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Multiple Semantic Matching on Augmented
N -Partite Graph for Object Co-Segmentation
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Abstract— Recent methods for object co-segmentation focus
on discovering single co-occurring relation of candidate regions
representing the foreground of multiple images. However, region
extraction based only on low and middle level information often
occupies a large area of background without the help of semantic
context. In addition, seeking single matching solution very likely
leads to discover local parts of common objects. To cope with
these deficiencies, we present a new object co-segmentation
framework, which takes advantages of semantic information and
globally explores multiple co-occurring matching cliques based
on an N-partite graph structure. To this end, we first pro-
pose to incorporate candidate generation with semantic context.
Based on the regions extracted from semantic segmentation of
each image, we design a merging mechanism to hierarchically
generate candidates with high semantic responses. Second, all
candidates are taken into consideration to globally formulate
multiple maximum weighted matching cliques, which comple-
ment the discovery of part of the common objects induced by a
single clique. To facilitate the discovery of multiple matching
cliques, an N-partite graph, which inherently excludes intra-
links between candidates from the same image, is constructed to
separate multiple cliques without additional constraints. Further,
we augment the graph with an additional virtual node in each
part to handle irrelevant matches when the similarity between the
two candidates is too small. Finally, with the explored multiple
cliques, we statistically compute pixel-wise co-occurrence map for
each image. Experimental results on two benchmark data sets,
i.e., iCoseg and MSRC data sets achieve desirable performance
and demonstrate the effectiveness of our proposed framework.

Index Terms— Object co-segmentation, semantic candidate,
multiple matches, N-partite graph.

I. INTRODUCTION

OBJECT co-segmentation [1]–[3] aims to segment com-
mon objects with the same category and appearance
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Fig. 1. The differences between our proposed multiple cliques matching
on augmented N -partite graph (d) and the existing graph-based method (a).
On one hand, transforming single clique matching to multiple (from (a) to (b))
can alleviate the problem of discovery of the part of common objects.
On the other hand, employing the N -partite graph can effectively satisfy
the requirement, that candidates in each clique come from different images,
without adding exclusive constraints (from (a) to (c)). Furthermore, with
introduction of a virtual node to each image (d) the multiple matches can
be globally explored with the exclusion of irrelevant matches.

among a set of images. Compared with object segmentation
from a single image, object co-segmentation can utilize both
local context information from a certain image and global
common information among multiple images. It is beneficial
to a variety of applications in computer vision, e.g., image
classification [4] and object/instance detection [5], [6].

Most of existing methods [7]–[9] cast the co-segmentation
to a graph-based candidate matching problem. They model
the connectivity of candidates based on a complete graph (as
in Fig. 1 (a)) with pairwise feature similarities such as color
histograms [7] and gradient histograms [10]. To measure the
commonality among candidates from different images, they
seek to find an optimal matching solution [9], [11] with the
maximal summation of similarities of the selected candidates.
Segmentation methods [3], [12] are employed to obtain final
binary segmentations. In the pipeline, both candidate genera-
tion and matching have great importance on common object
discovery.

Firstly, due to diverse deformation of foreground and high
complexity of background, the extracted candidates may cover
background. Context-based candidate generation methods [13]
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may not be able to discriminate the background and would
mislead the explored common objects. Moreover, the low level
representation of candidate parts is sensitive to the deformation
of objects.

Secondly, when the similarity between object parts is larger
than that between the entire objects, single matching clique
that merely selects one candidate from each image may result
in the incomplete coverage of objects. Thus the matching
clique may run away from common objects when there
exists large variances of pose or viewpoint among objects.
Although increasing the number of selected candidates from
one image [9] would help as shown in Fig. 1 (b), it still has
risk of introducing irrelevant information.

To address the aforementioned problems in candidate gener-
ation and matching, we propose a multiple semantic candidate
matching framework for object co-segmentation. We propose
to extract candidates based on semantic segmentation from
Fully Convolutional Network (FCN). Since semantic informa-
tion not only has capability to seek out object-like pixels, but
also it excludes backgrounds like sky and grass in images.
Besides, to handle the deficiency induced by lacking global
view in FCN, we accumulatively produce new candidates via
hierarchically selecting and merging two initial candidates,
which are spatially close and semantically similar. The new
candidate with high semantic response is selected to represent
foreground. Subsequently, to deal with the incomplete discov-
ery of common objects induced by single maximum weighted
matching clique, we design a novel co-occurrence exploration
algorithm to globally discover multiple co-occurrences, e.g.,
discovering the red and blue links in Fig. 1 (d) together.
Specifically, we explore multiple maximum weighted match-
ing cliques to represent co-occurrences of the common objects
with consideration of all candidates. To separate the multi-
ple cliques from each other without additional constraints,
we adopt an N-partite graph whose nodes in the same part
are not connected (Fig. 1 (d)). Further, to cope with irrelevant
matches caused by occlusion or variation, we augment the
N-partite graph by adding a virtual node to each part. The
connection between a candidate node and a virtual node
indicates that there does not exist similar candidates in the
image.

The main contributions of this paper are summarized as
follows. 1) We integrate semantic information and object-level
information into candidate generation, and obtain candidates
with semantic contents and global view of the objects. 2) We
explore multiple maximum weighted matching cliques for
object co-segmentation to fully explore co-occurrence of the
common objects and eliminate incomplete discovery of the
objects induced by single clique. 3) We introduce a new graph
structure, i.e., N-partite graph, for co-segmentation to meet the
exclusivity among candidates selected from the same image.
Thus we can release the constraints on controlling number of
selections from the same image. 4) We augment the N-partite
graph by adding a virtual node to each part to make the
algorithm robust to the nonexistence of similar candidates in
some images.

The rest is organized as follows. We illustrate the frame-
work in Section III-A. Section III-B describes the generation

of semantic candidates. In Section III-C, we present
the exploration of multiple matching cliques with aug-
mented N-partite complete graph. We show the effective-
ness of our co-segmentation approach on four widely used
co-segmentation datasets in Section IV and conclude the work
in Section V.

II. RELATED WORK

Object co-segmentation [1], focuses on discovering and
segmenting the common objects with similar appearance.
Joulin et al. [14] propose a weakly-supervised framework
based on discriminative clustering for co-segmentation with
the assumption that foreground must be an object. Then
co-segmentation between two images is extended to multiple
images which contain foreground with large variances and
cluttered background [2], [8], [15]–[18]. Without surprise,
co-segmentation among multiple images is full of complexity
and difficulty, and the greatest challenge in co-segmentation
is how to effectively estimate global relationships of the
co-occurring objects with diverse appearances and deforma-
tion. The attention of recent works on co-segmentation among
multiple images can be roughly classified into two aspects,
i.e., foreground candidate refinement [9], [15], [19] and co-
occurrence formulation [8], [16], [20], [21].

Refining foreground candidates focuses on improving the
discriminative ability of separating foreground from back-
ground. The direct inspiration is to enforce the confidence
of foreground by incorporating additional information like
saliency and so on. Rubinstein et al. [15] introduce saliency
information for each image and treat the salient regions as
candidate foregrounds. Meng et al. [19] propose to integrate
multi-modal information, i.e., superpixel segmentations [22],
object detection results [23], [24] and saliency maps [25],
together to improve the accuracy of located candidates. Except
saliency information, Fu et al. [9] employ depth informa-
tion [26] into the identification of the candidates. However, due
to the variation of scales, illumination and depth of objects,
the estimated saliency and depth information can be easily
misled and heavily affect the performance of co-segmentation.
In addition to enforcing the confidence of candidates, there
also exist many works focusing on reducing the probabil-
ity of being candidates. Compared with the difficulty and
uncertainty of estimating foreground, estimating information
of background is easier to achieve. Zhang et al. [27] propose
to explore negative prior knowledge from the most similar
images of different categories. Quan et al. [28] propose to
explore context priors of background. Both schemes [27],
[28] rely on superpixels, which lack global semantic view
of objects and would fail when the common object in one
image occupies closely to the edge of the image. We propose
to employ semantic information on candidate generation. The
semantic information can exclude background from candidates
by removing background labels like grass and bench. Besides,
it can also integrate pixels with similar appearance and form
candidates with the same object category.

The other aspect of co-segmentation aims to explore better
formulation of co-occurring relationships. Rubio et al. [16]
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Fig. 2. Overview of our method. Given a set of images with their segmentation results from FCN, firstly we propose to extract candidates which may
hold more object-level information (as shown in 4th column in part (a)). We hierarchically merge two regions, which are spatially close in the image and
semantically similar, and preserve new candidates with high “objectness” response. Secondly, based on the generated candidates, we build an N -partite graph
each part and node of which represent one image and one candidate, respectively. We additionally introduce virtual nodes in the graph to prevent irrelevant
selections, shown as gray block in (b). Then we explore multiple maximum weighted matching cliques to represent co-occurrence relations among candidates.
Thirdly, with the discovered cliques we compute pixel-level co-occurring maps via counting the existence of pixels. Then the final segmentation results are
obtained with Grab-cut method.

model the appearance distribution both for foreground and
background of each image, and provide combination of
appearance distributions for each image. However, due to
huge dependence on candidate initialization [29], the co-
segmentation results may be easily misguided to a local
minimum, especially when large variations exist among the
common objects. Faktor and Irani [8] define a new concept
of “good” co-segmentation that common objects should be
composed easily by candidates from inter-images but diffi-
cultly by the rest ones from the same image. By calculat-
ing the matching scores from collected pool of segments,
which consists of hierarchical segmentation results for all
images [13], each candidate can be evaluated by similar
ones from other images in the set. Zhou et al. [30] propose
a coarse-to-fine clustering method based on a combination
of global feature and local feature to cluster near-duplicate
images. Chen et al. [31] handle matching under the problems
of textureless regions, overlap and partial loss via novel range
computation and confidence estimation method. But when it
comes to images with distracting background, which contain
instances re-occurred in other images, the method degen-
erates. Faktor and Irani [8] and Rubio et al. [16] build the
co-segmentation based on results from non-semantic priors.
The co-segmentation results can be influenced if the priors
provide misleading information like similar patterns from
background. By incorporating semantic regions, we provide
high-level estimation of foreground and background. We also
propose a multiple matching mechanism to explore multiple
co-occurring object-object, part-object and part-part, which
take all candidates into consideration and provide abundant
estimations of co-occurring relation.

III. PROPOSED FRAMEWORK

A. Overview and Notations

To jointly label foreground pixels in a set of images
containing similar objects, we propose a co-segmentation
framework by exploring multiple semantic candidate matching
cliques. This framework consists of three main components,
i.e., semantic candidate generation, candidate matching with
global consistency and segmentation according to the matching
results. The flowchart is shown in Fig. 2.

Given images I = {I1, I2, . . . , IN }, our goal is to
segment the common objects, e.g., bears existed in the images
in Fig. 2 (a), without prior knowledges like object cate-
gory or the number of common objects. Firstly, we obtain
semantic segmentation map Li (2nd column of Fig. 2 (a))
from FCN for each image Ii . According to the semantic map,
we extract bounding boxes of non-adjacent semantic regions
and build initial candidate collection Qi = {qi

1, qi
2, . . . , qi

|Qi |}
(3rd column of Fig. 2 (a)). Secondly, to aggregate object-level
information held by candidates, we hierarchically merge two
candidates, which are spatially close and semantically similar,
to formulate a new candidate with larger area and richer object
information. The new candidate is added into the collection
Qi if it has higher semantic response compared with those
corresponding to the two child nodes. The process is described
in detail in Section III-B.

With the candidate collections, Q = {Q1, Q2, . . . , QN }, for
all images, we explore the co-occurrence among candidates
via discovering multiple matching cliques, each of which
is a fully connected subgraph with N nodes, in N-partite
complete graph. We illustrate this process in Fig. 2 (b). Firstly,
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TABLE I

NOTATIONS

we construct the N-partite graph, each part of which represents
a candidate collection Qi of image Ii . Nodes in each part
represent candidates qi

1, qi
2, . . . , qi

|Qi | in the collection. Here,
we assign an additional virtual node to each part to handle
irrelevant match within a clique, which is caused by absence
of common components.

Secondly, we formulate the proposed multiple maximum
cliques discovery problem as a global binary assignment
problem of candidates. Each candidate must be selected once
and only once among multiple cliques. We form the clique
collection C, i.e., C = {C1, C2, . . . , CK }. Each clique Ck

contains N components (nodes) {c1
k , c2

k , . . . , cN
k } that come

from N different images (parts). In a clique, if one part
does not contain candidates with consistent appearance to
others, the corresponding component will be replaced by the
virtual node of that part. The details of constructing N-partite
graph and solving multiple maximum cliques are described in
Section III-C.1 and Section III-C.2, respectively.

Finally, with the assistance of explored multiple maximum
cliques, we obtain the final segmentation results as shown
in Fig. 2 (c). We calculate a pixel-wise weight map of
co-occurrence for each image, which is presented in the first
column of Fig. 2 (c). We weight each candidate with global
co-occurrence, i.e., the number of candidates existed in one
clique, and spatial co-occurrence, i.e., co-occurring frequency
of neighboring candidates. Then we count the frequency of
each pixel by all candidates containing it and obtain the
co-occurring score by averaging the frequency. The final
binary segmentation of each image Ii is obtained by employing
Grab-cut segmentation method. This process is provided in
Section III-D.

We summarize all notations in Table I which also includes
others appeared in the following sections.

B. Object Candidate Generation

In this section, we introduce our semantic candidate genera-
tion process. Semantic information has been employed in var-
ious applications. For example, Li et al. [32] employ seman-
tically independent patches as affine transformation priors for

Fig. 3. Illustration of semantic candidate generation. Given an image (a) with
its FCN segmentation (b), we extract segmented regions as initial candidates
as shown in (c). The color of a rectangle in (c) corresponds to that of a
candidate in (b). We construct a binary merging tree to hierarchically generate
new candidates based on spatial distances in the image and feature similarity
of two candidates, as shown in (d). Neighboring candidates with the most
similar feature distributions are primarily selected. Then generated candidates
with higher semantic response are added into candidate collection.

key point extraction and obtain superior key point matching
performance. The proposed semantic candidate generation
process consists of two components, i.e. semantic candidate
extraction and object-level candidate generation. Compared
with traditional candidate generation algorithms, we propose
to generate object candidates based on semantic segmenta-
tions from FCN. We fine-tune the model with refined subset
of VOC Context dataset, which contains 29 categories and
3480 images, with exclusion of background labels like grass
and bench. We find that the FCN outputs for co-segmentation
datasets can mostly get the contrasts from objects from
unknown categories. Therefore, we neglect the category dif-
ferences between datasets of FCN and co-segmentation. The
fine-tuned FCN model is employed on all datasets.

However, directly using the output of FCN induces two
problems. One is the misguided segmentations on object parts.
Since FCN is a pixel-level classification model and has no
consideration on global view of objects, pixels with similar
appearance will be assigned with the same object category irre-
spective to their relative relation in the context. For example,
when pixels of a dog’s tail have similar appearance with a cat,
these pixels can be incorrectly assigned as cat category [33].
Another problem is that FCN may segment unseen objects
into several objects. It would recognize unseen objects as
composition of multiple known categories and splits them into
several individual semantic regions. To handle this problem,
we propose to hierarchically merge semantic regions to form
object candidates containing more object regions.

For each image Ii , according to its segmentation map Li

from FCN shown in Fig. 3 (b), we first cluster neighboring
pixels with the same category label as individual regions.
We remove regions with small size. We construct the initial
candidate set Qi = {qi

m} by extracting the bounding boxes qi
m

for each region, as shown in Fig. 3 (c).
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To improve the representative ability of the collection Qi ,
we propose to hierarchically generate candidates with aggre-
gating object-level information. We seek to improve the prob-
ability that regions from the same object may be presented in
the same candidate. By considering that close regions with
high semantic similarity should belong to the same object
with high probability, we focus on merging regions with close
spatial distances and similar semantic features. For example,
the whole bear is contained by the uppermost candidate,
and separated in the candidates below the uppermost one,
as demonstrated in Fig. 3 (e).

Based on the initial candidate set, we build a binary merging
tree for each image to hierarchically merge two candidates
with neighboring spatial distance and highest semantic feature
similarity, as shown in Fig. 3 (d). We employ the “objectness”
score to estimate object-level information contained by can-
didates. “Objectness” score of a candidate is assigned with
the maximal response from its semantic feature. The semantic
feature vector si

m of candidate qi
m is extracted via Region-based

Convolutional Neural Network (R-CNN) [34]. We employ the
ILSVRC13 model in R-CNN. For each candidate, we obtain
a semantic feature vector with 200 dimensions, which is the
number of categories in ILSVRC13 dataset.

Specifically, given the collection Qi = {qi
m} with their

semantic features, the merging mechanism is designed based
on pair-wise connectivity and semantic similarity. In the
merging tree, all candidates {qm

j } are treated as leaf nodes.
We sequentially merge two neighboring candidates with clos-
est semantic similarity into a new candidate. The generated
new candidate is added into the collection Qi if its “object-
ness” score is not smaller than those of its child nodes. Here
we ignore the category label corresponding to the maximal
response from semantic feature vector because of the existence
of unseen objects. The new turn of merging is executed until
there exists no neighboring candidates. We summarize the
object candidate generation in Algorithm 1.

C. Co-Occurring Candidate Discovery

Based on the candidate collections of multiple images,
we dedicate to explore co-occurring objects among these
images. Previous works [9], [11] focus on exploring a sin-
gle optimal matching clique from the graph to represent
co-occurring foreground. However, since candidates covering
part of the objects may perform higher similarity than that
between two covered object and part or object and object,
the single optimal solution may select incomplete discovery
candidates of the common objects.

To specifically describe matches of incomplete objects,
we present a similarity matrix of candidates from four different
images in Fig. 4. We find that two candidates with highest
similarity only cover part of the objects, as shown in Fig. 4 (b).
The coverage with part of the objects induces incomplete dis-
covery and hence influences the final co-segmentation results.
Thus, to address the aforementioned drawbacks, we propose
to explore multiple matching cliques to represent the co-
occurring relationships of common objects.

To explore multiple matching cliques from candidates,
we construct an N-partite complete graph each part of which

Algorithm 1 Object Candidate Augmentation

Fig. 4. Similarity matrix of selected candidates from 4 images is shown in (a).
Candidates surrounded with different bounding boxes come from different
images. In (b) and (c) we show the selected similarity scores from (a) and find
that discovery of co-occurring candidates may focus on candidates covering
part of the objects.

indicates one image. Each part consists of candidates of the
corresponding image as shown in Fig. 5. Weights of edges
between parts are defined as feature similarity of pairs of
candidates from different parts, i.e., inter-link. We delete the
edges between candidates from one image, i.e., intra-link. The
exclusion of intra-links in the N-partite graph can inherently
separate candidates into different cliques without additional
constraints. Based on the constructed graph we devote to
globally discovering multiple maximum weighted matching
cliques, each of which represents co-occurring relationship
among multiple images. We seek a global optimal solution
on candidate selection to satisfy the maximum of energy
function. Besides, considering that there may not have similar
candidates in some images, we add a virtual node (the gray
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Fig. 5. The schematic diagram of our multiple matching cliques. We draw
four matching cliques to demonstrate the effectiveness of our method. The
gray blocks with dotted line represent virtual nodes. Each clique is a complete
subgraph of the N -partite graph and for clarity we omit the edges between
candidates from nonadjacent parts.

block as shown in Fig. 5) for each part in the graph. When
similarity between two candidates is too small, we prefer to
link a candidate belonging to one image to the virtual node
belonging to the other one. Therefore, we can obtain multiple
cliques, as indicated by different colors in Fig. 5. For clarity
for each clique, we do not draw links between regions from
disjoint parts in Fig. 5. The details on exploring multiple
cliques are described in follows.

1) N-Partite Graph Construction: Based on the candi-
date collections Q = {Q1, Q2, . . . , QN } where Qi =
{qi

1, qi
2, . . . , qi

|Qi |} is the candidates of image Ii , we construct

an N-partite graph G(V, E, S, W). V = ⋃N
i=1 Vi is the set

of nodes in the graph G. Vi = {v i
1, v

i
2, . . . , v

i
|Qi |, v

i
v } is the i th

part of graph G corresponding to the collection Qi of image
Ii . v i

v is the virtual node assigned to the i th part. Node v i
m

represents the candidate qi
m and the “objectness” score si

m is
assigned as the weight of node v i

m , i.e., S = {si
m}. E = {eim

jn } is
the set of edges in the graph where eim

jn is the edge connecting

node v i
m and v

j
n . In the N-partite complete graph, each node

is connected with others from different parts. W = {wim
jn },

where wim
jn is the weight of edge eim

jn and assigned as feature

similarity between nodes v i
m and v

j
n .

2) Multiple Clique Matching Using Mixed-Binary Integer
Program: Given the constructed N-partite graph, we seek
to explore multiple co-occurring relationships among images,
i.e., finding co-occurring candidates via exploring multiple
matching cliques C = {C1, C2, . . . , CK }, where K is the
number of cliques. The cliques must take into account all
candidates extracted before. We set K as 50 to be able to
encompass the maximal number of candidates contained by
one image. We only consider the clique that at least has one
candidate to be a valid estimation of co-occurring relationship.
Otherwise it will be ignored.

To obtain multiple cliques each of which contains N compo-
nents from N different images, the energy function of selecting
candidates and edges can be formulated as:

E(v, e) =
∑

i,m

si
mv i

m +
∑

i, j,m,n

wim
jn eim

jn

︸ ︷︷ ︸
candidate nodes

+
∑

i

si
v v

i
v +

∑

i, j,m

wveim
jd

︸ ︷︷ ︸
v irtual nodes

. (1)

The first two terms describe the unary and binary energies
on the selection of candidates and edges between candidates,
respectively. The last two describe selection of the virtual
nodes. i and j are the indices of images and range from 1 to
N . m and n are the indices of candidates that come from
image Ii and I j , respectively. v i

m ∈ {0, 1} and v i
v ∈ {0, 1} are

binary variables to indicate whether the corresponding node
is selected or not. si

m and si
v are the corresponding weights of

the nodes v i
m and v i

v . eim
jn ∈ {0, 1} and eim

jd ∈ {0, 1} indicate
the selection of edges and wim

jn and wv are the corresponding
weights.

In the formulation we ignore the unary term acted in energy
function. Unary term is always assigned with “Objectness”
confidence score of the candidate. The score in our frame-
work is defined as maximal response of semantic feature
that presents probability of belonging to an object category.
However, compared with confidence scores employed in pre-
vious works, which reflect probability of being an object
corresponding to others, scores of candidates have no relation
with each other in our paper. For example, a candidate
belonging to cat category with 0.5 probability only indicates
that it has higher probability of being a cat than being a dog.
We cannot conclude that a candidate with 0.5 score of being
a cat has higher probability than one with 0.3 of being a dog.
Since the magnitude of confidence score only reflects promi-
nence among categories, but not among candidates. Therefore,
we ignore the costs generated by nodes, i.e., si

m and si
v are 0,

in our formulation.
In the above-mentioned binary based formulation, the num-

ber of virtual nodes has to be set as a large value since the
components selected from one part have exclusive property,
i.e., components are different from each other. The upper
bound of the number of virtual nodes added into each part
is computed as follow. The number of virtual nodes added
into each part is equal to the summation of candidates from the
other parts, i.e., Ni

v = ∑
j �=i |Q j |}. Ni

v is the number of virtual
nodes added into part i and |Q j | is the number of candidates in
part j . Increment of the number of nodes in each part would
lead to aggravation on the computational complexity when
solving optimal solution based on the graph.

To reduce the increasing computation complexity brought
by adding virtual nodes, we relax the binary enforcement on
variables and force instead the integer solution to the selection
of virtual nodes. We replace the binary indication with integer
indication on selection of virtual nodes to allow any times of
selections, i.e., replace v i

v ∈ {0, 1} to v i
v ∈ {0, 1, . . . , int}.

The value of int reflects the number of connections linked
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to the virtual node of part i . Thus we only need to add one
virtual node to each part without aggravating much complexity.
Selections between nodes from other parts and current virtual
node is defined as the number of selections of this virtual
node, i.e.,

∑
i, j eim

jn = v i
v for any j ∈ {1, . . . , N}, j �= i and

n ∈ {1, . . . , |Q j |}.
To explore multiple maximum weighted matching cliques,

we introduce three constraints to control the selection of
components and edges in each clique.

Constraint 1 enforces that the number of selections in part
i must be equal to the product of number of cliques (K ) and
that of the rest parts (N − 1).

N∑

j=1,i �=i

|Q j |∑

n=1

|Qi |∑

m=1

eim
jn + v i

v = (N − 1)K , i ∈ {1, . . . , N}, (2)

where N is the number of parts and n is the index of
candidate in part j . |Q j | and |Qi | are the number of candidates
corresponding to part j and i , respectively.

Previously we demonstrate that all candidates of each part
must be included in the set of matching cliques. And the
number of selected nodes for each part must be equal to K .
Besides, we enforce that once a candidate is selected, N −1 of
its edges must also be selected. Further, due to the existence of
virtual nodes, the selections for each part not only include links
between candidates, but also include that between a candidate
and a virtual node. Thus the number of selections for each
part is presented as sum of the number of candidates links
and virtual node as shown in Eq. 2.

Constraint 2 enforces that the number of selected edges
between one candidate and candidates from any other part is
no more than one.

|Q j |∑

n=1

eim
jn � 1,∀i, j ∈ {1, . . . , N}, i �= j, m ∈ {1, . . . , |Qi |}.

(3)

Once a candidate is selected, enforcing the number of selected
edges between this candidate and candidates of another part
can be employed to define the number of selected candidates
from the corresponding part. Thus this constraint can effi-
ciently control the number of candidates selected from this
part. Besides, since we constrain that each candidate must be
presented once and only once in the set of matching cliques,
it is obviously that one candidate belongs to one clique. Thus,
by limiting the number of selected edges to be no more than
one, we can prevent one candidate from existing in more than
one clique.

Constraint 3 requires that edges in each clique must be
formulated as a cycle.

eim
jn + e jn

kt � 1 + eim
kt ,∀i, j, k ∈ {1, . . . , N}, i �= j �= k. (4)

The global consistency restricts the correspondences among
all selected candidates in each clique. We constrain that the
selection of edges for each clique must formulate a cycle.
That is, if there exist connections both linking nodes v i

m and
v

j
n (eim

jn = 1) and nodes v
j
n and v t

k (e jn
kt = 1), there must

exist a connection between nodes v i
m and v t

k , i.e. eim
kt = 1.

If there does not exist connection between nodes v i
m and v t

k ,
i.e. eim

kt = 0, either the connection between nodes v i
m and

v
j
n or that between nodes v

j
n and vk

t is disconnected, i.e. either
eim

jn = 0 or e jn
kt = 0.

By incorporating the above-mentioned constraints, we refor-
mulate the energy of function E(v, e) and seek optimal
configuration on e. We concatenate all binary and integer
variables for edges and virtual nodes into a vector x. Consid-
ering the dimension consistency in matrix operation, we add
intra-edges for each candidate in x and restrict the value of
variables on intra-edges (ei j

i j ′ ) to be 0. Thus the variable x

is defined as x = [e11
11, e11

12, . . . , e11
N |QN |, v

1
v , . . . , eN |QN |

N |QN |, v
N
v ] ∈

R
(|V |2+N)×1. |V | = ∑N

i=1 |Qi | is the total number of candi-
dates in graph G. The weights for edges and virtual nodes are
concatenated as the same and constitute the vector c. The final
objective function is represented as:

arg max
x

cT x

s. t. Ax − b = 0,

Cx ≤ d. (5)

A and b are components of the unified equality constraint
by integrating constraints in Eq. 2. C and d are components
of the inequality constraint rewritten from Eqs. 3 and 4. The
objective function is solved by using Mixed-Binary Integer
Program (MBIP).

D. Co-Occurring Measurement Construction

Based on the discovery of multiple matching cliques, we can
obtain the rough estimation of co-occurring relationships
among candidates. Although candidates in the explored mul-
tiple matching cliques can not perform “good” segmentations,
they can still provide a rough estimation about the location of
co-occurring objects. We propose to estimate the probability of
co-occurrence for candidates via weighting the co-occurrence
of cliques. We simply consider the co-occurring weight of
each clique as the number of candidates existed in this clique
in Eq. 6. We also ignore the cliques which contain less than
two candidates.

S(cc) =
N∑

i

�(ci
c). (6)

� (ci
c) is a indication function and equals to 1 when ci

c
indicates a candidate. Then we initialize the co-occurring score
for each candidate as weight of the corresponding clique,
i.e., S(qi ) = S(cc) and qi belongs to cc.

For each candidate we additionally integrate the estimated
global scores with spatial scores to formulate a regularized
weight. The score of a candidate qi is computed as:

S(qi ) = 1

|Aff(qi )| + 1

(
S(qi ) +

∑
S(qi ′ )

)
. (7)

qi ′ is the i ′th candidate in the affinity set of qi . The affinity set
Aff(qi ) consists of candidates with compositional relationships
in the corresponding merging tree, i.e., the parent or child
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Fig. 6. Co-occurring score maps for images from the same category. The
brighter color indicates higher probability of co-occurrence.

candidates in the merging tree. |Aff(qi )| is the number of
candidates in this set.

To obtain pixel-wise co-occurrence map, for each pixel I i
p ,

we take into account the score of all candidates that include
this pixel. We estimate the co-occurring score for pixel Si

p by
averaging the scores of all relevant candidates.

Si
p =

T∑

t=1

S(qt ), (8)

where t is the index of a candidate that contains pixel I i
p

and T is the number of candidates. Then for each image we
threshold the co-occurring scores via the median value of that
image and obtain final co-occurrence map, as shown in Fig. 6.

The co-occurrence map can roughly locate the co-occurring
objects in images. To get accurate binary segmentation for
each image, we additionally employ Grab-cut segmentation
method and visualize the final segmentation in the second
column of Fig. 2 (c).

IV. EXPERIMENTS

To evaluate the performance, we employ the proposed
method on four public datasets, i.e., iCoseg [17], MSRC [37],
PASCAL-VOC [8] and CosegRep [38]. The iCoseg dataset
contains 38 categories, each of which includes images with the
same or similar object instances, and totally has 643 images.
The shared objects in each class always have similar color
properties, but precisely segmenting this dataset is still very
challenge due to variation of viewpoint, diversity of back-
ground, lighting, shadow, and object deformations and poses
within each class. The MSRC dataset is introduced by [37].
It contains 14 classes and totally 420 images. Most images
in this dataset have cluttered background that may distract
the attention on foreground objects. The objects in each
category also have large differences on color and deforma-
tion. PASCAL-VOC dataset consists of 20 classes from the
PASCAL-VOC 2010 dataset and totally has 1,037 images.
This dataset is more challenging due to the existence of
distractive co-occurring objects and background, such as

classes of person and potted plant. CosegRep dataset contains
23 classes and 572 images. 22 of 23 classes have different
animals and flowers. The rest of the class, named ’Repetitive’,
has repeated similar shape patterns within each image, such
as tree leaves.

We employ two common used measurements, Precision (P)
and Jaccard index (J) to evaluate the performance of methods.
Precision measures the number of accurately labeled pixels
and is calculated as ratio of correctly labeled pixels and
total number of image pixels. Jaccard index is obtained by
computing the percentage between intersection and union
of the segmentation result and groundtruth. Compared with
Precision, Jaccard index is more reliable to show the precision
of segmentation and provides more suitable evaluation.

To perfectly present the improvement of our proposed
framework, we construct a simple baseline upon segmentation
results from the employed FCN model. Firstly, the straight-
forward outputs are sent as the original input to the baseline.
Subsequently, we explore a common object category which
is contained by the most images. There is no requirement
that this common object category is contained by all images.
Finally, regions labeled by the common object category are
regarded as common foreground for co-segmentation. A image
that has no pixels assigned with this label will be entirely
treated as wrong segmented one. The quantitative performance
of different datasets of the baseline is shown in the penultimate
row in Table III, IV, VI and VII, respectively.

A. Comparison on the Generated Candidates
We estimate the capability of our extracted candidates

in three folds, i.e., Detection Rate (DR), Intersection over
Union (IoU) of foreground covered by candidates (Fore-
ground Ratio (FR)), and IoU of background covered by
candidates (Background Ratio (BR)), on three public datasets,
iCoseg, MSRC and PASCAL-VOC. We compare with four
widely used candidate generation methods, i.e., “Bing” [29],
“Proposals” [13], “EdgeBoxes” [35] and “SSD” [36]. For
“Bing” and “EdgeBoxes”, we use suggested parameter settings
and select top 100 candidates with descending confidences. For
“Proposals”, we follow the suggested parameter setting. For
“SSD”, we employ the released 300 × 300 model trained on
PASCAL VOC 2007 and 2012 dataset and preserve the given
parameters. We state the superiority of generated candidates
in two folds, i.e., image-level and box-level. For image-
level, we perform IoU of foreground and background over
all extracted candidates in Table II. For box-level, we plot DR
curve with increasing number of candidates in Fig. 7.

It can be seen in Table II that candidates extracted
by our method can almost obtain higher performance on
foreground ratio and tremendous decrement on background
ratio. We prominently outperform “Bing”, “EdgeBoxes” and
“Proposals” with less number of candidates. For example,
in Table II we achieve 61.3%, 54.5% and 65.8% improvements
of foreground ratio on iCoseg dataset, respectively.

We also perform the performance with the increased number
of candidates in Fig. 7. We estimate detection rate of fore-
ground with increasing number of candidates. Detection rate
given #WIN candidates (DR-#WIN) is computed as ratio of
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TABLE II

ANALYSIS ON REPRESENTATIVE ABILITY OF THE GENERATED CANDIDATES. WE EVALUATE OUR PROPOSED CANDIDATE GENERATION METHOD ON
THREE CRITERIA, i.e., NUMBER OF EXTRACTED CANDIDATE, RATIO OF FOREGROUND OCCUPIED ON CANDIDATES AND THAT OF BACKGROUND

OCCUPIED ON CANDIDATES. WE COMPARE OUR METHOD WITH FOUR WILDLY USED CANDIDATE GENERATION METHODS AND STATE

THAT OUR METHOD HAS OUTSTANDING PERFORMANCE

Fig. 7. Tradeoff between number of candidates (#WIN) and Detection Rate (DR) on three datasets. The first row shows performance of DR-#WIN under
0.3 IoU and the second row is DR-#WIN under 0.5 IoU. Three columns correspond to iCoseg, MSRC and PASAL-VOC dataset, respectively.

detected foreground under #WIN candidates with a given IoU
threshold. We measure performance of candidates under two
IoU thresholds, 0.3 and 0.5. Different from object detection
which has bounding box groundtruth for each object, we only
have pixel-level groundtruth indicating whether a pixel belongs
to foreground. The area of pixel-level groundtruth is larger
than bounding box groundtruth when multiple instances exist
in the image. Thus we select two lower IoU thresholds,
0.3 and 0.5. For clear observation, we show the performance
of the top 10 candidates. To obtain DR for methods with
less than 10 candidates, we conduct the same operation as
mentioned in “Bing” by assigning with the previous result.
Columns in Fig. 7 indicate performance on different datasets
and rows are different measurement criteria. The first row
shows DR-#WIN results with setting IoU threshold as 0.3.
The second column is DR-#WIN under 0.5. We obtain superior
performance, i.e., higher DR-#WIN, on iCoseg and MSRC
datasets. The generated candidates can be more exact to catch
foreground and eliminate background.

Our method performs better on iCoseg and MSRC com-
pared with “SSD”, as shown in Fig. 7, but gets inferior results
on PASCAL-VOC dataset. We ascribe these inferior results

to the large gap of training data. “SSD” uses PASCAL VOC
2007 and 2012 datasets and forms a training set with 16, 551
images. While our FCN uses part of PASCAL context dataset
which only contains 3, 480 images. Such a large distance
of training data will lead to inferior performance. Besides,
“SSD” has inferior generalization ability to unseen object
categories. “SSD” gets poor performance on some categories
which are absent in training dataset, such as “Stonehenge”
and “Pyramid” categories in iCoseg dataset. This limitation is
inherent. Because “SSD” aims to conduct object detection task
and treats problem of object detection as object classification.
Thus it will have good performance on seen object categories
and get inferior results on unseen objects.

B. Effect of Matching Based on N-partite Graph With
Augmented Virtual Nodes

In this section we illustrate the performance of matched
results based on N-partite Graph. The multiple matched
cliques aim to enforce inclusion of all candidates and exclusion
of irrelevant candidates dissimilar to the rest in each clique.
To clearly perform the ability of multiple matched cliques,
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Fig. 8. Matching results for images selected from two sets. The top group
performs matching results of “Statue of Liberty” to show that they can
separate candidates with different parts into different cliques. The bottom
group presents matching results of adding outliers to Category “AlaskanBear.”
It shows the discriminative ability to exclude outliers containing no
co-occurring objects.

we present some matching results in Fig. 8. As shown in the
top group of Fig. 8, the matched cliques of “Statue” category
effectively discriminate co-occurring candidates depicted dif-
ferent parts of the objects. The matched cliques (2nd to 4th row
in the top group of Fig. 8) illustrate the superiority of explor-
ing multiple co-occurrence without suffering the deficiency
induced by consideration of part of the candidates and irrele-
vant matches. The clique in 2nd row connects all candidates
representing the bottom of “Statue” among all images. The
cliques in 3rd and 4th rows present the ability to prevent
dissimilar matches, i.e., the first and fourth images do not
contain candidates depicting the upper body of “Statue”.

The matched cliques can not only handle dissimilar matches
from candidates but also exclude irrelevant matches from
outlying images. We present the matched results for the
condition that adding outliers to the original image set.
We additionally build a category consisting of the original
images from “Bear2” category and outliers from “Baseball”
category, as shown in the first row of the bottom group
in Fig. 8. We present three matched cliques shown in 2nd

to 4th rows of the bottom group. The first two cliques focus
on discovering co-occurrence of bear-related candidates and
effectively exclude candidates from outliers. And the third
clique considers the co-occurrence of candidates from outliers
and also can prevent inclusion of bear-related candidates. The
separation of candidates from original images and outliers can
distinctly identify the co-occurring response for each image.

C. Qualitative and Quantitative Results

1) Comparison on iCoseg Dataset: In this section, we per-
form the evaluation on the iCoseg dataset. The iCoseg dataset
contains 38 categories with 643 images. To obtain final binary
segmentation results, we employ Joint-Grab-cut [3], which
computes color models to all images together, incorporated
with the computed co-occurring maps.

TABLE III

COMPARISON WITH THE-STATE-OF-THE-ARTS ON ICOSEG DATASET

We compare results on iCoseg dataset with recent proposed
methods for object co-segmentation [8], [14], [15], [21], [28],
[39]–[41], all of which obtain good segmentation quality.
We also show improved performance compared with results of
baseline. Zhiqiang et al. ∗ [41] conducts experiments on part
of iCoseg dataset, which has 31 categories with 530 images.
Numerical results are shown in Table III. Our method obvi-
ously takes improvements on Precision and Jaccard index
criteria. We obtain 10.7% and 20.3% higher performance
on Precision and Jaccard index over results of FCN [42],
respectively. Compared with the second-best method [28],
our method has a slightly increase on Precision and a larger
improvement on Jaccard index. Additionally, we perform
category-level Precision and Jaccard index evaluation for some
classes in iCoseg dataset in Fig. 9(a) and Fig. 9(b), respec-
tively, to clearly illustrate the advantages of our method. Our
method not only performs better Precision and Jaccard index
on categories existed in FCN training data, such as “Baseball”
(person category in FCN, which obtains improvements of 6%
on Precision and 16% on Jaccard index compared with [8])
and “Ferrari” (car category in FCN, which gets improvements
of 4.5% on Precision and 9% on Jaccard index compared
with [8]). We also have higher performance on those which do
not presented in FCN training, for example, “Bear2” (which
has increase of 2% on Precision and 3% on Jaccard index)
and “panda2” (which has increase of 14% on Precision and
23% on Jaccard index). The high performance demonstrates
that the category gap between data in FCN training and
co-segmentation can be weakened by the proposed method.
Although categories like “bear2” and “panda” do not exist in
procedure of training FCN model, their segmentations can be
compensated by some related categories like “dog” and “cat”
since their pixels have similar appearances.

Moreover, we conduct the comparison with other more
recent proposed methods [19], [38], [43], [44]. Data used
by these methods contains 26 of the 38 categories in iCoseg
dataset. Detail information of these data can be seen in [43].
We present comparison of Precision in the second row of
Table V and obtain large improvement over other methods.

Some qualitative results are presented in Fig. 11(a). The
original and groundtruth images are shown in 1st , 2nd row,
respectively. We also show the qualitative results of [15] in
3rd row. The final segmentation results of our method are
presented in 4th row. From the visualization of segmentation,
it can be seen that our method can not only distinguish
the boundaries between foreground and background, like
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Fig. 9. Performance of categories in iCoseg dataset. We present the Precision and Jaccard index results for each category in (a) and (b), respectively. Our
proposed method performs better on most of categories, not only on categories seen in FCN, but also those have not been known like “Panda” and “Bear”.
(a) Precision on Each Category in iCoseg Dataset. (b) Jaccard index on Each Category in iCoseg Dataset.

TABLE IV

COMPARISON WITH THE-STATE-OF-THE-ARTS ON

MSRC DATASET AND ITS SUBSET

TABLE V

COMPARISON ON PART CATEGORIES OF ICOSEG AND MSRC PRESENTED
IN [43]. THE EXPERIMENTAL RESULTS OF [43], [44], [19] AND [38]

ARE REPORTED IN [43]. THE DETAILS OF CATEGORIES USED

HERE CAN BE SEEN IN [43]

“baseball” and “skate3”, but also can precisely preserve the
objects like “panda”.

2) Comparison on MSRC Dataset: We also evaluate our
method on MSRC dataset and compare it with representative
methods [8], [14], [15], [21], [39]. Numerical results are

presented in Table IV. We achieve obvious improvements
over [15] and [14] with 4% and 24% advancement, respec-
tively, and get slightly superiority over [8]. We also examine
the effectiveness on subset of MSRC dataset which contains
7 categories with 145 images in total. We compare the
results with Rubinstein et al. [15] and Faktor and Irani [8].
The detail numerical results can be seen in Table IV.

For clarity we present performance for each category
in Fig. 10. Fig. 10(a) shows the performance on Precision
and Fig. 10(b) shows the performance on Jaccard index.

Additionally, we also conduct comparison on Jaccard index
with other more recent proposed methods [19], [38], [43], [44]
in Table V. The experiment is conducted on 8 of 14 categories
in MSRC dataset as mentioned in [43]. The numerical results
of four comparing methods are obtained from [43]. Salient
improvement, with a maximal increase of 17.5%, can be seen
in Table V.

Some qualitative results for MSRC dataset are presented
in Fig. 11(b). It is shown that our method can correctly
reject the disturbance from cluttered background and preserve
integrated object information after co-segmentation.

3) Comparison on PASCAL Dataset: In this section we
conduct the proposed method on a more challenging coseg-
mentation dataset, PASCAL dataset, which has large varia-
tion on object and cluttered background. PASCAL dataset
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Fig. 10. Performance of categories in MSRC dataset. We present the Preci-
sion and Jaccard index results for each category in (a) and (b), respectively.
Our method performs superior results on most categories. (a) Precision for
Each Category in MSRC Dataset. (b) Jaccard index for Each Category in
MSRC Dataset.

TABLE VI

COMPARISON RESULTS ON PASCAL VOC DATASET. WE SLIGHTLY

IMPROVE THE PERFORMANCE ON PRECISION AND HAVE LARGE

ASCEND ON JACCARD INDEX

is constructed based on PASCAL-VOC 2010 and contains
20 categories and 1, 037 images. Categories in the dataset
cover not only objects which have large intra-category variance
but also those which have little discrimination with back-
ground. We present the comparison results of our method, [8]
and [45] in Table VI. As can be seen in the table, our method
outperforms the other two methods and get large improvement
on Jaccard index. We show the comparisons of qualitative
result with [8] in Fig. 12(a). Our method effectively reduces
the prediction of background, which is suppresses by semantic
information.

4) Comparison on CosegRep Dataset: The CosegRep
dataset proposed in [38] has 23 categories with 572 images
in total. 22 of the 23 categories are different categories

Fig. 11. Qualitative results on the iCoseg and MSRC datasets. We show some
comparison with Rubinstein et al. [15]. Our method effectively reduce the
segmentation of background. (a) Co-segmentation Results of iCoseg Dataset.
(b) Co-segmentation Results of MSRC Dataset.

TABLE VII

COMPARISON RESULTS ON REPETITIVE CATEGORY OF COSEGREP

DATASET. WE OBTAIN IMPROVEMENTS BOTH ON
PRECISION AND JACCARD INDEX

of animals and flowers. Moreover, the remaining category,
called “Repetitive”, is special since each of 116 images
has repetitive instances and similar shape pattern. It also
has large object variations like difference between bird and
sculpture of bird. Moreover, some images have distractive
background such as object shading. Cosegmentation results
are presented in Table VII. We make comparison with three
the-state-of-the-art methods, [38], [46] and [47], and obtain
marked improvement. We also present some qualitative results
in Fig. 12(b). Our method preforms better with more accurate
object boundaries and less prediction of background.

D. Discussion

In this section, we discuss generalization of the proposed
framework, as well as failure cases.

1) Generalization: Our method has good generalization
capacity and achieves good performance on unseen object
categories, as shown in Fig. 13(a). Although unseen objects
cannot be segmented with true category label, most of them
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Fig. 12. Qualitative results of PASCAL VOC and CosegRep datasets.
(a) Qualitative results on “boats” and “aeroplane” categories of PASCAL
VOC dataset, compared with [8]. Our method effectively reduces segmentation
of background. (b) Some qualitative results from “Repetitive” category in
CosegRep dataset, compared with [38]. Our method achieves better perfor-
mance on objects with less background.

are predicted with known categories that have pixels with
the same RGB value. As shown in Fig. 13(a), objects of
unseen categories “giraffe” and “elephant”, are represented
by known labels, such as “horse” and “cow”. The same as
for “grape” and “leaves” categories, whose objects are labeled
with “potted plant” and “tree”. Since semantic regions focus
on local responses corresponding to parts of objects, they are
hierarchically merged together to larger regions, which hold
larger areas and higher semantic responses. Therefore, unseen
objects are extracted as semantic region candidates for the
subsequent steps.

2) Failure Case Analysis: There are some failure cases of
our method on distinguishing objects with the same category
but different appearances like color. For example, separating
women wearing white from women wearing red, i.e., “white-
woman-soccer” and “red-woman-soccer” categories in iCoseg
dataset, is difficult. We ascribe the poor performance to two
main reasons. Firstly, our method cannot extract separated
candidates for woman wearing white and red, since both have
the same semantic response and adjoining spatial location. For
example, as shown in the left of Fig. 13(b), since red bounding
boxes in the first and third columns cover all women in the
images, women wearing red are treated as a part and cannot
be removed. Besides, since we estimate similarity between
candidates based on semantic feature, candidates with the same
semantic response but the different color, i.e., red and cyan
bounding boxes in the second column of Fig. 13(b), have
higher similarity score and are treated as the same objects.

For images whose background has the same semantic
response with foreground, like images shown in the right of

Fig. 13. Segmentation results on unseen categories of FCN model are shown
in (a). Although these categories are not presented in FCN training dataset,
there always exist similar components between known categories and unseen
ones. Some failure cases are presented in (b). Since FCN is not an instance-
level framework, we fail to identify adjoining objects from the same category.
(a) Results on unseen categories. (b) Failure cases.

Fig. 13(b), our method fails to locate foreground and extract
background as candidates. During correspondence exploration,
since candidates in these images, which cover background,
have similar semantic responses with foreground, they are
still treated as common objects. Therefore, our method cannot
prevent these candidates covering background from being
selected. Incorporating correspondence exploration with other
information like edge may improve the performance.

V. CONCLUSION

In this paper, we explore the task of object co-segmentation
in computer vision. We propose a novel object co-
segmentation framework to discovery multiple matching
cliques among semantic candidates for the complementation
of the coverage of part of the common objects and exclusion of
irrelevant matches. Firstly, the generated candidates contained
semantic and object-level information effectively alleviate the
presence of background and reduce the number of candidates.
Secondly, the explored multiple maximum weighted matching
cliques take into account all candidates so as to avoid the
decrement of meaningful information. Based on the N-partite
complete graph augmented with virtual nodes, the multiple
cliques can be naturally separated without additional con-
straints due to the nonexistence of edges between candidates
from the same part in the graph. And the additional virtual
node in each part prevents irrelevant matches from being
in one clique. Finally, the superior results demonstrate the
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effectiveness of the proposed framework. Moreover, since we
have not taken color features into the exploration of multiple
cliques, the matched results are indiscriminating of the same
objects with different color, such as person worn white shirt
and red shirt. Thus although the semantic feature can provide
abundant information, low-level features like color are still
with high importance for object co-segmentation.
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