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Text Co-Detection in Multi-View Scene
Chuan Wang , Huazhu Fu , Senior Member, IEEE, Liang Yang, and Xiaochun Cao , Senior Member, IEEE

Abstract— Multi-view scene analysis has been widely explored
in computer vision, including numerous practical applications.
The texts in multi-view scenes are often detected by following the
existing text detection method in a single image, which however
ignores the multi-view corresponding constraint. The multi-view
correspondences may contain structure, location information
and assist difficulties induced by factors like occlusion and
perspective distortion, which are deficient in the single image
scene. In this paper, we address the corresponding text detection
task and propose a novel text co-detection method to identify the
co-occurring texts among multi-view scene images with composi-
tions of detection and correspondence under large environmental
variations. In our text co-detection method, the visual and
geometrical correspondences are designed to explore texts holding
high pairwise representation similarity and guide the exploita-
tion of texts with geometrical correspondences, simultaneously.
To guarantee the pairwise consistency among multiple images,
we additionally incorporate the cycle consistency constraint,
which guarantees alignments of text correspondences in the
image set. Finally, text correspondence is represented by a
permutation matrix and solved via positive semidefinite and
low-rank constraints. Moreover, we also collect a new text
co-detection dataset consisting of multi-view image groups
obtained from the same scene with different photographing
conditions. The experiments show that our text co-detection
obtains satisfactory performance and outperforms the related
state-of-the-art text detection methods.

Index Terms— Text co-detection, cycle consistency, epipolar
geometrical guidance.

I. INTRODUCTION

THE vision understanding in the multi-view scene has
attracted considerable attentions in numerous tasks, like

object recognition [1]–[3], categorization [4], modification [5],
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reconstruction [6], [7], retrieval [8], person and vehicle re-
identification [9]–[11] and shape estimation [12], [13], which
aims to explore complete representations from diverse facets.
Compared to the single view scene, the multi-view scene not
only holds a wealth of descriptions about the scene and objects
in the scene, but also provides relationships of objects among
multiple images. These relationships may include sequential
relations for time series data, geometrical relations especially
for rigidity objects, semantic relations for representative points
of objects, and etc., which are absent in the single image
scenes as a part of definitive information for object and
scene understanding. For example, in the object discovering,
the object-level correspondences not only enhance objects
holding high probabilities, but also highlight objects that are
not obvious in some images but distinct in other images.
Correspondences describing relationships of points in objects
also have the ability to better perform interior information
of objects, e.g., the structure, due to the abundant and sup-
plemental descriptions from multiple images holding diverse
photographing views about objects. Therefore, exploring and
incorporating correspondences with visual information shows
a novel and attractive research direction for comprehensively
scene understanding.

In the natural scenes, the text detection task has seen a
surge of interests [14]–[20]. It has a wide range of application
scenarios from understanding texts to the localization with text
cues in the image-based or video-based scenes. Lots of works
focus on text detection from the single image based on low-
level manually-designed properties [18], [21]–[27], like Maxi-
mally Stable Extremal Regions (MSER) [28] and Stroke Width
Transform (SWT) [18], or high-level classifiers [29]–[32].
These methods discover the discriminative text-related regions
and then construct text candidates from them with a heuristic
strategy. However, most of these researches have focused on
the single image and may inevitably suffer limitations caused
by restricted scene view and complex environmental factors.
Multiple views of the scene have the ability of providing
more visual textures and various facets of texts, which can
be fully utilized to assist the text detection and understanding.
Although there exist some text detection tasks for multi-view
scenes, they are also often implemented by using the existing
text detection method in individual image, which ignores the
multi-view scenarios and corresponding relationships. To the
best of our knowledge, our method is the first method for
simultaneous detection of texts and their correspondences in
multi-view scenes.

In this paper, the text co-detection task could be defined
as, given a set of images consisting of multi-view images
from the same scene, discovering text regions and identifying
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Fig. 1. The illustration of the multi-view text co-detection. Given a set of
images photographed from the same scene with large perspective distortion,
the goal of text co-detection is to discover text regions in images under the
assistance from other relative images, and explore the corresponding relations
of co-occurring texts. Texts linked with the same colored line are explored
corresponding regions, while the individual texts are labeled by white color.

their relationships. In spite of the multi-view scenario, this
task additionally requires building the corresponding rela-
tionships of text regions with a potentially large number
of environmental distractors. It encourages us to detect text
regions with the incorporation of visual information from
the intra images and text correspondences from inter images.
As shown in Fig. 1, by contrast to text detection in the
single image, the text co-detection formulates correspondences
among the text candidates from different images and identify
the co-occurring texts in multi-view scene. In the practice,
there have many vision applications providing opportunities to
conduct text co-detection and further improve the performance.
For example, in video analysis application, text co-detection
has the ability of providing long-term correlations along the
video frames by exploring the correspondences of co-texts.
Since texts are common components in natural scenes and
text co-detection can deal with views having large variation.
Besides, considering the navigation task of the mobile robot
and fully driverless task, both of which capture surrounding
environments with multiple cameras covering different views,
text co-detection can assist the understanding of surroundings
from different views. What’s more, since texts has no non-rigid
deformations, exploring the correspondences of texts has the
ability of providing landmark localization during multi-view
3D reconstruction.

In this paper, we propose a novel text co-detection method
to simultaneously explore texts and their correspondences
among multi-view images, with the multi-view geometry-
correspondence guidance and multi-view cycle consistency.
First, an instance-level similarity matrix based on visual fea-
tures is generated to construct the consistency of the desired
text correspondences. Besides, since visual similarities mea-
sure the images under similar situations like viewpoint, illu-
mination, and perspective distortion, which are uncontrollable
for texts, they may heavily result in high dissimilarities for
related texts. We additionally construct the point-level epipolar
geometrical relation, which is based on the observation that
the multi-view images are obtained from the same scene
and response the same geometry plane, as the guidance to

conduct the exploitation of candidate correspondences. Incor-
porating visual feature similarities and geometrical guidance,
we enforce the corresponding text candidate sets, each of
which denotes candidate correspondence between all pairs of
images, to satisfy the cycle consistency. Finally, the proposed
framework could be formulated to a low-rank matrix recovery
problem and solved effectively via binary semidefinite pro-
gramming. In summary, we state the main contributions of
this paper as follows:
• We address a new task, text co-detection, to discovery the

co-occurring texts from the multi-view scene images.
• A novel text co-detection framework is proposed, which

explores the visual similarity, geometrical information,
and cycle-consistent candidate correspondences.

• The framework is formulated as a low-rank matrix
recovery problem and solved with binary semidefinite
programming.

• For the evaluation of text co-detection, a new multi-view
dataset with the ground truth is collected, which contains
240 image sets and 727 images in total.

• We propose four evaluation metrics related to text
co-detection task to present the performance evaluation.

• Our method achieves superior performance and not only
includes co-occurring texts of multi-view images, but
also has the ability to present correspondences for each
co-occurring text.

II. RELATED WORK

A. Text Detection Problem

Under the natural scene, texts always have a full of
challenges suffering from both intrinsic difficulties of texts
and extrinsic obstacles of the natural environment. In the
intrinsic aspect, texts have different visual information, such
as nonuniform stroke widths, different colors, various font
styles, and changeable scales. These factors may bring big
trouble in capturing consistent and typical representations of
texts. In the extrinsic aspect, they always perform extremely
sensitive to external factors, which may act big interference
on obtaining representative and uniform features. In detail,
scene texts always are very sensitive to uncontrolled envi-
ronments and confusing background. They are also subtle
to various conditions like scale, orientation, perspective dis-
tortion, low resolution, and non-uniform illumination. All
of these factors may result in texts with diverse appear-
ances and therefore give rise to failures for scene text
detection.

To overcome difficulties and obtain good text detection
results, a lots of works are proposed ranging from character-
based to region-based detection strategies, which often con-
sider relationships in text characters, among text characters or
in text regions. For example, Jung et al. analyze the visual [14]
and Epshtein et al. [18] focus on explore effective stroke
filters, which consider the relationships of strokes like gray
consistency and symmetry characteristic. Yin et al. [26] ana-
lyze the visual feature similarity between character candidates
to construct text candidates. Zhu and Zanibbi [33] consider
relationships of characters like color and size uniformity and
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distance distribution to construct text regions. Gao et al. [15]
focus on texts with the ordered sequence, which contains the
ordered relationship with similar properties. Tian et al. [34]
also incorporate ordered sequential relationships, i.e., regions
within a text line share similar visual information, to improve
text localization accuracy. Shi et al. [29] consider the relation-
ship between neighboring text regions and formulate relation-
ships by linkages of neighboring regions. They both employ
the local linkage relation on a smaller scale and the high-
level global linkage relation on a larger scale. Liao et al. [35]
propose to directly predict the quadrilateral bounding boxes for
arbitrary-oriented scene text detection and utilize “long” con-
volutional kernels to handle long text lines. Lyu et al. [36] deal
with arbitrary-shape text spotting with an end-to-end trainable
neural networks. They propose a four-components framework
to classify and segment text proposals. They consider both
global word map and character maps to provide accurate
localization. Liao et al. [37] propose to use two network
branches of different designs separately dealing with text clas-
sification and regression. They design the regression branch to
extract rotation-sensitive features and the classification branch
to extract rotation-invariant features. Long et al. [38] propose
a flexible text representation, named TextSnake, dealing with
texts in horizontal, oriented and curved forms. They describe
a text with a sequence of ordered, overlapping disks centered
at symmetric axes, which is defined by radius and orientation.
Since each image has its corresponding radius and orientation
maps, they conduct the detection as a segmentation task to
obtain instance-level segmentation.

However, both local linkage based and region-based rela-
tionship based methods set up the conduction based on the
prior knowledge that texts in the scene are always continuous
and have slight variations. When they encounter large per-
spective variations and distortions, they may not catch correct
relationships and fail to explore exact text locations. In addi-
tion, since texts have diverse appearances and are sensitive
to environmental conditions, simply considering the visual
feature similarities between pairs of texts may fail to discover
corresponding ones. Above all, seeking to explore multi-way
information in scenes with large variation has high significance
on the text detection task. In this paper, we provide a novel
application aspect for the text detection, i.e., multi-view text
co-detection, which focuses on handling the co-occurring text
detection under images with large perspective differences and
environmental changes.

B. Object Co-Segmentation, Co-Detection
and Joint Matching

Recently, simultaneously exploring multiple images have
been proposed to consider broader visual information for
various tasks, e.g., co-segmentation [39]–[43], co-saliency
detection [44], [45], object co-detection [46], [47] and joint
object matching [48], [49]. The “co-method” aims to jointly
exploit multiple instances of a target from a set of images, most
of which are obvious and prominent in images. It leverages
appearance characteristics of instances in multiple images and
is provenly key to improve performance. The joint object

matching task aims to simultaneously estimate maps among
a collection of objects and has become an emerging field.

Fu et al. [40] focus on co-segment multiple foreground
objects from videos, under the consideration of the intra-
video coherence and inter-video consistency of foregrounds.
Wang et al. [41] design to co-segment foregrounds from a col-
lection of images with the strategy that coherent foregrounds
could construct a tight clique. On the object co-detection
task, Bao et al. [50] incorporate a unified objective function
on both detection and matching, and consider object- and
part-level correspondences in pair of images. However, they
require a relatively large amount of labeled matching objects
in training step. Shi et al. [51] develop a human co-detection
and labeling framework in a semi-supervised learning manner.
Hayder et al. [52] construct a fully-connected Conditional
Random Field (CRF) in which nodes represent the candidate
labels, and the edges encode the appearance similarity between
two candidates. They encode the appearance similarity as a
mixture of Gaussian kernels and require supervised learning
step to estimate the weights of kernels. However, in prac-
tice providing manually annotated co-occurrences (correspon-
dences) are limited and seldom offered. Besides, most of them
only consider corresponding or not-corresponding relation-
ships between two candidates from two images, and relax the
requirement that one candidate in one image only matches one
candidate in the other image if there exists correspondence. On
the joint matching task, the feature matching [53] or the pixel-
wise flow computation [54] employ the cycle consistency as an
additional constraint, which aims to identify incorrect matches
from bad cycles, but having difficulties on seeking global
solutions for feature-point-wise or pixel-wise graph relations.

However, compared to object co-segmentation, co-detection
and joint matching, scene text co-detection task meets more
difficulties. Firstly, texts have substantial diversity from
generic objects, which do not hold well-defined enclosed
boundary and center. Besides, scene text is diverse and may
perform entirely different fonts, scales, and orientations. Fur-
ther, scene text always accompanies with the very complex
environment. For example, cluttered textures like signs, fences,
and bricks are confused as text. Thus, texts are virtually indis-
tinguishable from background textures. Therefore, the pro-
posed text co-detection task requires elaborated operations to
handle abundant and variant visual and view information of
multi-view scenes.

To deal with the special and difficult text co-detection task,
in this paper we design a novel text co-detection method based
to simultaneously explore texts and their correspondences.
Compared with previous object co-detection algorithms
[50]–[52], the proposed co-detection method requires no
training step with groundtruth text locations and correspon-
dences. The proposed method firstly considers the one-to-one
constraint since a text region in one image only have one
corresponding text in the other image if the correspondence
exists. Besides the pairwise relationships, the proposed method
additionally incorporates cycle consistency in co-detection task
to ensure the propagation of correspondences among multiple
images. Further, the proposed text co-detection method specif-
ically incorporate scene projection relationship to provide
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Fig. 2. Illustration of the proposed text co-detection method. Given a set of multi-view images (a) with their text candidates (b), we firstly compute the
similarities of each candidate pair based on visual feature representations (c). We utilize the epipolar geometrical information based on points within texts as
additional guidance (d). Then the cycle consistency among candidates (e) is incorporated to preserve the correspondences among multi-view images. We jointly
explore corresponding candidates under the permutation matrix formulation (f) and identify the corresponding texts (g) (candidates linked by the line with
the same color).

much guidance since texts have no nonrigid deformation.
All these aspects differ from the characteristics of object
co-detection.

III. TEXT CO-DETECTION FORMULATION

We start by introducing the text co-detection definition in
this section, and subsequently give a co-detection framework
integrating the visual feature similarity, the geometrical guid-
ance and the cycle consistency for multi-view images.

A. Problem Statement and Overview

The text co-detection task is designed to simultaneously
explore the co-occurring texts and their correspondences
among multi-view images. Texts that are presented among
images with different views are treated as the desired co-
occurring texts. As shown in Fig. 2 (a), texts “FOSSIL”,
“STEVE MADDEN” and “MQUEEN” in three images
from the same scene are regarded as the co-occurring
texts.

We propose to explore the co-occurring texts via discovering
corresponding texts among multi-view images. As shown
in Fig. 2, given N multi-view images {I1, I2, . . . , IN } and text
candidate sets {C1, C2, . . . , CN }, the pairwise candidate visual
feature similarity Sv

i j represents the corresponding probabili-
ties between candidates from different views (Ii , I j ). Besides,
we employ geometrical relation f g , which is produced by
the epipolar geometry, on multi-view images for the geomet-
rical consistency. With visual and geometrical consistencies,
we seek a correspondence matrix X for text candidates, which
indicates relations for all pairwise candidates of the images.
It is formulated as the arrangement of pairwise image corre-
spondence Xi j ∈ {0, 1}qi×q j . Each element xmn

i j in Xi j indi-
cates whether two candidates cm

i and cn
j , which respectively

TABLE I

NOTATIONS

come from Ii and I j , have the relationship that assigns xmn
i j

to 1. The resulting co-occurring text candidates, as presented
via the linked candidates in Figure 2 (g), not only have high
pairwise visual affinities and geometrical scores but also are
forced to be consistency among multiple images. To make the
indication to be clear, we summarize the notations of variables
in the paper in Table I.
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B. Co-Detection With Text Candidates

Given N images from multiple view scenes, we design to
explore co-occurring texts with the assistance of correspon-
dences of text candidates.

We first build the text candidate set Ci for each image Ii .
One general assumption is that the candidate set Ci could cover
most of the text regions in the image Ii . In this paper, the text
candidates are generated by integrating the deep-learning
representations and text-specifically hand-crafted features. The
Single Shot Text Detection (SSTD) [30] network is utilized to
explore the deep non-linear text representations. The threshold
that control candidate selection and filtering in SSTD is
relaxed from 0.6 to 0.3 to cover as more as possible candidates
with high detection recall. SWT interesting points [18] is
used to obtain text-specific regions, group neighboring SWT
points and subsequently filter these regions by discarding
regions whose width or height is less than 10 pixels. The
remaining regions from deep and text-specific representations
are collected to build the candidate set Ci with qi candidates.

We desire to find a matrix Xi j , which is composited by
the elements in candidate sets Ci and C j , to indicate the
presence and the corresponding relationship of co-occurring
texts. Since the correspondences between texts are the one-
to-one relationship, we represent the matrix Xi j as a partial
permutation matrix Xi j ∈ {0, 1}qi×q j as:

Xi j 1 = 1, XT
i j 1 = 1, (1)

where 1 is an all-one vector. In spite of the permutation
matrix constraints, the correspondence Xi j satisfies the self-
corresponding and symmetric constraints:

Xii = Ii , 1 ≤ i ≤ N

Xi j = XT
j i , 1 ≤ i < j ≤ N, (2)

where Ii denotes the identity matrix of image Ii . Besides,
the correspondences Xi j is sparse since at most one value in
each row of Xi j is valued.

To incorporate all image pairs, the correspondences of
multiple images are stored in X and constructed as:

X =

⎛
⎜⎜⎜⎜⎝

X11 X12 · · · X1N

XT
12 X22 · · · X2N
...

... X(N−1),(N−1) X(N−1),N

XT
1N

... XT
(N−1),N XN N

⎞
⎟⎟⎟⎟⎠

. (3)

To discover the correspondences X, we enforce the consis-
tency between the correspondence X and the text visual feature
similarity Sv, which is computed by the normalized correlation
between text deep feature representations of each image pair.
The correspondence X also subjects to the constraints in
Eq.s 1, 2 and the sparsity as:

argmin
X

�X− Sv�2F + α�X�0,
s.t ., Xi j 1 = 1, XT

i j 1 = 1,

Xii = Ii , 1 ≤ i ≤ N,

Xi j = XT
j i , 1 ≤ i < j ≤ N, (4)

Fig. 3. Illustration of the epipolar geometry. The point p in one image is
transferred through the plane π to the matching point p� in the other image.
The epipolar line l� through p� is obtained by linking p� to the epipole e�.
We can write p� = Hπ p and l� = [e�] × p� = [e�] × Hπ p = Fp where
F = [e� ] ×Hπ is the fundamental matrix.

where α is the weight of sparsity of X and predefined with
0.5 in this paper.

C. Geometrical Consistency With Epipolar Geometry

Given a pair of images captured from the same scene with
different views, the intrinsic projective geometry between dif-
ferent views, i.e., the epipolar geometry, is usually motivated
by considering the estimation of corresponding points between
the two views. The property of epipolar geometry inspires us
that feature points in corresponding text candidates have a high
probability to be the corresponding points. Besides, partial
presence of text candidates may induce low visual feature
similarity and incorrect correspondence (as shown in Fig. 4),
which require additional information to provide rectification
about incorrect correspondences. Therefore, we introduce the
feature point correspondence to enhance the candidate corre-
spondence. In the following, we firstly give a brief introduction
to epipolar geometry and its algebra representation. Then we
illustrate the formulation of geometrical consistency employed
in the paper.

The epipolar geometry is the intrinsic projective geometry
between two different views, regardless of how the scene
structure is changed. It describes that the corresponding points
p = {x, y, 1} ∈ R

3×1 and p� = {x �, y �, 1} ∈ R
3×1 in images

of two views are coplanar in the epipolar plane π with their
space point P (the point in 3D) and the camera centers C and
C�, as shown in Fig 3. Considering that points p and p� are
corresponding, the point p� must lie on the epipolar line l�,
which is defined by the intersection of π and the image plane
of p� [55]. Thus, there is a map p �→ l� from the point p in one
image to its corresponding epipolar line in the other image.
This projective mapping from points to lines is represented by
a fundamental matrix F with l � = Fp. With the corresponding
point p� lying on l � we have 0 = p�T l � = p�T Fp, which is used
as geometrical guidance to construct geometrical information
and boost the correspondences.

Based on the defined geometrical guidance, we formulate
the geometrical consistency by integrating the geometrical

Authorized licensed use limited to: Hebei University of Technology. Downloaded on April 25,2020 at 06:53:56 UTC from IEEE Xplore.  Restrictions apply. 



4632 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 4. Partial presence of text candidates induces low visual feature similarity
and incorrect correspondence, as shown in (a). The guidance obtained from
the epipolar geometry has the ability to guide the correspondence, as shown
in (b).

guidance and candidate correspondence. The fundamental
matrices Fi j ’s for image pairs are calculated beforehand. For
each image Ii , we extract the interest feature points with Scale
Invariant Feature Transform (SIFT) [56] and SWT [18]. The
SIFT and SWT feature points locating inside the candidates are
preserved as feature points Pi for each image Ii . The similari-
ties of pairwise points are represented by SIFT feature distance
and used to find the initial matching relation between points.
Then the Random Sample Consensus method (RANSAC) is
applied to estimate fundamental matrices Fi j ’s for image pairs
(Ii , I j ),∀i, j ∈ {1, N}, i 	= j .

With the estimated fundamental matrices Fi j ’s, we calculate
the geometrical consistency for image pairs in the set. Sup-
pose we have the correspondence matrix X for the image
set. The sub-matrix Xi j ∈ R

qi×q j for an image pair
(Ii , I j ), i, j ∈ {1, N} is the correspondences of the candidates
in Ci and those in C j . We use feature points located in
corresponding candidates as candidate points of each image,
whose selection is indicated by di = Mi Xi j 1T

j . Mi ∈ R
pi×qi

is the mapping matrix of feature points to text candidates
with pi is the number of feature points and qi is that of text
candidates of image Ii . 1 j is an all-one vector whose length
is q j . We permutate the point selection di by Di = [di di di ]
to have the same size of feature points Pi . Then the selected
feature points P̂i for image Ii is represented as P̂i = Pi 
Di .
Thus, the geometrical consistency can be imposed on selected
candidates by minimizing the following term:

f g = 1

2

N∑
i=1

N∑
j=1, j 	=i

�P̂i Fi j P̂T
j �2F . (5)

The minimization of Eq. 5 aims to ensure that feature
points in the corresponding candidates have lower fundamental
responses, i.e., the value of �P̂i Fi j P̂T

j �2F , than those in the
unrelated candidates.

D. Co-Detection With Cycle Consistency

To handle a bunch of images, cycle consistency [57]–[59]
is employed to ensure the correspondences among multiple
images. The definition of the cycle consistency is, if a candi-
date cm

i in image Ii has correspondences with candidates cn
j

in image I j and ct
k in image Ik , i.e., xmn

i j = xmt
ik = 1, there

also exists a correspondence between candidates cn
j and ct

k in
image I j and Ik , i.e., xnt

jk = 1.1

Xi j = Xkj Xik , 1 ≤ i < j < k ≤ N. (6)

The desired X holds low-rank and positive semidefinite
properties. Low-rank property of X is straightforward due to
the matrix expression of cycle consistency shown in Eq. 6.
The positive semidefinite property is also straightforward as
∀z ∈ R

N Q×1, zT Xz = zT VT
i Vi z = �Vi z�2F ≥ 0. Vi

is the matrix representing as Vi = (Xi1, . . . , Xi N ).2 The
requirements of the solution of X are written as:

X � 0, rank(X) ≤ r, (7)

where r is the rank of X and assigned with the maximal
number of candidates of an image. Therefore, the problem of
exploring cycle-consistent correspondence matrix is simplified
and equivalently constructed as solving a binary positive
semidefinite matrix with the low-rank constraint. The diagonal
blocks of X are identity matrices, and off-diagonal blocks are
permutation matrices.

E. Formulation

Incorporating the geometrical guidance in Eq. 5 and the
cycle consistency constraint into the objective function in
Eq. 4, we can summarize that the desired correspondence
X should satisfy requirements: 1) consistent with the visual
feature similarity Sv and the geometrical guidance (Eq. 5);
2) sparse due to the permutation matrix formulation in
Eq. 1; 3) low-rank and positive semidefinite (Eq. 7). Hence,
the objective function is written as:

argmin
X

�X− Sv�2F + α�X�0 + β

2

N∑
i=1

N∑
j=1, j 	=i

�P̂i Fi j P̂ j�2F
+ γ rank(X),

s.t ., Xi j 1 = 1, XT
i j 1 = 1,

Xii = Ii , 1 ≤ i ≤ N,

Xi j = XT
j i , 1 ≤ i < j ≤ N,

X � 0,

rank(X) ≤ r, (8)

where γ controls the weight of the rank.
To assure that the cycle-consistency is actually convex,

we relax the permutation matrix constraint in Eq. 1 of X with
the doubly stochastic constraint. That is, each element of Xi j

1As we compute the correspondences between all pairs of candidates,
taking 1-cycles (the self-corresponding constraint), 2-cycles (the symmetric
constraint) and 3-cycles (relationships among three candidates from three
different images) is sufficient.

2The detail proof is shown in [60].
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takes a real value between 0 and 1, and rows and columns of
each block of X sum to 1.

0 ≤ Xi j ≤ 1, 0 ≤ XT
i j ≤ 1,

∑
i

Xi j =
∑

j

Xi j = 1. (9)

Besides, to make the optimization tractable, we relax the
constraint of the rank of X by replacing it with the nuclear
norm of X (sum of singular values of X). To preserve the
sparsity of X, we also relax �0-Norm to �1-Norm that equals
to the sum of absolute values in X. The objective function in
Eq. 8 is rewritten as:

argmin
X

�X− Sv�2F + α�X�1 + β

2

N∑
i=1

N∑
j=1, j 	=i

�P̂i Fi j P̂ j�2F
+ γ �X�∗,

s.t . X ∈ A, (10)

where A is the set of matrices including low-rank, positive
semidefinite and doubly stochastic constraints Eq. 9.3

Since elements in X are no less than 0, thus the �1-Norm
of X is replaced by the inner product of an all-one vector 1
and X. The objective function defined in Eq. 10 is converted
as:

argmin
X

− 2 < X, Sv > +α < 1, X >

+ β

2

N∑
i=1

N∑
j=1, j 	=i

�P̂i Fi j P̂ j�2F + γ �X�∗

= argmin
X

< W, X >

+ β

2

N∑
i=1

N∑
j=1, j 	=i

�P̂i Fi j P̂ j�2F + γ �X�∗,

s.t . X ∈ A, (11)

where < ·, · > is the inner product. W = α1 − 2Sv .
By solving Eq. 11, the most repeatable text candidates in the
image set will be obtained and matched with a consistent way.

F. Optimization

The nuclear norm minimization in Eq. 11 is convex and
always be solved with the proximal method [62] or Alternating
Direction Method of Multipliers (ADMM) [63], each of which
is based on iterative singular value threshold [64]. Since using
singular value decomposition in each iteration is expensive,
we follow the previous works [61], [65] to solve the problem
by replacing the variable X with two matrices A and B whose
dimensions are smaller than X. In the objective function we
let X = ABT and A, B ∈ R

Q×r . These two new variables
has smaller dimension r < Q. Besides, we make the second
replacement for Xi j ’s with Yi j ’s in the term of geometrical
consistency since each sub-problem in the block coordinate

3With the consideration that solving semidefinite programming is generally
unscalable, we follow the previous works [60], [61] as ignoring the positive
semidefinite constraint on X and give the low-rank constraint a large weight.
Since the results are not degraded noticeably when removing the constraint
on the sum of each row and column of X, we remove it and preserve the
requirement that elements in X should be lied in [0, 1], i.e., 0 ≤ X ≤ 1.

descent will be much easier to solve. The optimization problem
in Eq. 11 is rewritten as:

argmin
X,Y

< W, X > + β

2

N∑
i=1

N∑
j=1, j 	=i

�P̂i Fi j P̂ j�2F

+ γ �ABT �∗ + ρ

2
�Y− X�2,

s.t . X = ABT , X ∈ A
Yi j ∈ P

qi×q j , 1 ≤ i ≤ N, (12)

With the following equation [66],

�X�∗ = min
A,B:ABT=X

1

2
(�A�2F + �B�2F ). (13)

The final objective function is formulated as:

argmin
X,Y

< W, X > +β

2

N∑
i=1

N∑
j=1, j 	=i

�P̂i Fi j P̂ j�2F

+ γ

2
�A�2F +

γ

2
�B�2F +

ρ

2
�Y − X�2

s.t . X = ABT , X ∈ A
Yi j ∈ P

qi×q j , 1 ≤ i ≤ N. (14)

To solve the optimization in Eq. 14, we alternately update X,
A, B and Y in the following manner. We firstly jointly compute
the update for X, A and B with given Y. Subsequently,
we update the value of Y with given X, A and B.

To update X, A and B, Eq. 14 is rewritten as

argmin
X,A,B

< W, X > +γ

2
�A�2F +

γ

2
�B�2F +

ρ

2
�Y − X�2

s.t . X = ABT , X ∈ A, (15)

and ADMM [63] is applied to solve the Eq. 15. The augmented
Lagrangian of Eq. 15 is:
Lμ(X, A, B, Z) = < W, X > +γ

2
�A�2F +

γ

2
�B�2F

+ < Z, X − ABT > +μ

2
�X− ABT �2F

+ρ

2
�X − Y�2. (16)

Z is the Lagrange multiplier and μ is a parameter which
controls the step size in optimization. The ADMM alternately
updates each primal variable by minimizing Lμ. The dual
variable is updated by gradient ascent with fixing all others.

The minimization of Lμ for A and B turn to be a regularized
least squares problem with a closed-form solution, with the
following forms:

A ← (
X + 1

μ
Z
)
B
(
BT B + γ

μ
I
)†

, (17)

B ← (
X + 1

μ
Z
)
A

(
AT A + γ

μ
I
)†

. (18)

The update of X is:
X← PA

( μ

μ+ 2
ABT − 1

μ+ 2
(Z−W)+ ρ

μ+ 2
Y

)
. (19)

The solution for X turns out to be a projection to A and
denotes by PA(·).
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Algorithm 1 Co-Detection Algorithm

To update each Yi j , we utilize the Hungarian algorithm,
with the constructed cost matrix as:

Hi j = G(Pi , P j )− ρXi j , (20)

where G(Pi , P j ) is the geometrical response of the image
pair (Ii , I j ). Elements in G are values denoting point cor-
respondence with fundamental matrix between each pair of
candidates.

As the optimization is non-convex and includes both contin-
uous and discrete variables, the quality of the initialization of
X is necessary. We first solve the Eq. 15 with ρ = 0 (without
consideration of geometrical consistency) to obtain a confi-
dential X. The initialization of fundamental matrices Fi j ’s,
is completed by RANSAC method with matching relations of
feature points. With the estimated Fi j ’s, the assignments of
Yi j ’s are achievable.

For better convergence, based on the initialized X and Y,
we solve the Eq. 15 until reaching the local minimum and
then update Y. We iteratively conduct the updates to find
the optimal X. The overall algorithm is presented in the
Algorithm 1.

IV. EXPERIMENTS

In this section, we first present the new text co-detection
dataset. Then we conduct experiments on the collected dataset
to validate the effectiveness of the proposed text co-detection
method. In addition, we investigate the performance and
superiority of the co-detection framework comparing to several
recent competing text detection methods in a single image.

A. Text Co-Detection Dataset

To evaluate the performance of text co-detection, we collect
a new text dataset consisting of image groups each of which
describes the same scene. Each image group holds several
images photographed from the same scene. The dataset is
collected from two sources. The first one includes frames

Fig. 5. Examples of the collected text co-detection dataset. The group
(a) comes from the video source and the group (b) from the image source.

extracted from videos. We choose 34 of 49 videos, which
present diverse views of the scene, from the Text in Videos
challenge of ICDAR 2019 Robust Reading Competition.4

These videos are captured with a moving camera with chang-
ing camera locations, including angles, vertical moving, depth,
etc. Texts in videos always suffer from natural noise, blurring,
perspective distortion and substantial changes in illumination
and occlusion. To select useful frames, we first pick frames
with the interval of 20 frames, which may be enlarged to
50 frames when the content difference is visually small. Then
the picked frames of each video are divided into several groups
of frames, each of which describes the same scene from
different views. Subsequently, for each group, we manually
delete frames that are visually similar to the previous frames.
Finally, the preserved groups constitute the part of the dataset.
The second source for collecting image groups is images
from the widely used text detection dataset ICDAR2015.
We select images captured from the same scene as an image
group. Texts in images from the ICDAR2015 dataset hold
large-scale variances and are polluted by varying perspective,
illumination and occlusion. Totally, the new dataset contains
240 groups with 727 images. We show two groups deriving
from different sources in Fig. 5. In Fig. 5 (a), it is obvious that
text “Aparcament”, “reservat” and “Rectorat” become more
and more clear and are easy to capture from the top left to the
down right in the zigzag direction. Therefore, incorporating
the text detection results of the down right image benefits
the detection results of the top left image. Besides, since the
left top image is captured with deep depth, it may provide
the global view to locate texts in the scene. In Fig. 5 (b),
horizontal texts in the down image may be easier to obtain
compared with the tilted and depth-affected texts in the top
image, further provide guidance to assist text detection in the
top image.

Since having a consistent and reliable groundtruth is imper-
ative to carrying out an evaluation, we consider scene charac-
teristics such as spatial resolution of texts and corresponding
persistence of texts to decide the groundtruth annotation way.
Firstly, given an image set, areas that covering readable texts,
words, text lines, partial letters and unclear text lines are
marked with four points in the clockwise direction, i.e., loca-
tions at top left, top right, down right and down left. Then we

4The challenge is available at https://rrc.cvc.uab.es/?ch=3
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select boxes that cover the same scene text and present in two
or more images as the corresponding text annotations.

B. Evaluation and Comparison

To evaluate the text co-detection performance, we approach
with a spatio-temporal concept for the correspondence mea-
sure in comparison with the text detection measure that taking
spatial aspect into account. Before we conduct the performance
evaluation, we require to transform the correspondence repre-
sentation matrix X to a set of texts with correspondences and
assign each valid detection with a groundtruth index. For each
candidate in X, if it has a valid intra-image correspondence,
it is treated as a co-text candidate. For example, for the
candidate cm

i in image Ii , if xm∗
i∗ >= 0.5 ( ∗ indicates any text

candidate in any image except for Ii ), the candidates cm
i and

c∗∗s compose a co-text candidate. For each co-text candidate,
a one-to-one correspondence between the detected co-text and
the groundtruth is determined by filtering the Intersection
over Union (IoU) score with 0.5 and selecting the maximal
IoU score over all combinations of the detection and the
groundtruth. The remained co-text candidates are detected co-
texts. The following are the notations used in the performance
evaluation,
• Gs is the sth groundtruth text and Gi

s denotes the sth

groundtruth text in image Ii .
• Ds is the sth detected co-text and Di

s denotes the sth

detected co-text in image Ii .
• Ni

G and Ni
D are the number of groundtruth texts and the

number of detected co-texts in image Ii , respectively.
• NG and ND are the number of unique groundtruth texts

and the number of detected co-texts in the given image
set, respectively.

• N is the number of images in a given image set and Ncorr

is the number of detected co-texts.
We first employ the detection accuracy (Image Detection

Accuracy (IDA)) and recall (Image Detection Recall (IDR))
measures to estimate the image-level co-detection performance
of detected co-texts. These two measures are defined as,

I D A =
N∑

i=1

∑Ncorr
s=1 |Di

s |
Ni

D

. (21)

I DR =
N∑

i=1

∑Ncorr
s=1 |Di

s |
Ni

G

. (22)

We then propose a Multiple Image Detection Ratio Accu-
racy (MIDRA), which is an image-level measure and accounts
for number of texts detected, missed detection, and false
alarms of groundtruth and discovered texts. It sequentially
computes detection ratio for each image and then normalizes
all IDRA scores to obtain the performance of multiple images.
The Image Detection Ratio Accuracy (IDRA) for image Ii is
defined as,

I DR A(i) =
2×∑Ncorr

s=1
|Gi

s∩Di
s |

|Gi
s∪Di

s |
Ni

G + Ni
D

, (23)

where |G
i
s∩Di

s |
|Gi

s∪Di
s | is the IoU score between the sth detected text

bounding box for image Ii and the groundtruth text bounding
box.

To obtain the MIDRA performance, the IDRA scores for
each image are summed together and normalized by the
number of images that either holds a groundtruth or a detected
text. The formula is expressed as,

M I DR A =
∑N

i=1 I DR A(i)∑N
i=1 ∃(Ni

G O R Ni
D)

. (24)

In spite of MIDRA that considers image-level co-detection
performance, we additionally employ another evaluation
criteria, the Average Correspondence Accuracy (ACA), to esti-
mate the correspondence accuracy performance for each co-
text. Inspired by [67], we first calculate the Correspondence
Detection Accuracy (CDA), which shows the performance of
one co-text on all images. The CDA is defined as,

C D A =
Ncorr∑
s=1

∑N
i=1[ |G

i
s∩Di

s |
|Gi

s∪Di
s | ]

N(Gs∪Ds 	=∅)
. (25)

Then the ACA is obtained by normalizing the CDA with the
average number of texts in the image set. It is defined as,

AC A = 2× C D A

NG + ND
. (26)

Among the above proposed four evaluation metrics, IDA
and IDR measure the accuracy and recall, respectively,
of detected co-texts. They consider the number of texts being
correctly detected and evaluate the performance by calculating
the ratio of the number of the correctly detected texts to that
of detected texts or groundtruth texts. These two metrics are
similar with the Accuracy and Recall metrics in the single
image text detection evaluation, and ignores the evaluation
of correspondence relationships. Therefore, correspondence
errors are not presented in these two metrics.

Compared to IDA and IDR, MIDRA and ACA provide more
comprehensive analysis about text co-detection. MIDRA fully
considers number of detected texts, missed texts, and false
alarms of groundtruth and discovered texts. It calculates the
multiple image performance by normalizing the image-level
ratio accuracy with the total number of images that either has a
groundtruth or a detected object. This normalization considers
both missed detection and false alarms. ACA calculates the
accuracy based on each corresponding text set. It covers
incorrect text propagation along co-texts.

We extract candidate deep feature representation from the
last 4th convolutional feature responses of the SSTD model
via Region of Interest (RoI) pooling strategy. The intra-image
candidate similarities are ignored by assigning with score
0 and the self-similarities of candidates are assigned with 1,
i.e., diagonal elements in similarity matrices are equal to 1.
The weight of geometrical consistency β is assigned with 0.01,
the weight of nuclear norm γ with 50, and ρ with 1.

We construct the comparison with frameworks that have
the same goal to explore relative and consistent components
among multiple images, which aim to explore common objects
and their relationships. We also show the result of the proposed
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method compared with the combination of the-state-of-the-
art text detection methods and two relationship discovery
frameworks, which have the ability to perform co-texts. The
comparison methods are manifested in the following.

1) CTPN [34] detects text lines based on sequential text
proposals in convolutional feature maps. We use the released
model and preserve the parameter configuration presented in
the paper.5

2) TextBoxes [31] presents an end-to-end trainable scene
text detector without post-process except for a standard non-
maximum suppression.6

3) SSTD [30] employs an attention mechanism which
roughly identifies text regions via an automatically learned
attentional map.7

4) TextPros [68] generates a hierarchy of word hypotheses
that rely on a similarity based region grouping.8

5) EAST [32] directly predicts texts with arbitrary orienta-
tions and quadrilateral shapes based on a fully convolutional
network.9

6) SegLink [29] decomposes text into two locally detectable
elements, namely segments and links, and produces texts by
combining segments connected by links. We use the model
trained using the image size of 384×384, and set thresholds
for the confidence of segments and the confidence of linking
as 0.9 and 0.7, respectively, all of which are same with those
described in the paper.10

7) RRPN [69] proposes to utilize inclined proposals with
text orientation information to conduct the text detection
task.11

8) PixelLink [70] is constructed based on instance segmenta-
tion. It first segments out text instances via linking pixel-level
neighborhoods within the same instance and then generates
text bounding boxes from segmented text instances. It consid-
ers pixel-level links and formulates connected components as
detected texts.12

9) Textspotter [36] utilizes a four-components framework to
classify and segment text proposals and deal with arbitrary-
oriented scene text detection. They consider both global word
map and character maps to provide accurate localization.13

10) PW( PairWise similarity) is completed only based on
pairwise similarities and the greedy algorithm to find candidate
pairs holding the largest similarities. Similarities between
candidates from the same image are assigned with 0. For each
image pair, we employ the pair-wise similarity maximization
strategy to find the correspondences. The correspondences for
multiple images are determined via maximizing a sequence of
pair-wise correspondences. Then the detected corresponding

5The code and model are available at https://github.com/tianzhi0549/
CTPN.git

6The released code is available at https://github.com/MhLiao/TextBoxes.git
7The code is available at https://github.com/BestSonny/SSTD
8The model is available at https://dl.dropboxusercontent.com/u/

45812668/dictnet_vgg/dictnet_vgg.caffemodel
9The code is available at https://github.com/argman/EAST
10The details for code and model are available at https://github.com/

dengdan/seglink/introduction
11The model is available at https://github.com/mjq11302010044/RRPN
12The model is available at https://github.com/ZJULearning/pixel_link
13The model is available at https://github.com/MhLiao/MaskTextSpotter

TABLE II

PERFORMANCES OF DIFFERENT METHODS ON
THE TEXT CO-DETECTION DATASET

co-texts are assigned with the groundtruth ID that has largest
IoU score.

11) MSG [40] presents a co-segmentation framework for
multiple foreground video co-segmentation in a set of videos,
which has similar goal with our proposed co-detection frame-
work for multi-view text detection. It considers coherences
of the foreground within the video and among the different
videos.

12) Clique [41] proposes a multi-image co-segmentation
framework. It constructs the graph structure to represent
the candidate relationships among foreground candidates and
seeks cliques linking candidates coming from multiple images
as desired foregrounds.

13) Oursw/o is the proposed text co-detection framework
without considering the geometrical guidance. It is imple-
mented based on the Eq. 11 that removes the second term
β
2

∑N
i=1

∑N
j=1, j 	=i �P̂i Fi j P̂ j�2F and also solved with the same

strategy ADMM.
The experimental results are shown in Table II. We first

show the results of the combination of the text detection meth-
ods and two correspondence exploration methods. For the first
combination, we employ the pair-wise similarity maximization
strategy (PW) after obtaining text detection results to con-
duct correspondence discovery. For the second combination,
we incorporate the text detection results and our proposed
framework without the geometrical guidance (Oursw/o). The
results are presented in the first and second blocks. We observe
that incorporating the text detection methods with our pro-
posed framework Oursw/o has superior performance than that
with the PW strategy. Taking the results of SSTD as example,
which constitutes part of our candidate set. We compare the
performance of SSTD+PW, SSTD+Oursw/o and Oursw/o.
Co-texts generated by SSTD+PW only obtain 11.75% and
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Fig. 6. Qualitative results for text co-detection. Each row indicates the co-occurring text groundtruth (a), CTPN+Oursw/o (b), SSTD+Oursw/o (c),
EAST+Oursw/o (d), SegLink+Oursw/o (e), PixelLink+Oursw/o (f), RRPN+Oursw/o (g), TextSpotter+Oursw/o (h), MSG (i), Clique (j) and Our results
(k), respectively. Bounding boxes with the same color indicate one co-text. The white rectangle is the output detection whose IoU score is less than 0.5. Our
proposed co-detection method jointly capture corresponding text detection, and discover relational correspondences.

15.07% on IDA and IDR, respectively. When accomplishing
the one-to-one constraint and cycle consistency, the IDA and

IDR have the increase of 70.5% and 47.8%, respectively. But
it is obvious that although we have the-state-of-the-art text
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detection methods like EAST and good correspondence dis-
covery strategy, the performance is still inferior compared with
the proposed text co-detection frameworks Oursw/o and Ours.
When conducting detection and matching together, the IDA
and IDR receive the additional improvements of 17.4% and
9.6%, respectively. The higher improvements are also pre-
sented on the performance of MIDRA and ACA metrics.
These comparisons show that our proposed text co-detection
framework, which jointly conducts text detection and corre-
spondence discovery, has high effectiveness on performing
co-text discovery.

Further, we also show the results of co-frameworks, which
are conducted on the multi-view dataset, in the third block
in Table II. From results in the table, we find that co-
segmentation frameworks seem to perform worse. It possibly
due to the reason that the co-segmentation framework aims
to discover salient and well-defined objects as foregrounds,
which may perform the weak ability on cluttered and not-
well-defined text regions.

We present some qualitative results in Figure 6 to show the
detected texts and the explored text correspondences. Texts
framed with the same color indicate the co-texts. Bounding
boxes with white color are results whose IoU are less than
0.5. It is straightforward that our proposed text co-detection
framework not only has good text detection results but also is
well-behaved on finding correspondences of detected texts.
Compared with combinations of single-view text detection
methods and correspondence discovery strategies, the text
co-detection results of our proposed multi-view co-detection
framework are obviously superior. Compared with co-
frameworks MSG [40] and Clique [41], our proposed multi-
view co-detection framework obtains better text detection and
correspondence exploration results. Specifically, the MSG [40]
requires the assignment of the number of co-texts, which
is impractical since the number of co-texts are uncertain.
In practice, we set the number of co-texts with 15 and preserve
correspondences that are unique and presented in the first time.
The co-framework Clique [41] sequentially seeks exact one-
to-one relationships between candidates among images, and
ignores the relationships among images.

In summary, compared with other methods, the proposed
method not only consider the global consistency but also the
local consistency. For the global consistency, the cycle consis-
tency prevents mismatches among multiple images and ensures
candidate selections that are incorrect in paired images. For the
local consistency, the employed epipolar-geometry information
explores relationships of text-specific local feature points and
further preserves correspondences of text candidates.

C. Analysis and Ablation Study

In this section, we perform the analysis about the effective-
ness of features and terms employed in the text co-detection
framework.

1) Analysis of Candidate Selection and SWT Region Gen-
eration: We first analyze the thresholds used in candidate
generation step. In this paper, text candidates are generated
based on deep-learning representations and text-specific fea-
tures. We use SSTD [30] network to conduct candidate search,

TABLE III

RECALL OF TEXT CANDIDATES WITH DIFFERENT CONFIDENCE THRESH-
OLDS ON ICDAR 2015 TESTING DATASET

where each candidate has a probability score to measure
whether the candidate being a text region. Instead of using
a higher score to filter regions with low probability, we relax
the high probability requirement and reduce the threshold to
include all possible text regions. In Table III, we present the
Recall evaluation, which is designed to measure the number
of ground-truth texts being detected, and the number of
generated candidates against different confidence thresholds on
the ICDAR 2015 testing dataset. We choose 0.3 as the desired
confidence threshold since Recall under 0.3 is sufficiently high
and the number of candidates is not very large.

Considering the text-specific features, we use SWT inter-
esting points [18] to describe text-aware locations and group
neighboring SWT points as a text region. Since SWT-based
text regions are derived from point locations, there may
exist little regions having few text information and visually
unnoticeable. We conduct a reduction progress to remove text
regions whose width or height is less than 10 pixels. This
threshold is designed based on two considerations. The first
one is based on the statistical analysis about size of text
regions of ICDAR 2015 text detection dataset and Texts in
Videos dataset. We calculate the widths and heights of all
ground-truth text regions and find that the minimal width and
height are higher than 5 pixels. The second one is based on
the observation that text regions whose width or height is
smaller than 10 pixels are always visually unclear. Therefore,
we discard SWT regions by filtering their widths and heights
with a threshold.

2) Effectiveness of Different Feature Representations: Given
the extracted text candidate locations, we extract visual feature
representations from the SSTD deep model with 5 convolu-
tional layers. We verify the representation ability of different
convolutional layers, excluding influence from the geometrical
guidance, and show the performance in Table IV. The results
show that deeper layers have a stronger ability to represent
texts. That is, features from the 4th and 5th layers produce
superior performance than that from the 3th layer. This is
mostly due to the fact that a deeper representation has stronger
representation ability to describe images, compared with shal-
lower representation, since deeper representation captures not
only visual information but also the semantic representation,
e.g., text and non-text. However, the representations from the
5th layer do not hold better results than that from the 4th

layer. It is probably induced by two reasons. Firstly, since text
regions are smaller, after several down-sampling operations,
some neighboring text regions may have the same responses
on the 5th layer. Besides, features from the 5th layer have
weak visual description ability and may pay more attention to
judging the probability of being a text region, hence they have
weak discriminative ability between text candidates.
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TABLE IV

PERFORMANCE WITH DIFFERENT DEEP REPRESENTATIONS

3) Analysis on Complexity and Speed: We first ana-
lyze the time complexity about the proposed algorithm
described in Algorithm 1. The complexity of the framework is
O(M(Q3r4+Q2+P2)), where Q is the number of candidates
of all images, P is the number of interest points of all images.
r (smaller than Q) is a dimension of A and B and M is the
iteration number. Besides, we also compute the time consump-
tion and the average processing time for each image group
(including more than two images) without the consideration of
the candidate generation step. The average time consumption
of one image group is 2.7s under a MacBook Pro with 2.7 GHz
Intel i5 Core and 16GB DDR3 memory.

4) Analysis on the Effectiveness of Correspondences to Text
Detection: In the single-view detection, the detector conducts
the prediction based on the probability score of being a text.
A text region having high score is treated as positive and
the text region having low score is negative. The threshold
for deciding to be a text or not plays important role in text
detection. However, since texts are extremely sensitive to
environmental conditions like illumination, capture angle like
perspective, camera blur and etc., the same text under different
environments may have different probability scores lower or
higher than the threshold. Thus the texts with lower scores are
prevented from being detected.

Different with the single-view text detection, the proposed
text co-detection not only considers probability scores of texts,
but also corresponding relationships between texts in different
view. With the assistance of corresponding relationship, texts
with lower scores still have opportunity to be detected. There-
fore, the relationship assists the improvement of detection
accuracy.

In practice, it is inevitable that there exist false relationships
in multiview group. However, the quantitive comparisons show
that the corresponding relationships still have strong positive
effectiveness on improving the detection performance. Taking
the results of SSTD and ours shown in Table II as example,
correspondences explored with the one-to-one constraint and
the cycle consistency get 70.5% and 47.8% improvements
on IDA and IDR, separately, compared to pairwise similarity
relationships (the first row). Furthermore, with the help of the
geometrical relationships, the new correspondences bring the
further improvements. All the comparison results demonstrate
the benefits of corresponding relationships.

5) Ablation Study: To take the consistency among multiple
images into consideration, we enforce the cycle consistency
for discovered co-occurring text regions. To evaluate the
effectiveness of the cycle consistency, the comparison between
a baseline PWw method and our proposed text co-detection
framework is shown in the Table V. The PWw method is
implemented based on the union of the visual similarities and

TABLE V

ABLATION STUDY

Fig. 7. (a) The text co-detection by Oursw/o. (b) The geometrical relationship
(black line) obtained by epipolar geometry. (c) The co-texts detected by the
proposed co-detection algorithm.

geometrical guidance of text candidates. The results present a
clear illustration about the influence of the cycle consistency.

In spite of the cycle consistency, we also put the intrin-
sic geometrical correspondence of multi-view images, which
described as the epipolar guidance, as the additional informa-
tion for text co-detection. The geometrical guidance directly
requires the matrix X, which indicates text candidate selection,
having correspondences with the selection matrix Y calculated
based on epipolar geometrical relation. To perform the effects
of the added geometrical guidance, we conduct the comparison
baseline Oursw/o. The comparisons are shown in Table V.
The superior performance shows that the cycle consistency
requirement benefits the co-detection results.

The epipolar geometrical guidance also has the positive
influence on text co-detection. By comparing with the results
of Ours and Oursw/o, it is obvious that geometrical relationship
benefits the performance of text co-detection. Considering
that merely exploring correspondences based on visual feature
representations may be misguided since texts are sensitive
to environmental conditions, incorporating the relationships
derived from visual features with that from geometrical guid-
ance largely improves the performance.

To further analysis the employed geometrical guidance,
we show a qualitative example showing the comparison
between detected co-texts by Oursw/o and Ours, with the
presence of the geometrical guidance of the image pair. The
results are shown in Fig. 7. Since co-texts in these two images
have large visual differences, merely using similarity-based
relationships could provide limited efforts to detect co-texts,
such as results in the first column in Fig. 7. After integrating
geometrical guidance (shown as the black lines cross top and
down images in the second column in Fig. 7), we obtain
satisfied co-text detection results, as shown in the third column
in Fig. 7.

We owe the success of adding geometrical guidance to
the following three aspects. Firstly, the geometrical guid-
ance is constructed based on the relationships of text-specific
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Fig. 8. Incorrect candidate correspondence caused by reflection.

SWT points. The number of SWT points in each image is more
than 2,000 and thus provides abundant sources to estimate the
geometrical relationships. Secondly, given the estimated SWT
point pairs, we use the voting strategy to determine the final
geometrical guidance between candidates. The voting strategy,
which counts the number of SWT point pairs contributing
to the candidates, integrates the point-level relationships to
candidate-level and thus may avoid the distraction induced by
the minority. Thirdly, as described in Algorithm 1, the geo-
metrical guidance directly attends the update of the desired X,
instead of being a filter after X is obtained. This incorporation
makes the algorithm sufficiently and simultaneously consider
similarity relationships and geometrical guidance, thus brings
the improvements.

D. Failure Case Analysis

Although the proposed text co-detection handles texts that
are difficult to be localized due to large variations of per-
spective, illumination, occlusion and etc., but there are some
special situations that cannot be tackled. As shown in Fig. 8,
green link in the top row shows the correct correspondence
between two candidates and red link in the bottom row is the
wrong correspondence. The reason of this wrong correspon-
dence is that the candidate links to the reflection region of
its corresponding candidate. The reflection region has higher
visual feature similarity than the original candidate, with the
candidate in the right.

V. CONCLUSION

In this paper, we have focused on a new task, text
co-detection, which aimed to detect the corresponding texts
and identify their correspondences from the multi-view scene
with large perspective and environmental condition variations.
To deal with this task, we have proposed a novel text
co-detection framework, which integrated the visual feature
similarities and geometrical guidance. The cycle consistency
constraint has also been incorporated to ensure the relation-
ships of texts among multiple images. Moreover, a text co-
detection dataset has been collected for evaluation.
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