Semantic community identification in large attribute networks

Xiao Wang!®, Di Jin!, Xiaochun Cao?**, Liang Yang?3, Weixiong Zhang**
1School of Computer Science and Technology, Tianjin University, Tianjin 300072, China
2State Key Laboratory of Information Security, IIE, Chinese Academy of Sciences, Beijing 100093, China
3School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China
4College of Math and Computer Science, Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, China
Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
{wangxiao_cv, jindi} @tju.edu.cn, {caoxiaochun, yangliang} @iie.ac.cn, weixiong.zhang @wustl.edu
*Corresponding author.

Abstract

Identification of modular or community structures of a
network is a key to understanding the semantics and
functions of the network. While many network commu-
nity detection methods have been developed, which pri-
marily explore network topologies, they provide little
semantic information of the communities discovered.
Although structures and semantics are closely related,
little effort has been made to discover and analyze these
two essential network properties together. By integrat-
ing network topology and semantic information on n-
odes, e.g., node attributes, we study the problems of de-
tection of communities and inference of their semantics
simultaneously. We propose a novel nonnegative matrix
factorization (NMF) model with two sets of parameter-
s, the community membership matrix and community
attribute matrix, and present efficient updating rules to
evaluate the parameters with a convergence guarantee.
The use of node attributes improves upon community
detection and provides a semantic interpretation to the
resultant network communities. Extensive experimental
results on synthetic and real-world networks not only
show the superior performance of the new method over
the state-of-the-art approaches, but also demonstrate its
ability to semantically annotate the communities.

Introduction

Complex systems can be represented in networks or graphs.
One of the most prominent features of such networks is the
community structure, where the nodes within a community
are densely connected whereas nodes in different commu-
nities are sparsely connected (Girvan and Newman 2002)).
Community structures help reveal organizational structures
and functional components of a complex system. Therefore,
community detection is an essential step toward characteri-
zation of a complex system.

Network topology, an important network description, has
been broadly exploited by the most existing methods for
community detection. However, network topology reflects
merely one aspect of a network and is often noisy. As a re-
sult, using network topology alone may not necessarily give
rise to a satisfactory partition of a network. For instance, it
is not uncommon that two nodes that belong to the same
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community are not directly connected, and a node connect-
ing to multiple communities for distinct reasons is difficult
to be assigned correctly to the right communities by only re-
lying on network topology. Therefore, it is insufficient to ac-
curately determine the community structure using network
topology alone. In addition to network topology, semantic
information, e.g., that of node attributes, is often available.
For example, a node (i.e., a person) in a social network is
often annotated by a personal profile with information such
as education background, circle of friends and profession; a
node (i.e., a paper) in a citation network is typically annotat-
ed with title, abstract and key words. Different from network
topology, node semantics capture characteristics of individ-
ual nodes and provide a piece of valuable information or-
thogonal to information of network topology. Integration of
network topological and semantic information holds a great
potential for community identification.

Nevertheless, it is technically challenging to effectively
combine these two pieces of valuable albeit orthogonal in-
formation. Particularly, two obstacles need to be addressed
in order to properly integrate these two types of informa-
tion. First, how to adequately characterize a community. The
most existing methods for community detection mainly re-
ly on network topologies. However, missing, meaningless or
even erroneous edges are ubiquitous in real networks, which
casts doubts on the accuracy and/or correctness of the net-
work communities discovered based on network topology
alone. While the nodes in a community are highly connect-
ed, they should also have similar characteristics, reflected
by attributes. Thus, nodes attributes may carry essential in-
formation of communities that is complementary to the in-
formation of network topology. Therefore, even though t-
wo nodes are not directly connected, they may belong to
the same community if they share the same characteristic-
s, and the use of node attributes may enhance community
discovery. Second, how to adequately interpret or semanti-
cally annotate communities. Functional analysis of network
communities is typically and independent, post-processing
task following community detection. The result from a com-
munity discovery often provides little information beyond
network topology regarding why a group of nodes from a
community, their semantic meaning, or potential functions.
In order to semantically annotate a community, supplemen-
tal information, e.g., background information and/or domain
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knowledge, is usually required. Even though such domain
information is available, how to fully utilize such informa-
tion remains challenging, application specific and time con-
suming.

To address the above two problems, we propose and de-
velop in this paper a method, named as Semantic Commu-
nity Identification (SCI), to identify network communities
with semantic annotation. The SCI method integrates net-
work topological and node semantic information; it com-
bines topology based community memberships and node-
attribute based community attributes (or semantics) in the
framework of nonnegative matrix factorization (NMF, (Se-
ung and Lee 2001))). The key intuition behind SCI stems in
two observations: two nodes are likely to be connected if
their community memberships are similar, and two nodes
likely belong to the same community if their attributes are
consistent with the underlying community attributes to be
learned. To make the novel SCI method effective, we intro-
duce a sparsity penalty in order to select the most related at-
tributes for each community and devise a multiplicative up-
dating rule with a convergence guarantee. Extensive exper-
iments on synthetic and real networks, in comparison with
several state-of-the-art methods, are performed to assess the
performance of SCI.

Related work

Several community detection methods, as reviewed in (X-+
1e et al. 2013), have been developed to explore network
topologies, including the well-known ones based on non-
negative matrix factorization (NMF) (Wang er al. 2011}
Yang and Leskovec 2013) and stochastic blockmodel (SB-
M) (Karrer and Newman 2011). Among these methods are
ones that combines network topologies and node attributes
(content or features). In particular, a unified method was sug-
gested to combine a conditional model for topology analy-
sis and a discriminative model for making use of node at-
tributes (Yang er al. 2009). However, this method focuses
on community detection without inferring the most relevant
attributes for each community. Edge content was also lever-
aged to improve community detection processes (Q1 et al.
2012). However, this method is specifically designed for de-
tecting communities of links, rather than communities of
nodes. A heuristic linear combination between edges cre-
ated by node attributes and the topological information of
edges was proposed to create a new graph, which was used
for the graph clustering (Ruan er al. 2013). However, this
strategy did not use the semantic information of attributes
when inferring topics of communities. A probabilistic mod-
el that can capture the relationship between community and
attributes was developed (Yang et al. 2013)), which simply
added a sparsity term to the whole network rather than each
community. Moreover, the updating rules for learning the
parameters of the model are not guaranteed to converge. A
heuristic algorithm to optimize the community score for re-
covering communities and minimize description complex-
ity for inferring diverse community descriptions was pro-
posed (Pool et al. 2014); this heuristic method reported too
many relatively small communities, some of which have two
or three nodes. A nonnegative matrix tri-factorization based

clustering framework with graph regularization was pro-
posed to combine social relations and user generated content
in a social network (Pei1 et al. 2015)). However, this method
focused on utilizing additional content information to detec-
t communities, and failed to study the relationship between
communities and these content.

SCI: The network model

Consider an undirected network G = (V, E)) with n nodes
V' and e edges I, represented by a binary-valued adjacen-
cy matrix A € R"*". Associated with each node 7 are its
attributes S;, which may be semantic characteristics of the
node. The attributes of a node are in the form of an m-
dimensional binary-valued vector, and the attributes of al-
1 the nodes can be represented by a node attribute matrix
S € R™ ™. The problem of community identification is to
partition the network G into k£ communities as well as to
infer the related attributes or semantics of each community.
Modeling network topologies. We define the propensi-
ty of node 4 belonging to community j as U;;. The com-
munity membership of all the nodes in the network is then
U = (U;), where i = 1,2,....,nand j = 1,2, ..., k. Con-
sequently U;,-Up, presents the expected number of edges
between nodes ¢ and p in community 7. Summing over all
communities, the expected number of edges between ¢ and
pis Zle Ui, Up,. This process of generating edges implies
that if two nodes have similar community memberships, they
have a high propensity to be linked. The expected number of
edges between pairs of nodes should be as closely consistent
as possible with the network topology denoted by A, which
gives rise to the following function in matrix formulation:

: . T2
win A - UU |5 (1)

Modeling node attributes. We define the propensity of
community r to have attribute g as Cy,.. So for all the com-
munities, we have a community attribute matrix C = (qu),
forq = 1,2,....mand r = 1,2,..., k, where the r-th col-
umn, C,., is the attribute membership of community r. If the
attributes of a node are highly similar to that of a community,
the node may have a high propensity to be in the communi-
ty. As aresult, the nodes with similar attributes, described in
S;, may form a community, which can be characterized by
the common attributes of the nodes. Specifically, the propen-
sity of node ¢ belonging to community 7 can be formulated
as U;,, = S,C,.. Notice that if the attributes of node 7 and
community r are completely inconsistent, node ¢ must not
belong to community r, i.e., U;, = 0. As the community
memberships of all the nodes U offer a guidance for comb-
ing the attributes of nodes and communities, we have the
following optimization function:

: _ 2
win [U - SC|[p. 2)

In order to select the most relevant attributes for each com-
munity, we add an [; norm sparsity to each column of ma-
trix C. In addition, to prevent the values of some column-
s of C too large, which means that each community has
some meaningful attributes, we have the constraint on C



25:1 |C(:,7)||3, which gives rise to the following objec-
tive function together with (2)):

min||U — SC||F+0<ZHC I3, 3)
7j=1
where « is a nonnegative parameter to make a tradeoff be-
tween the first error term and the second sparsity term.
The unified model. By combining the objective function-
s of modeling the network topology specified in and of
modeling node attributes in (@), we have the following over-
all function:
k

o iy L= U= SC||F+O‘]ZI [Lef

(4)
where (3 is a positive parameter for adjusting the contribution
of network topologies.

Optimization

Since the objective function in (@) is not convex, it is im-
practical to obtain the optimal solution. Local minima of
can be achieved using Majorization-Minimization frame-
work (Hunter and Lange 2004). Here we describe an algo-
rithm that iteratively updates U with C fixed and then C
with U fixed, which guarantees not to increase the objec-
tive function after each iteration. The specific formulas are
shown as the following two subproblems.

U-subproblem: when update U with C fixed, we need to
solve the following problem:

min L(U) = |[U - SC|}. + |A - UV} (5)

To this end, we introduce a Lagrange multiplier matrix
© = (0;;) for the nonnegative constraints on U, resulting
in the following equivalent objective function:

L(U) = tr(UUT —uc?s? —scu? + scc?s?)
+ Btr(AA — AUUT — UUTA + UUTUUY)
+tr(@U™).
(6)
Set derivative of L(U) with respect to U to 0, we have:
® = —2U +2SC + 43AU —4pUUTU. (1)
Following the Karush-Kuhn-Tucker (KKT) condition for the
nonnegativity of U, we have the following equation:
(—2U +28C +48AU — 4pUUTU),;U;; = O,,;U;; = 0.
(®)
This is the fixed point equation that the solution must satisfy
at convergence. Given an initial value of U, the successive
update of U is:
(SC +2BAU — U);;
28(UUTU);;
To guarantee the property that U is nonnegatlve we set
the diagonal elements in A to be larger than 5 5- The updat-

ing rule of U satisfies the following theorem, Wthh guaran-
tees the correctness of the rule.

Uij — U”( )% (9)

Pi+8I|A-UUT |3,

Theorem 1. If the update rule of U converges, then the
final solution satisfies the KKT optimality condition. (Proof
in Appendix Al ).

We now prove the convergence of the updating rule. Fol-
lowing (Seung and Lee 2001), we use an auxiliary function
to achieve this goal.

Definition 1. (Seung and Lee 2001) A function Q(U, U’)
is an auxiliary function of function L(U) if Q(U,U’) >
L(U), Q(U,U) = L(U) for any U, U".

The auxiliary function is useful because of the following
lemma:

Lemma 1. (Seung and Lee 2001) If @) is an auxiliary
function of L, then L is nonincreasing under the update rule
UMD = grg ming Q(U, UMW),

Now we have the specific form of the auxiliary function
Q(U, U’) for the objective function L(U) in problem ()
based on the following lemma.

Lemma 2. The function

Q(U,U) = tr(SCCTST + BAA) + ptr(RUTU'UT)

—tr(UTA'Z) — tr(ZTA'U) — tr(U'TA'UY)
—2tr(CT8"Z) — 2tr(CTSTU")
(10)
is an auxiliary function for L(U) in problem (), where
4
Ri; = g Zy; = U an,,A’ — 28A — T, and 1 is

an 1dent1ty matrix. (Proof in Appendzx A2).

Based on Lemmas 1 and 2, we can show the convergence
of the updating rule.

Theorem 2. The problem () is nonincreasing under the
iterative updating rule (). (Proof in Appendix A3).

C-subproblem: when update C with U fixed, we need to
solve the following problem:

k

min (C) = U — scHF+a;||C AT an

This is equivalent to the following optimization problem
(Kim and Park 2008)):

. S U 2
L(C) = C - 12
winL(C) =( /ge,,,. )€~ o, M (12
where €1, is a row vector with all components equal to
one and 0; is a zero vector. So we have the following

updating rule for (12):

(s”"'u")y,
Cij — Cjj—7r—-—, (13)
(8'7's'C),;
S U
’r_ ’_ _
where S’ = ( NP Yyand U’ = ( 01k ). The conver

gence of can be shown as in (Seung and Lee 2001}).

At convergence, as U expresses the soft membership dis-
tribution over communities, we can either use U directly or
U = SC to get the final disjoint or overlapping communi-
ties. Each column of C indicates the relationship between
a community and the attributes, where a larger value rep-
resents the more relevant the corresponding attribute to the
community.
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Figure 1: Performance comparison of SCI using U directly
(SCI_NonAtt), SCI using U = SC (SCI_Att) and SNMF.

Experimental evaluations
Synthetic network

We first evaluated SCI on a synthetic network construct-
ed using the widely adopted Newman’s model (Girvan and
Newman 2002). The network consists of 128 nodes divid-
ed into 4 disjoint communities. Each node has on average
Zin €dges connecting it to members of the same communi-
ty and z,,; edges to members of other communities, with
Zin + Zout = 16. Here we set z;,, and z,,: to 8, which be-
comes a challenging problem for most methods as there was
no obvious community structure (Yang et al. 2014). Then
we generated a 4h;,-dimensional binary attributes for each
node as follows. For each node within the ¢-th community,
we used a binomial distribution with mean p;,, to generate a
h;rn-dimensional binary vector as its ((¢ — 1) x h;, + 1)-th
to (¢ X h;,)-th attributes, and generated the rest attributes
using a binomial distribution with mean p,,;. In total, we
have (4h;,)-dimensional attributes for each node. Note that
Pin > Pout, Meaning that these generated h,;,,-dimensional
attributes are associated with this community with high
probability, while the rest are irrelevant (or noisy) attributes.

As mentioned earlier, the new method infers two param-
eters U and C, so we may use the inferred U directly or
the attributes C to derive a new U as in U = SC to recov-
er community structures. For convenience, we named these
two schemes as SCI_NonAtt and SCI_Att, respectively. Our
experiments were first designed to study the difference be-
tween these two schemes. We set hy, = 50, py; = 0.8
and varied py,; from O to 0.8 with an increment of 0.1. We
adopted SNMF (Wang et al. 201 1)) using network topologies
alone as the baseline method for comparison. We used accu-
racy (AC) (Liu ef al. 2012) and normalized mutual informa-
tion (NMI) (L1iu ez al. 2012)) as the quality metrics for per-
formance assessment. As shown in Figure |1} both SCI_Att
and SCI_NonAtt outperform SNMF, except when p,,; al-
most reaches 0.8. The result shows that the quality of identi-
fied communities improves with the information of node at-
tributes. Furthermore, SCI_Att usually significantly outper-
forms SCI_NonAtt before p,,: = 0.5. As p,y: increases be-
yond 0.5, the performance of SCI_Att deteriorates. This is
in part because when p,,,; is greater than 0.5, node attributes
provide less discriminative information on network commu-
nity, meaning that there are less specific attributes associated
with communities. This also implies that node attributes may
not always be valuable to community detection, but rather
may distort the results if they have low quality. However, in
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general, the node attributes have the underlying discrimina-
tive power that can be beneficial for distinguishing commu-
nities. So instead of using U directly, we specified U = SC
as the final community membership for all the following ex-
periments.

Further, we studied the community attributes C inferred
by SCI. We fixed p;, = 0.8, pout = 0.2, and h;,, = 50. The
generated node attribute matrix is shown in the left figure of
Figure[2] As shown, the nodes of each the communities have
50-dimensional relevant attributes, and the rest attributes are
irrelevant. We noticed that the attributes of each community
are very different, as shown in the right figure of Figure
meaning that unique attributes have been recovered for each
community. Besides, the community attributes are consis-
tent with the relevant attributes of the nodes in the communi-
ty. In short, the new method is able to identify network mod-
ular structures as well as infer community attributes which
provide semantic information of the communities.

Real networks

We considered three real networks with node attributes and
ground-truth community labels. The CiteSeer network! (6
communities) consists of 3312 scientific publications with
4732 edges, and the Cora' network (7 communities) consists
of 2708 scientific publications with 5429 edges. The publi-
cations in Citeseer and Cora are associated with 3703- and
1433-dimensional binary-valued word attributes, respective-
ly, indicating whether a corresponding word is in a publica-
tion. The WebKB network! consists of 4 subnetworks gath-
ered from 4 universities (Cornell, Texas, Washington and
Wisconsin). Each subnetwork is divided into 5 communi-

"http://lings.cs.umd.edu/projects/projects/lbc/



Table 1: Performance comparison of disjoint communities (bold numbers represent the best results).

Metrics | Methods Cornell Texas Washington | Wisconsin Cora Citeseer
PCL-DC 0.3487 0.3690 0.4087 0.3547 0.5543 0.6525
AC SNMF 0.3179 0.3583 0.2783 0.3283 0.4173 0.2539
SBM 0.3436 0.3743 0.2826 0.2981 0.3833 0.2844
CAN 0.4154 0.4706 0.5087 0.4717 0.3021 0.2129
SMR 0.3179 0.5401 0.4565 0.4226 0.3002 0.2111
SCI 0.4769 0.6096 0.5435 0.5245 0.4169 0.3442
PCL-DC 0.0813 0.0686 0.1031 0.0719 0.3830 0.3816
NMI SNMF 0.0332 0.0476 0.0211 0.0803 0.1994 0.0403
SBM 0.0543 0.0839 0.0211 0.0428 0.2047 0.0512
CAN 0.0614 0.0908 0.1175 0.0702 0.0132 0.0079
SMR 0.0845 0.1150 0.0381 0.0777 0.0078 0.0032
SCI 0.1520 0.2197 0.2096 0.1852 0.1780 0.0922

ties. There are 877 webpages with 1608 edges. Each web-
page is annotated by 1703-dimensional binary-valued word
attributes.

We compared SCI against three topology based method-
s: SNMF (Wang et al. 2011), SBM (Karrer and Newman
2011), BIGCLAM (Yang et al. 2013)); two node attributes
based methods: CAN (Nie et al. 2014) and SMR (Hu et
al. 2014); three methods that combine network topologies
and node attributes: PCL_DC (Yang et al. 2009), CESNA
(Yang et al. 2013), DCM (Pool et al. 2014)). The method-
s compared may provide disjoint or overlapping communi-
ties, so we chose different evaluation metrics. For disjoint
communities, we adopted accuracy (AC) (Liu et al. 2012)
and normalized mutual information (NMI) (Liu ef al. 2012)).
For overlapping communities, generalized normalized mu-
tual information (GNMI) (Lancichinetti et al. 2009) was
used. In addition, we compare a set of detected communi-
ties M with the ground-truth communities M* as in (Yang
et al. 2013): W ZMi*eM* max s, en 6(M;, Mj) +
ﬁ ZI\/IJEZ\/[ maXM;EJV[* 5(M;, Mj), Where (5(]\41*7 M])
is a similarity measure (F-score and Jaccard similarity) be-
tween communities M, and Mj.

We verified the effectiveness of SCI on both disjoint and
overlapping community results, shown in Tables [T] and [2]
respectively. As shown in Table[I] SCI outperforms the oth-
er methods on four of the six network instances (Cornel-
1, Texas, Washington and Wisconsin). As shown in Table
when measured with F-score and Jaccard metrics, SCI
achieves the best performances on all the tested networks;
it outperforms the other methods on four of the six networks
in terms of GNMI, further demonstrating the effectiveness
of SCI. Besides, we noticed that the accuracies to be vastly
different across different networks (even using the same set
of methods), and this may reflect diverse characteristics of
networks analyzed.

We tested the effect of parameters « and 3 of the new
method on the real networks, i.e., & and (3 are the parameters
for adjusting the contributions of sparsity term and network
topologies, respectively. We varied each parameter from 1 to
100 with an increment of 10. Because the results of different
networks have similar tends, here we just showed two net-
works (Cornell and Texas) in Fi gure Notice that SCI is rel-

atively stable with varying parameter 3, whereas it is signif-
icantly affected by «, suggesting the importance of the spar-
sity term. Therefore we suggest to set 3 to either 1 or a value
between 10 and 100 and fine tune o € {1, 10, 20, ..., 100}
so as to achieve a high performance.

Since SCI converges to the local optimum, we tested it-
s robustness on Cornell, Texas, Washington and Wiscon-
sin datasets. We repeated SCI with ten different initializa-
tions. The mean values of loss functions are 81.9509 +
0.2844,87.8448 + 0.1728,102.4153 + 0.2852, 105.5379 +
0.4075, respectively. The variances are all less than 0.4%,
which shows the stability of SCI. The main computation
of SCI is for the updating rules in (9) and (I3). The com-
plexity is O(T(mnk + n?k)) for T iterations to converge.
We also reported the running time of SCI on Cornell,
Texas, Washington, Wisconsin, Cora and Citeseer here. On
a PC with “RAM: 8G; CPU: Intel 17; Platform: Matlab”,
they are 0.4509s,0.1917s,0.3234s,0.4571s, 88.6821s and
69.8382s, respectively.

Analysis of detected communities

We closely examined some of the communities detected by
SCI. Here we used LASTFM dataset? from an online music
system Last.fim, whose 1892 users are connected in a social
network generated from Last.fin “friend” relations. Each us-
er has 11946-dimensional attributes, including a list of most
listened music artists, and tag assignments. Because the net-
work does not have ground-truth labels, we did not quanti-
tatively evaluate it in the previous section. We used Louvain
method (Blondel er al. 2008) to set the number of commu-
nities to 38. Four example community attributes are shown
as word clouds in Figure 4] The size of a word is propor-
tional to its community attribute value, i.e., more relevant an
attribute, larger it is in the figure.

For each community, we selected the top ten attributes.
We observed these four communities have their unique at-
tributes. In particular, the community in Figure ] (a) shows
that this is a group of fans of “heavy metal” bands or mu-
sic. For example, “metallica,” “queensryche,” “backyard ba-
bies,” “sound garden” and “skid row” are all heavy men-
tal bands. Besides, the music genre of “slash” and “nik-

*http://ir.ii.uam.es/hetrec201 1/datasets.html



Table 2: Performance comparison of overlapping communities (bold numbers represent the best results).

Metrics | Methods Cornell Texas Washington | Wisconsin Cora Citeseer
BIGCLAM 0.0051 0.0034 0.0028 0 0.0244 5.551e-17
GNMI CESNA 0.0704 0.0008 0.1151 0.1573 0.0179 0
DCM 1.110e-16 0.0090 0.0062 1.110e-16 2.220e-16 0
SCI 0.0901 0.0955 0.0859 0.0879 0.1039 0.0506
BIGCLAM 0.2267 0.2097 0.2002 0.2399 0.2927 0.1386
Foscore CESNA 0.3368 0.2352 0.3527 0.4393 0.3160 0.1360
DCM 0.1438 0.0908 0.1127 0.1052 0.0345 0.0245
SCI 0.4766 0.4740 0.4718 0.5063 0.3835 0.3651
BIGCLAM 0.1294 0.1190 0.1120 0.1380 0.1797 0.0829
Jaccard CESNA 0.2120 0.1406 0.2551 0.3164 0.1940 0.0794
DCM 0.0795 0.0484 0.0607 0.0563 0.0177 0.0125
SCI 0.3225 0.3413 0.3303 0.3642 0.2519 0.2275
ki sixx” also includes heavy mental. Particularly, the tags queensryche
“heavy mental” and “glam punk” appear here. The topic of backyard babies 1 et
the community in Figure ] (b) should be related to singer heavy mEtalkhigh o P Pperfect |

“rihanna” or popular music, because the word “rihanna” is
the largest and she is one of the best-selling artists of al-
I time and featured on the worldwide hits. Her song “We
Found Love” was ranked by Billboard as the 24th biggest
US Billboard Hot 100 hit of all time. “raining men” is one
of her songs, and “rated r” is her fourth studio album. “xti-
na” is another popular singer “Christina Aguilera”. For the
community in Figure [4] (¢), it is mainly related to the rock
band “duran duran” and the rock music. Moreover, ‘“new ro-
mantic,” synth-rock” and “new wave” are all their genres.
Also, according to Wikipedia’, “supergroup” is usually used
in the context of rock and pop music and “duran duran” is
one of them. For the community in Figure [4| (d), its topic is
mainly about social, livelihood, or political issues. In partic-
ular, “deutsche welle” is a German international broadcaster
which broadcasts news and information towards audiences
outside of Germany. Different from the previous music com-
munities, it talks about “female empowerment” and other
topics like life, “sickness” and “the cure”. In summary, these
four communities carry their distinct attributes; by leverag-
ing these attributes, we are able to explain and understand
these communities.

Concluding remarks

We developed a novel semantic community identification
method, SCI, to detect network community structures and
infer their semantics simultaneously. A salient property of S-
Cl s its ability to semantically or functionally annotate each
of the communities identified. The key idea underlying SCI
is to adequately integrate information of network topologies
and information of node attributes under the framework of
nonnegative matrix factorization (NMF). We formulated S-
CI as an optimization problem in NMF and designed effi-
cient updating rules with a convergence guarantee. The ex-
tensive experimental results demonstrated the superior per-
formance of SCI over several state-of-the-art approaches in
accurately identifying network community structures. More
importantly, it can effectively infer community semantics or

*https://en.wikipedia.org/wiki/Supergroup_(music)
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Figure 4: Word clouds for different communities. Top ten
attributes of four communities are shown here. The size of a
word is proportional to its community attribute value.

attributes so as to explain and understand community struc-
tures.

Appendix
Al. Proof of Theorem 1
At convergence, U(>®) = U0+ = U®) = U, where ¢
denotes the ¢-th iteration, i.e.,
(SC +25AU - U),;
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28(UUTU),; )" 14

Uij = Ui(

which is equivalent to
(—2U +2SC + 4BAU — 48UUTU),;U =0, (19)

which is equivalent to (8). O
A2. Proof of Lemma 2.

L(U) = tr(UU" —UC”s” —scu” + scc’s?)

+ ptr(AA — 2AUUT + UUTUUY).
(16)



By Lemmas 6 and 7 of (Wang ef al. 2011), we have
tr(UUTUUT) < tr(PUTU) < tr(RUTU'UT),

(17)
(VU3 Ul
By Lemma 4 of (Wang et al. 2011), we have
—tr[(28A — 1) UUT] = —tr(A’'UUT) s

< —tr(UTA'Z) — tr(ZTA'U) — tr(U'TA'U).
By Lemma 2 of (Wang et al. 2011), we have
—tr(UCTST) < —tr(CT8TZ) — tr(CTSTU’). (19)

For both and (19), Zi; = Uj;1In g,j By combining
(T7), (18) and (1I9), we have the final auxiliary function in
Lemma 2. J

A3. Proof of Theorem 2.

Lemma 2 provides a specific form Q(U, U’) of the aux-
iliary function for L(U) in problem (5). We can have the
solution for miny Q(U, U’) by the following KKT condi-
tion

0Q(U, U’ ey Ui

(20)

Ui/j T/

- @(Q(A U')i; +2(8C)i;) =0,
which gives rise to the updating rule in (@). Following Lem-
ma 1, under this updating rule the objective function L(U)
of (3 will be nonincreasing. [J
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