Bertsekas 2014). For simplic-
ity, we omit the subscript ·(i) in the following paragraphs.

By introducing an auxiliary variable X, the unconstrained
optimization problem Eq. (16) can be transformed to be the
following constrained optimization problem

argmin
H,C

||M−HCT ||2F + λ||H||2F + αTr(HTTX)

s.t. H = X. (19)

The Lagrangian function of Eq. (19) can be written in the
following form:

L(H,C,X) = ||M−HCT ||2F + λ||H||2F
+αTr(HTTX)+ < Q,H−X > +

ν

2
||H−X||2F , (20)

where < ·, · > represents the matrix inner product, ν is a
positive penalty scalar and Q is the Lagrangian multiplier.
The proposed solver also iteratively updates one variable at
a time by fixing the others. The closed-form solutions to sub-
problems are shown as follows.
Sub-problem C: By differentiating the objective function
Eq. (15) with respect to C, the closed-form of C is

C = (MTH)(λI + HTH)−1. (21)

Sub-problem H: After the terms which are independent to
H are ignored, the sub-problem H can be obtained,

argmin
H

||M−HCT ||2F + λ||H||2F + αTr(HTTX)

+ Tr(QTH) +
ν

2
||X−H||2F .

Then the optimal H can be calculated via

H = (2MC + νX− αTX−Q)(2CTC + (2λ+ ν)I)−1. (22)

Sub-problem X: Similar to the sub-problem H, X can also
be obtained by selecting the terms related to X:

argmin
X

αTr(HTTX) + Tr(QT (H−X)) +
ν

2
||X−H||2F .

Its closed-form solution can be obtained via

X = [(ν − αT)H + Q]/ν. (23)

Multipliers Q and ν: The multiplier Q and ν are updated
according to

Q = Q + ν(H−X),

ν = ρν. (24)

Although the multiplications between T(i) =∑Z
j=1,j 6=i Ĝ(j) and H (or X) still require O(N2K)

operations since T(i) ∈ RN×N and Hi ∈ RN×K , we
can significantly reduce the complexity by analyzing the
structure of T(i). In Eq. (13) , Ĝ(j) is sparse and Ĝ(j)pq = 1
if and only if nodes vp and vq are in the same cluster. Then,
the elements in the pth row of Ĝ(j) are all zero except for
those in the same cluster as vp. Therefore, Y(j) = Ĝ(j)H is
equivalent to setting the pth row of the result matrix Y(j) as

Y(j)p· = Ĝ(j)p·H =
∑

(p,q) in the same cluster

Hq·, (25)

which only needs O(NK) operations. In total, multiplica-
tions between T(i) =

∑Z
j=1,j 6=i Ĝ(j) and H (or X) requires

O(NKZ) operations, where Z is the number of facets. The
procedure of MNE is outlined in Algorithm 1.

Complexity analysis Here, we give a comprehensive
complexity analysis of MNE. For simplicity, we assume
Ki = K for i ∈ {1, 2, 3..., Z}. From Eqs. (21), (22), (23)
and (24), we conclude that the majority of the computations
consists of four parts in each iteration. 1) The multiplications
between M and H (or C). Since M is sparse, O(MK) op-
erations are demanded, where M and K are the number of
nonzero elements in M and the number of embedding di-
mensions, respectively. 2) The computation of the inverse
of K × K matrix requires O(K3) operations. 3) The ad-
ditions and subtractions between two N ×K matrices will
cost O(NK) operations. 4) The multiplications between Ti

and H (or X) need O(NKZ) operations as previously an-
alyzed. In summary, MNE requires a linear complexity of
O(MK +K3 +NKZ) in each iteration.

Experiments
In this section, we empirically evaluate the performances of
MNE via vertex classification. Besides, the parameters sen-
sitivity is analyzed.
Datasets. The experiments are conducted on Facebook100
dataset (Traud, Mucha, and Porter 2012). Each network is
an abstraction of the facebook social network for one uni-
versity in U.S.A. in Sept. 2005. In addition to the network
structure, the user metadata, which includes student/faculty
status, gender, major, dormitory, year of enrollment and
high school, is available. For conveniences, three prop-
erties, gender, year of enrollment and dormitory, are se-
lected as the ground-truth to evaluate the proposed embed-
ding algorithm. Although other metadata is also available,
they are not considered due to the following reasons. 1)
The data of the status flag is unbalanced, because most of
the users are students, 2) High school and major are too
scattered. For example, there are 30,147 users, which are
from 3,909 different high schools, in Michigan University.
Among these networks, Haverford (1,446 nodes and 59,589
edges), UChicago (6,591 nodes and 208,103 edges), Missis-
sippi (10,521 nodes and 610,911 edges) and Temple (13,686
nodes and 360,795 edges) are chosen to demonstrate the
quantitative results.



Table 2: Classification results on four networks.

Datasets UChicago Temple
Tasks Gender Grade Dormitory Gender Grade Dormitory

Label % 1% 5% 9% 1% 5% 9% 1% 5% 9% 1% 5% 9% 1% 5% 9% 1% 5% 9%
DeepWalk 50.1 52.3 55.9 55.6 59.1 63.8 20.2 35.7 47.4 50.1 55.5 58.2 51.1 55.7 60.3 21.4 31.8 36.1

LINE 52.1 54.1 56.9 61.0 61.9 65.2 21.1 43.5 50.1 52.9 57.9 58.5 56.3 66.9 69.6 25.4 32.7 38.2
GraRep 47.7 48.5 50.1 50.5 55.3 59.9 18.6 30.3 40.0 45.6 49.0 55.0 50.3 57.2 65.1 21.7 29.6 31.5

node2vec 51.3 53.5 55.2 60.2 61.2 64.1 22.1 39.8 49.7 51.0 54.8 57.9 52.8 55.3 64.2 20.2 29.8 38.1
MNE 54.5 57.7 59.7 58.1 65.9 67.7 24.8 48.2 54.4 55.9 61.4 62.9 61.5 69.9 72.7 30.1 36.1 41.9

Datasets Haverford Mississippi
Tasks Gender Grade Dormitory Gender Grade Dormitory

Label % 1% 5% 9% 1% 5% 9% 1% 5% 9% 1% 5% 9% 1% 5% 9% 1% 5% 9%
DeepWalk 50.6 53.5 57.3 61.4 76.7 81.1 29.0 37.4 43.9 53.1 60.4 60.9 46.5 55.3 61.6 32.5 44.1 48.3

LINE 50.1 51.6 52.9 59.1 76.1 80.5 27.9 36.6 41.5 55.3 62.7 64.7 48.6 58.9 63.2 34.2 48.9 53.4
GraRep 48.8 51.1 51.9 57.4 72.1 77.5 29.0 39.8 42.9 44.6 48.0 52.9 42.7 48.3 49.2 32.5 45.9 52.1

node2vec 51.3 57.1 57.1 57.6 75.6 79.1 29.2 41.4 43.8 52.6 59.8 59.8 47.2 56.8 60.1 31.3 39.5 44.1
MNE 54.2 59.6 62.0 66.9 81.3 84.4 33.0 45.7 47.6 58.9 65.9 68.0 53.3 59.4 63.8 38.7 53.7 56.7

(a) Gender Prediction (b) Gender Prediction

(c) Grade Prediction (d) Grade Prediction

(e) Dormitory Prediction (f) Dormitory Prediction

Figure 1: The impacts of α and Z on prediction accuracies.

Baseline Methods. In the experiments, MNE is compared
to four baseline methods, DeepWalk (Perozzi, Al-Rfou, and
Skiena 2014), LINE (Tang et al. 2015), node2vec (Grover
and Leskovec 2016) and GraRep (Cao, Lu, and Xu 2015).
Each of them emploies their default settings in their original
paper. For fair comparisons, the embedding dimension P is

set to 128 for each of them.
MNE Settings. The hyperparameters of MNE are set as
follows: balancing parameters λ = 0.3, α = 0.001, num-
ber of facets Z = 2, number of embedding dimensions
for each facets Ki = 64 for i = 1, 2 (the total dimension
K = Z ∗Ki = 128) and proximity matrix M = Q.

Node Classification
To demonstrate the performances of MNE on multiple clas-
sification tasks (gender, year of enrollment and dormitory
predictions), a portion of the users are randomly selected to
be the training data, while the rest of users are employed
as the testing data. The embeddings of users are normalized
according to the L2-norm and fed into the SVM classifier
which is implemented by Liblinear (Fan et al. 2008). This
process is repeated 10 times, and the average results are re-
ported in Table 2 with the highest accuracies hightlighted in
bold. The results indicate that MNE outperforms the base-
lines by about 4%, which demonstrates the effectiveness of
MNE for the multiple classification tasks.

Parameter Sensitivity. The effects of the hyperparame-
ters are investigated here. There are three hyperparameters
in MNE, the number of facets Z, the balancing parameters
λ and α. By fixing the training rate to be 9%, the classifica-
tion accuracies with respect to α are shown in Figures 1(a),
1(c) and 1(e), and the impacts of the Z are shown in Figure
1(b), 1(d) and 1(f). According to the experimental results,
we can observe that MNE maintains a stable accuracy when
the balancing parameter α varies within a certain range. Be-
sides, the best performance of MNE can be achieved when
2 or 4 facets are employed.

Conclusions
In this paper, we analyze the different goals of community
detection and network embedding, and thus observe that
there exists a general solution, “maximizing the consistency
between similar nodes while maximizing the distance be-
tween the dissimilar nodes”, for the current community de-



tection and network embedding problems. Network embed-
ding algorithms developed from the general solution usually
perform the embeddings representing only one noticeable
facet of the network and ignore necessity of diverse proper-
ties. The proposed Multi-facet Network Embedding captures
the multiple facets of the network via multiple represen-
tation learning. MNE is regularized by an efficient Binary
Hilbert Schmidt Independence Criterion to ensure the diver-
sities between different facets. Extensive results demonstrate
the necessity of multiple diverse embeddings and the supe-
riority of the proposed method compared to the state-of-the-
art ones.
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