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Abstract—Moving object detection is one of the most funda-
mental tasks in computer vision. Many classic and contemporary
algorithms work well under the assumption that backgrounds are
stationary and movements are continuous, but degrade sharply
when they are used in a real detection system, mainly due to:
1) the dynamic background (e.g., swaying trees, water ripples and
fountains in real scenarios, as well as raindrops and snowflakes in
bad weather) and 2) the irregular object movement (like lingering
objects). This paper presents a unified framework for address-
ing the difficulties mentioned above, especially the one caused by
irregular object movement. This framework separates dynamic
background from moving objects using the spatial continuity
of foreground, and detects lingering objects using the tempo-
ral continuity of foreground. The proposed framework assumes
that the dynamic background is sparser than the moving fore-
ground that has smooth boundary and trajectory. We regard
the observed video as being made up of the sum of a low-
rank static background, a sparse and smooth foreground, and
a sparser dynamic background. To deal with this decomposi-
tion, i.e., a constrained minimization problem, the augmented
Lagrangian multiplier method is employed with the help of the
alternating direction minimizing strategy. Extensive experiments
on both simulated and real data demonstrate that our method
significantly outperforms the state-of-the-art approaches, espe-
cially for the cases with dynamic backgrounds and discontinuous
movements.

Index Terms—Irregularly moving object detection, lingering
object, low-rank modeling, robust principal component analy-
sis (RPCA), total variation regularization.

Manuscript received November 30, 2014; revised March 20, 2015; accepted
March 31, 2015. Date of publication April 20, 2015; date of current ver-
sion March 15, 2016. This work was supported in part by the National
Natural Science Foundation of China under Grant 61422213, Grant 61332012,
and Grant 61402467, in part by the 100 Talents Programme of the
Chinese Academy of Sciences, in part by the Excellent Young Talent
Programme through the Institute Information Engineering, Chinese Academy
of Sciences, in part by the Foundation for the Young Scholars by the Tianjin
University of Commerce under Grant 150113, and in part by the National
Training Programs of Innovation and Entrepreneurship for Undergraduates
under Grant 201410069040. This paper was recommended by Associate
Editor M. Shin. (Corresponding author: Xiaojie Guo.)

X. Cao and X. Guo are with the State Key Laboratory of Information
Security, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China (e-mail: xj.max.guo@gmail.com).

L. Yang is with the State Key Laboratory of Information Security, Institute
of Information Engineering, Chinese Academy of Sciences, Beijing 100093,
China, and also with the School of Information Engineering, Tianjin
University of Commerce, Tianjin 300134, China.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2015.2419737

I. INTRODUCTION

MOVING object detection [1], [2] is one of the most
important and challenging tasks in computer vision,

which plays a core role for various applications, such as object
tracking [3], behavior recognition [4], scene understanding,
and augmented reality [5], [6]. The approaches for moving
object detection can be roughly divided into two categories:
1) supervised and 2) unsupervised. The supervised approaches
required to build either a background model [7]–[12] or a
foreground object model [13], [14] by learning from labeled
data, which is obviously expensive. In other words, these
approaches traditionally make restrictive assumptions on either
the background or foreground. In reality, however, both fore-
ground and background may be too complex to model since
their appearances vary with the change of illumination and
perspective. Therefore, the performance of supervised meth-
ods is very likely to degrade or even fail. Different from
the supervised moving object detection methods, the unsu-
pervised ones alternatively make use of motion information
to directly separate foreground objects from background [15]
instead of training background or foreground models.
Most of them separate moving objects by detecting and mod-
eling the changes between different frames. Optical flow
that computes motion between two adjacent frames is a
typical example. However, it is usually sensitive to illumi-
nation changes and dynamic backgrounds. Another classic
example belonging to this category, named robust princi-
pal component analysis (RPCA) [16], [17], assumes that the
backgrounds of different frames are linearly correlated
and the moving objects appear to be sparse. By decom-
posing the observed data matrix into a low-rank back-
ground matrix and a sparse moving objects matrix,
RPCA is able to handle moving object detection problem.
Recently, RPCA has been widely studied and used in
various computer vision problems [18]–[20] for its simple
model [19], [21], [22], sound theory [16], [23], [24], and many
efficient algorithms [25], [26]. However, it only can handle
indoor and simple outdoor scenarios well, where there only
exist few moving objects with (nearly) uniform movement,
static background, and no shelter.

Unfortunately, the background is not always static, and
the foreground movements are often nonuniform as shown in
Fig. 1. On the one hand, difficulties caused by the dynamic
background are inevitable in real scenarios. Since most surveil-
lance cameras are mounted at the roadside or in the park,
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Fig. 1. Difficulties caused by dynamic background and lingering object. First
row shows the observed video frames from Watersurface sequence, while the
second row shows the results obtained by traditional RPCA. The results of
our proposed TVRPCA, which separates dynamic background from moving
objects and detects lingering objects using the spatial and temporal continuity
of foreground, are shown in third row.

dynamic factors, such as fountains, ripples, and shaking leaves,
are very common as shown in Fig. 7. Furthermore, mov-
ing object detection under bad weather conditions, such as
rainfall or SnowFall as shown in Fig. 8, is particularly impor-
tant for security protection, which can also be regarded
as dynamic background. On the other hand, discontinuous
movements, e.g., lingering objects as shown in Fig. 3, also
make detection very difficult. In real life, lingering objects
and discontinuous movements are not rare. However, most
methods are unable to address this issue. For these two sce-
narios, most existing motion-based methods are unable to
achieve good performance. They usually detect moving fore-
ground as well as dynamic background and are unable to
distinguish shelter regions, which decreases the detection pre-
cision. Even worse, they also treat the lingering objects as
background and only detect their outlines as moving fore-
ground, which seriously degrades performance, especially the
recall.

To handle the challenges mentioned above, especially the
one caused by lingering objects, we propose a novel unified
framework to detect moving foreground objects by separat-
ing dynamic background from moving objects and detecting
lingering objects using the spatial and temporal continuity
of foreground. This is based on the observations that the
dynamic backgrounds are typically sparser than the moving
foreground objects. In addition, the intrinsic moving fore-
ground objects should be temporally and spatially contiguous,
which mathematically satisfies the definition of total varia-
tion. Based on these observations, we decompose the part
disobeying the low-rank characterization of the video into
two parts: 1) the dynamic background and 2) the fore-
ground objects. To the best of our knowledge, we are the
first to use total variation to explicitly describe the fore-
ground continuity in foreground/background separation prob-
lem. Guyon et al. [27], [28] proved that the total variation
regularized problem can be solved by iteratively reweighted
least squares scheme and use total variation as the weighted
mask for the matrix factorization problem.

The contributions of this paper are summarized as follows.
1) First, we present a new problem, i.e., how to detect

irregular object movements (like lingering object), and
analyze the reasons why most of the classic and contem-
porary algorithms degrade sharply when they are used in
a real detection system. Then we determine what kind of
objects people really want to detect, and discover what
are their shared properties.

2) Second, we propose a novel unified framework to detect
moving foreground objects. Dynamics background can
be separated from moving objects using the spatial
continuity of foreground, and lingering objects can be
detected using the temporal continuity of foreground.

3) Third, we develop an efficient and effective algorithm to
solve the total variation regularized RPCA (TVRPCA),
which is a constrained minimization problem, by using
the augmented Lagrange multiplier (ALM) with alter-
nating direction minimizing (ADM) strategy.

4) Finally, we apply our proposed TVRPCA to the detec-
tion under bad weather condition, e.g., rainfall or
SnowFall, and obtain satisfactory performance.

The rest of this paper is organized as follows. In Section II,
we provide an overview of previous work on improving
RPCA foreground detection performance. Section III presents
our TVRPCA in details, including review of total variation
regularization, problem formulation, solving algorithm, and
computational complexity analysis. Extensive experiments on
synthetic and real datasets are presented in Section IV. Finally,
Section V conclude this paper.

II. RELATED WORK

Moving object detection in dynamic scenes is an important
and challenging task, since waving trees, spouting Fountain,
and raindrops are common in real world. There is a lot of
work on this topic [29]–[32]. Some of them solve this problem
by design dynamic texture extraction algorithm based on dif-
ferent pixel descriptors, such as local dependency histogram
descriptor [29], covariance matrix descriptor [31], and local
binary pattern descriptor [30]. Others classify pixel based on
samples of its neighbor pixels [32]. However, most of them are
based on the local properties of pixels but ignore the global
properties of dynamic background.

By considering the global low-rank property, RPCA has
been widely used in moving object detection. Due to the
dynamic background and lingering objects, original RPCA
cannot achieve satisfactory performance in complex sce-
narios. To improve the performance of RPCA on mov-
ing object detection, two main methods have been pro-
posed recently. Detecting contiguous outliers in the low-rank
representation (DECOLOR) [33], [34] adopts the nonconvex
penalty and Markov random field (MRF) to detect outliers,
which prefers the regions that are relatively dense and con-
tiguous. As we will see in Section IV, although it can alleviate
some of the aforementioned problems, DECOLOR has three
main disadvantages that could reduce the detection precision.
First, due to its greedy property, it may detect some regions
near the moving objects and lose the details of moving objects,
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e.g., the first row in Fig. 7. Second, when there are shelters
in front of the moving object, this method cannot remove the
shelters’ region as shown in the third row in Fig. 7. Finally,
because of computational complexity, only spatial MRF is usu-
ally considered, which makes it ignore the temporal relation-
ship between frames. However, as we shown in the following
sections, temporal constraints are critical for detection. The
second method [35], [36] is based on block-sparsity [37] and a
two-pass RPCA process, which first roughly detects the possi-
ble foreground regions via performing the first-pass RPCA on
a low resolution video, and then carried out a motion saliency
estimation by employing dense optical flow. The trajectories
moving in some consistent directions are retained to suppress
most of the changes from the background. Finally, by decreas-
ing the regularizing parameter of the blocks, it obtains the con-
sistent motions with the help of the second-pass RPCA. In this
process, the moving object detection problem is divided into to
three steps, and the first-pass RPCA and the dense optical flow
can be regarded as the preprocessing of the video. The major
shortcoming of this method is the high computational com-
plexity. In addition, another approach, called Grassmannian
robust adaptive subspace tracking algorithm (GRASTA) [38],
proposes to update the subspace where the background should
lie in, and separate the foreground in an online manner, which
is designed to be flexible to slow changes of background.
Although GRASTA can significantly cut the computational
load, its performance would sharply degrade when the sub-
space is updated improperly, and it does not solve the dynamic
background and lingering object problem at all. In conclusion,
some of the existing RPCA-based methods directly impose
spatial constraints on all moving objects, including foreground
and dynamics background, but none of them separate dynam-
ics background from moving objects and take into account the
temporal constraints as well as the spatial constraints in an ele-
gant way. In this paper, to accurately model moving object
detection problem, we decompose the observed video into
three components: 1) low-rank static background; 2) sparse
and smooth foreground; and 3) sparser dynamic background,
and formulate it as a TVRPCA problem.

Compared with the previous work [39], there are four main
differences. First, we present a new problem, i.e., how to
detect irregular object movement (like lingering objects), in
this paper. Then we investigate the reason why original RPCA
fails to detect them in detail and solve this problem, while
the previous work only focuses on the problem caused by
dynamic background and noise from video capturing pro-
cess. Second, in this paper, we regard the observed video
as being made up of the sum of a low-rank static back-
ground, a sparse and smooth foreground and a sparser dynamic
background instead of just the foreground and background.
This makes it much easier and more accurate to model them.
Third, they model moving object detection problem from dif-
ferent viewpoints, which results in different formulations and
optimization algorithms. The previous work is from the view-
point of Bayes, and formulates the moving object detection
as a matrix factorization problem, i.e., X = AB. However,
in this paper, we formulate it as a regularized RPCA problem,
i.e., X = A+B. Finally, and most importantly, in this paper, the

rank of the static background can be automatically determined,
while in the previous work it must be predefined by human.

III. TOTAL VARIATION REGULARIZED ROBUST PCA

We first provide an overview of total variation regularization
and show how it is used to encode the spatial and temporal
continuity in Section III-A. Then we introduce the TVRPCA
that integrates the temporal and spatial smoothness into the tra-
ditional RPCA in Section III-B, and describe the optimization
algorithm to solve the TVRPCA in Sections III-C and III-D.
Finally, Section III-E presents the complexity analysis.

A. Continuity and Total Variation

To investigate the moving object detection problem, we
must first determine what kind of objects people really want
to detect. Intuitively, moving foreground to be detected should
occupy a certain proportion of continuous region of the screen
and exist salient movement. For one thing, although they exist
salient movements, some very small objects, e.g., raindrops
and snowflakes, are not the interesting thing for people. For
another, if the movements are not salient and consistent, we
usually do not need to detect them, e.g., ripples and shak-
ing leaves. Combining these two points, moving object to be
detected should make intensity change saliently and contin-
uously. Taking the Watersurface sequence, in which a man
walks by the river as shown in Fig. 1, as an example, what
we should detect is the person, while the ripples, whose move-
ments are slight and discontinuous, should be suppressed.
So we can impose spatial continuity constraints on detected
objects to suppress the slight and discontinuous movements.

In reality, however, it is much more complicated. Please
consider a case that a man walks by the river, lingers for a
period of time and looks around. Should he be detected in
that period of time when his movement is not salient. The
answer is YES. However, what about the case that a man only
stand there and look around throughout the video. Traditional
motion-based approaches treat both cases equally and only
detect the outline of the object. To understand the reason for
these cases, we plot the intensity changes of fixed space points
over time. As shown in Fig. 2, we treat a video clip as a 3-D
tensor and cut it into slides along the vertical and horizontal
directions. From slide examples shown in Fig. 2(d), we find
that the intensities of fixed space points change continuously
over time. However, in the results of traditional motion-based
methods as shown in Fig. 2(e), this continuity property is
destroyed, and there are some gaps and holes in the detection
areas. To alleviate this problem, we impose temporal continu-
ity constraints on foreground to be detected. And as shown in
Fig. 2(f), the continuity property is preserved in the results of
our methods.

Having determined to impose spatial and temporal conti-
nuity constraints on moving foreground to be detected, the
remaining issue is how to encode these continuity constraints.
In mathematics, the derivative can be used to measure the
sensitivity to change of a quantity function. For discrete func-
tions, difference operators are the approximation to derivative.
A video can be represented by a 3-D tensor F ∈ R

dv×dh×dt .
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Fig. 2. Temporal continuity of moving object. (a) By stacking the video frames, video clip can be regarded as a 3-D tensor. We cut it into slides along
(b) horizontal and (c) vertical directions. (d) Each slide can be seen as a 2-D image, one dimension of which is temporal direction. These images demonstrate
the intensity changes of some fixed spatial points over time. We find that these changes are continuous over time. (e) and (f ) Results from RPCA and our
proposed TVRPCA, respectively. Without considering temporal continuity, the results of RPCA become discontinuous, and only the outline can be correctly
detected. By introducing temporal continuity, our approach can overcome this difficulty and preserve the continuity property.

And we use F(x, y, t) to indicate the intensity of position (x, y)
at time t, and use

Fh(x, y, t) = F(x + 1, y, t) − F(x, y, t)

Fv(x, y, t) = F(x, y + 1, t) − F(x, y, t)

Ft(x, y, t) = F(x, y, t + 1) − F(x, y, t)

to denote three difference operation results of position (x, y) at
time t with periodic boundary conditions along the horizontal,
vertical, and temporal directions, respectively, For the simplic-
ity of numerical computation, we stack all the entries of F into
a column vector f = vec(F), in which vec() represents the vec-
torization operator, and use Dh f = vec(Fh), Dv f = vec(Fv),
and Dt f = vec(Ft) to represent the vectorizations of the three
difference operation results, respectively, in which Dv, Dh, and
Dt ∈ R

dvdhdt×dvdhdt . And use D f = [Dh f T , Dv f T , Dt f T ]T

to denote the concatenated difference operation, in which
D ∈ R

3dvdhdt×dvdhdt = [DT
h , DT

v , DT
t ]T . Since the ith element in

Dh f , Dv f , and Dt f , i.e., [Dh f ]i, [Dv f ]i, and [Dt f ]i, describe
the intensity changes of ith point in f along the horizontal,
vertical, and temporal directions, we can use any vector norm
of [[Dh f ]i, [Dv f ]i, [Dt f ]i]T to quantize the changes of inten-
sity. Two widely used vector norms are �1 and �2 norms. By
summing up all vector norms of different points, we obtain
the definition of anisotropic total variation norm as

‖F‖TV1 =
∑

i

(∣∣[Dh f
]

i

∣∣ + ∣∣[Dv f
]

i

∣∣ + ∣∣[Dt f
]

i

∣∣) (1)

and the isotropic total variation norm as

‖F‖TV2 =
∑

i

√[
Dh f

]2
i + [

Dv f
]2

i + [
Dt f

]2
i (2)

which are the �1 and �2,1 norms of [Dv f , Dh f , Dt f ]T . By
a slight abuse of notations, we use ‖Df‖2,1 to represent the
isotropic total variation of F. Total variation regularization
have been widely used in image and video denoising [40]–[42]
for its superior performance on suppressing discontinuous
changes which are regarded as noises in image processing.
And we adopt it to suppress the intensity changes caused by
dynamic background and fill up the gaps caused by lingering
objects.

B. Problem Formulation

Suppose we are given an image sequence including dt

frames, then stack the vectorized frames as columns of a
matrix O ∈ R

dvdh×dt , where dv and dh are the height and
width of the frames, respectively. In ideal cases, the frames
contain the static background component B ∈ R

dvdh×dt and
the residual M ∈ R

dvdh×dt . The observed matrix O may be
decomposed as O = B + M. Due to the high correlation
between the stationary backgrounds of frames, B has low
rank. And M represents, for example, cars and pedestrians
that usually occupy only a fraction of the image pixels and
hence can be treated as sparse errors. Both B and M are
of arbitrary magnitudes. Detecting the moving objects can be
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achieved through minimizing the following problem:

min
B,M

rank(B) + λ‖M‖0, s. t. O = B + M (3)

where ‖ · ‖0 denotes the �0 norm and λ is the coefficient con-
trolling the weight of the sparse matrix M. This problem is
known as the RPCA.

The decomposition above works well under the assump-
tion that the background is stationary, but degrades sharply
when it is used in realistic situations. This is mostly due to
the fact that, in real-world scenarios, the background is very
likely to contain changes, i.e., dynamic factors, such as ripples
on rivers, fountains and swaying branches of trees. Sudden
and gradual illumination changes are another two common
phenomenons in reality. Thus, it is very difficult to model
the background well only relying on imposing low-rank con-
straint on background. In other words, the foreground would
be detected inaccurately. Fortunately, the foreground has a
high possibility to move smoothly and appear coherently in
the frames. Based on this observation, the nonzero elements
in M consists of two components, i.e., the foreground and
the dynamic background. As a result, we further separate M
of (3) into two terms F ∈ R

dvdh×dt and E ∈ R
dvdh×dt , where

F corresponds to the intrinsic foreground and E the dynamic
background component. Thereby, we can naturally reformulate
the problem as

min
B,M,F,E

rank(B) + λ1‖M‖0 + λ2‖E‖0 + λ3�(F)

s. t. O = B + M, M = F + E (4)

where λ1, λ2, and λ3 are the weights for balancing the corre-
sponding terms in (4). �(·) is the function of regularizing the
foreground to be spatially coherent and temporally smooth,
which is done by total variation norm in this paper. So the
final formulation of the problem is

min
B,M,F,E

rank(B) + λ1‖M‖0 + λ2‖E‖0 + λ3‖F‖TV

s. t. O = B + M, M = F + E (5)

where ‖F‖TV is the total variation norm as defined
in (1) and (2).

Hence, we rewrite (5) in the following shape:

min
B,M,F,E

rank(B) + λ1‖M‖0 + λ2‖E‖0 + λ3‖Df‖q

s. t. O = B + M, M = F + E (6)

where q can be either {1} or {2, 1} for representing �1 and �2,1
norms, respectively. In this paper, we call the problem
expressed in (6) the TVRPCA.

C. Solution of TVRPCA

In this section, we detail our proposed algorithm for solv-
ing the TVRPCA problem. Although the total variation has
two different definitions, we do not distinguish them until
necessarily. The objective function (6) is nonconvex due to
the nonconvexity of the rank function and the �0 norm. It is
NP-hard and hard to approximate. Alternatively, minimizing
the natural convex surrogate for the objective function (6) can
be employed to accomplish the task, which replaces rank(·)

and the �0 norm with the nuclear norm and the �1 norm,
respectively. By putting everything together, the optimization
problem turns out to be like

min
B,M,F,E

‖B‖∗ + λ1‖M‖1 + λ2‖E‖1 + λ3‖Df‖q

s. t. O = B + M, M = F + E. (7)

For the optimization problem (7), the ALM with ADM strat-
egy is an efficient and effective solver [25]. ALM with ADM
is widely used to solve multivariable convex optimization
problem as such �1-norm problem and low-rank problem.
It minimizes dual form of original constrained optimization
problem over one variable with others fixed at a time, and
repeats this process with increasing positive penalty scalar
until it converges.

The augmented Lagrangian function of (7) is given by

Lμ(B, M, E, F, X, Y)

= ‖B‖∗ + λ1‖M‖1 + λ2‖E‖1 + λ3‖Df‖q

+ μ

2
‖O − B − M‖2

F+ <X, O − B − M>

+ μ

2
‖M − F − E‖2

F+ <Y, M − F − E> (8)

where X ∈ R
dvdh×dt and Y ∈ R

dvdh×dt are the Lagrange mul-
tiplier matrices, μ is a positive penalty scalar, <·, ·> denotes
the matrix inner product, and ‖ · ‖F represents the Frobenius
norm. Besides the Lagrange multipliers, there are four vari-
ables, i.e., B, M, F, and E. It is difficult to simultaneously
optimize them. So we approximately solve it in the manner of
minimizing one variable with others fixed at a time (ADM).
To optimize (7), we sequentially optimize its dual form (8)
over B, M, F, and E with increasing μ. The details of ADM
iteration is as follows.

Updating B with the other terms fixed

Bk+1 = argminLμ

(
B, Mk, Ek, Fk, Xk, Yk

)
.

The solution of updating B is

(U,�, V) = svd

(
O − Mk + 1

μk
Xk

)

Bk+1 = US 1
μk

(�)VT (9)

where U�VT is the singular value decomposition (SVD) of
(O−Mk+1/μkXk), {μk} is a monotonically increasing positive
sequence, and S[ ·] represents the shrinkage operator, the defi-
nition of which on scalars is: Sε>0(·) = sgn(x) max(|x| − ε, 0).
The extension of the shrinkage operator to vectors and matri-
ces is applying it element-wisely.

Updating M with the other terms fixed

Mk+1 = argminLμ

(
Bk+1, M, Ek, Fk, Xk, Yk

)
.

The solution of updating M is

Mk+1 = S λ1
2μk

[
O − Bk+1 + Ek + Fk

2
+ Xk − Yk

2μk

]
. (10)

Updating E with the other terms fixed

Ek+1 = argminLμ

(
Bk+1, Mk+1, E, Fk, Xk, Yk

)
.
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Algorithm 1: TV-RPCA
Input: λ1 > 0, λ2 > 0, λ3 > 0, and the observation

matrix O.
Initialization:
B0 = M0 = E0 = F0 = X0 = Y0 = 0 ∈ R

dvdh×dt ,
μ0 > 0, ρ > 1 and k = 0.
while not converged do

Update Bk+1 via (9);
Update Mk+1 via (10);
Update Ek+1 via (11);
Update Fk+1 via Algorithm 2;
Update multipliers via (13);
μk+1 = μkρ; k = k + 1;

end
Output: Optimal solution (Bk, Fk, Ek, Mk)

The solution of updating E is

Ek+1 = S λ2
μk

[
Mk+1 − Fk + 1

μk
Yk

]
. (11)

Updating F with the other terms fixed

Fk+1 = argmin λ3‖Df‖q + <Yk, Mk+1 − Ek+1 − F>

+ μ

2

∥∥∥Mk+1 − Ek+1 − F
∥∥∥

2

F
. (12)

Since solving this subproblem involves an inner loop, we will
discuss the inner loop later.

Updating multipliers with the other terms fixed

Xk+1 = Xk + μk
(

O − Bk+1 − Mk+1
)

Yk+1 = Yk + μk
(

Mk+1 − Ek+1 − Fk+1
)
. (13)

The entire algorithm of solving the problem (7) has been
summarized in Algorithm 1. The algorithm terminates when
‖O−Bk −Fk −Ek‖2

F ≤ δ‖O‖2
F with δ = 10−7, or the maximal

number of iterations is reached.

D. Solver of the F Subproblem

To solve the subproblem (12), we introduce an auxiliary
variable K ∈ R

3dvdhdt×1 to replace Df . Accordingly, K = Df
is as an additional constraint. Thus, we have

Fk+1 = argmin λ3‖K‖q + <Yk, Mk+1 − Ek+1 − F>

+ μ

2
‖Mk+1 − Ek+1 − F‖2

F, s. t. K = Df .

For brevity, we denote A
.= Mk+1 − Ek+1 − F, and omit

the superscript k + 1 of F in this subproblem, the augmented
Lagrangian of which is

Lγ (F, K, Z) = argmin λ3‖K‖q + <Yk, A> + μ

2
‖A‖2

F

+ <Z, K − Df> + γ

2
‖K − Df‖2

F

where γ performs the same with μ and Z is the multiplier.
Updating Ft+1 with the other terms fixed

Ft+1 = argminLγ

(
F, Kt, Zt).

Algorithm 2: Solver of the F Subproblem

Input: λ3 > 0, Mk+1, Ek+1 and Yk.
Initialization: Z0 = K0 = 0 ∈ R

3dvdhdt×1, t = 0,
Compute |F(Dv)|2, |F(Dh)|2, |F(Dt)|2, and γ 0 > 0,
ρ > 1.
while not converged do

Update Fk+1
t+1 via (15);

Update Kk+1
t+1 via either (16) for the anisotropic total

variation or (17) for the isotropic one;
Update multipliers via (18);
Update γ t+1 via (19); t = t + 1;

end
Output: Optimal solution (Ft, Kt)

By considering its normal equation, we have
(
μkI + γ tDTD

)
f = Q; Ft+1 = reshape( f ) (14)

where Q = μk vec(Mk+1 − Ek+1 + Yk/μk) + γ t(DTKk +
(DTZk/μk)) and reshape(·) is to reshape the vector f back into
its 3-D shape. Traditionally, the optimal estimation of f t+1 can
be simply obtained via computing the Moore–Penrose pseudo-
inverse of matrix (μkI +γ tDTD). However, due to the size of
the matrix, the Moore–Penrose pseudo-inverse is computation-
ally expensive. Thanks to the block-circulant structure of the
matrix, it can be diagonalized by the 3-D-DFT matrix [43].
Therefore, f t+1 can be obtained exactly by

F−1

(
F(Q)

μk1 + γ t
(|F(Dh)|2 + |F(Dv)|2 + |F(Dt)|2

)
)

(15)

where F(·) denotes the 3-D Fourier transform operator,
| · |2 is the element-wise square and the division also performs
element-wisely. Note that the denominator in the equation can
be precalculated outside the outer loop.

Updating Kt+1 with the other terms fixed

Kt+1 = argminLγ

(
Ft+1, K, Zt

)
.

For q = {1} (anisotropic), the solution of updating K is

Kt+1 = S λ3
γ t

[
Df t+1 − 1

γ t
Zt

]
. (16)

Before giving the solution of K when q = {2, 1} (isotropic),
we denote ph = Dh f − (Zt

h/γ
t), [KT

h , KT
v , KT

t ]T = K,
and [ZT

h , ZT
v , ZT

t ]T = Z. The definitions for pv and pt are
analogous. Kh can be efficiently computed by

Kt+1
h = max

(
p − λ3

γ t
, 0

)
· ph

p

p = max

(√
| ph|2 + |pv|2 + |pt|2, ε

)
. (17)

The operations in (17) are component-wise and ε is a small
positive constant. Besides, the multiplier is updated via

Zt+1 = Zt + γ t
(

Kt+1 − Df t+1
)

(18)
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TABLE I
STATE-OF-THE-ART METHODS

in which γ t+1 is updated as suggested in [41]

γ t+1 =
{

ργ t if
∥∥Kt+1 − Df t+1

∥∥
2 ≥ α

∥∥Kt − Df t
∥∥

2
γ t otherwise.

(19)

The algorithm of the F subproblem is summarized in
Algorithm 2. The stop criterion of Algorithm 2 is similar to
those of Algorithm 1.

E. Complexity Analysis

In this section, we analyze the computational complexity
of our proposed TVRPCA. For simplicity, we set m = dvdh

and n = dt. From Algorithm 1, each outer iteration involves
five updating rules with respect to B, M, E, F, and multipli-
ers, respectively. Updating B needs to first compute the SVD
of a m × n matrix, which requires 4m2n + 8mn2 + 9n3 float-
ing point multiplications [45], and then multiplies the shrank
singular value matrix with two singular vectors matrices as
shown in (9), which costs (m + n)r2 floating point opera-
tions, where r ≤ min(m, n) is the rank of original matrix.
To sum up, updating B needs O(m2n + mn2 + n3) float-
ing operations. Updating M, E, and multipliers only requires
element-wise addition and shrinkage operations of m×n matri-
ces, say O(mn). As shown in Algorithm 2, for F subproblem,
it iteratively updates f ∈ R

mn×1 and K ∈ R
3mn×1. At each

iteration of updating f , the main computation is four FFTs
(including three FFTs and one inverse fast Fourier transform),
each is with O(mn log(mn)) as shown in [43]. And updating
K only requires O(mn) element-wise shrinkage and addition
operations. In summary, updating F requires O(t(mn log(mn)))

floating operation where t is the inner iteration number and we
fix it to ten in all our experiments. In conclusion, each outer
iteration of our proposed algorithm requires O(m2n + mn2 +
n3 + 3mn + 20(mn log(mn))) = O(m2n + mn2 + n3) floating
point operations which is the same as the original RPCA.

IV. EXPERIMENTS

In this section, we conduct several experiments on both
synthetic (Stuttgart artificial background subtraction (SABS)
dataset) and real (perception test image sequences and change
detection dataset) data. From different perspectives, we adopt
two evaluation criteria on these datasets. In perception test
image sequences, which is one of the most popular foreground
detection benchmarks, we adopt receiver operating character-
istic (ROC) curve to measure the performance of different
methods. The definitions of recall and precision are as follows:

recall = #correctly classified foreground pixels

#foreground pixels in ground truth
(20)

precision = #correctly classified foreground pixels

#pixels classified as foreground
. (21)

To analyze the performance of different methods in details
on SABS and change detection datasets, the F-measure is
employed

F − measure = 2
precision · recall

precision + recall
. (22)

The F-measure balances the recall and precision and gives an
overall quantitative evaluation.

There are four state-of-the-art methods, including
RPCA [16], DECOLOR [33], probabilistic robust matrix
factorization (PRMF) [44], GRASTA [38], involved into the
comparison as shown in Table I, and the codes of which are
all downloaded from the authors’ websites. As been proved
by [16], RPCA can correctly separate the low rank and sparse
components by setting the parameter λ as 1/

√
mn, in which

m and n are the width and height of every single video frame,
respectively. Although the efficiency can be improved by
setting the sampling ratio less than 1, it may also degrade
the performance of GRASTA. To make the comparison as
fair as possible, we use all the observations to process, say
the sampling ratio is 1. For the algorithms participate in the
comparison, the parameters are all set as default. Unless
otherwise stated, the parameters of Algorithm 1 are fixed
throughout the experiments empirically: λ1 = 0.4/

√
mn and

λ2 = 2/
√

mn. As for λ3 that controls the weight of the
total variation term, we set λ3 = 1/

√
mn for cases with

dynamic background, while λ3 = 0.1/
√

mn for cases without
dynamic background. In addition, the isotropic TV is adopted
throughout the experiments, that is to say, q = {1, 2}.

A. I2R Dataset

I2R dataset1 [9] contains nine video sequences, which has
a variety of scenarios including static background (Bootstrap
and lobby), dynamic background (Campus and Fountain),
and slow movement with dynamic background (Curtain and
Watersurface) as shown in Fig. 4. It is widely used as the
benchmark in the tasks of tracking and foreground and back-
ground separation. The number of frames in each video ranges
from 523 to 3584. Along with the video data, each video pro-
vides 20 frames foreground ground truth for evaluating the
performance. We give the qualitative and quantitative results of
our methods on this dataset, compared with the state-of-the-art.

First, to demonstrate the superiority of our method, Fig. 3
provides the visual difference between TVRPCA, RPCA,

1http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
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Fig. 3. Visual results of RPCA, PRMF, GRASTA, and TVRPCA on Watersurface sequence which contains lingering objects. First row is the original frames
in the sequence. Second row shows the ground truth. Third row displays the results obtained by RPCA, which considers slowly moving objects as background
while the ripples as foreground. The results of PRMF (fourth row) and GRASTA (fifth row) achieve better results than RPCA, but still degrade in the last
two columns. As shown in sixth row, by considering the foreground to be contiguous in both space and time, TVRPCA can not only remove the dynamic
backgrounds, but also recover the vast majority of foreground.

Fig. 4. Representative example frames of perception test image sequences
dataset. From top, left to right: Hall, Campus, Watersurface, Bootstrap,
Fountain, and Curtain. The order is the same as that shown in Fig. 5.

PRMF, and GRASTA, on the sequence of Watersurface. The
dynamic backgrounds, such as water ripples, are regarded as
foreground by all the other methods except for TVRPCA. At
the same time as shown in the last two columns of Fig. 3,
all the other methods are only able to detect only a small
part of the foreground, i.e., the outline of the moving object,
because the slowly moving objects are treated as the back-
ground by only considering the motion information. Thanks
to the temporal and spatial continuity constraint on the fore-
ground objects, our method can detect the vast majority of
them. As shown in the last row of Fig. 2, different from orig-
inal RPCA, TVRPCA preserves the continuity property along
the temporal direction.

Second, to verify the efficacy of the proposed TVRPCA,
ROC, and F-measure are employed as the quantitative met-
ric to clearly show the performance difference. As can be
seen in Fig. 5, the results in the first column correspond to
two static background sequences without lingering object, i.e.,
shopping mall and Bootstrap, which reveal that TVRPCA per-
forms similarly to the other methods with slight improvements.
Since we take into account the spatial and temporal conti-
nuity, our method can alleviate the problem caused by the
similarity between foreground and background to a certain but
limited extent. In the second column, the results indicate that
TVRPCA significantly outperforms the other methods for the
sequences containing dynamic background. By suppressing the
motion caused by dynamic background, TVRPCA achieves a
high true positive with a small false positive, which signifi-
cantly increases the area under the curve. As can be seen in
the third column, the superiority of TVRPCA is quite obvious
for the sequences with slowly moving foregrounds as well as
dynamic backgrounds during a period of time. Most motion-
base methods treat the interior region of the moving object
as background, which substantially reduces the true positive,
while our methods correctly detect these regions thanks to the
temporal continuity constraint. To provide an overall compar-
ison, we also compare TVRPCA with many state-of-the-art
algorithms based on the F-measure. As shown in Table II,
TVRPCA outperforms most of them.

Finally, we investigate the robustness of TVRPCA to
noise. Here, we consider four kinds of noise: 1) Gaussian
noise; 2) salt and pepper noise; 3) speckle noise; and
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Fig. 5. Quantitative performance comparison between TVRPCA, RPCA, GRASTA, and PRMF. First column contains the sequences with static background.
Second column contains the sequences with only dynamic background. Third column contains the most difficult sequences that have slow foreground movements
during a period of time as well as dynamic background.

TABLE II
PERFORMANCE COMPARISON ON THE SEQUENCES OF I2R DATASET

4) Poisson noise. Gaussian noise (additive white noise) is
the most common noise that arises during acquisition and
transmission due to poor illumination and high temperature.
Different from Gaussian noise, salt and pepper noise com-
pletely changes the pixel value to white or black, which makes
the information in the pixel completely ruined. Speckle noise
is the multiplicative noise to the image. Poisson noise is gen-
erated from image itself instead of an artificial noise. For the
noises, except for Poisson noise, we set three different vari-
ance values to represent different noise levels. As shown in
Fig. 6, TVRPCA is robust to these noises, even under a high
noisy level, and the detection results form noisy videos are
very similar to that from the clean video.

B. SABS Dataset

The SABS dataset2 [48] is an artificial dataset for pixel-
wisely evaluating the performance of background subtraction

2http://www.vis.uni-stuttgart.de/forschung/informationsvisualisierung-und-
visual-analytics/visuelle-analyse-videostroeme/sabs.html

for surveillance videos. To demonstrate the performance
improvement, we test the basic and dynamic background
image sequences since our algorithm achieves limited per-
formance improvement on videos, which are peripheral to
our concern here as shown in the last section. To quantita-
tively show the performance difference between our method
and DECOLOR [33] that directly generates foreground mask
without tuning thresholds, we employ three metrics including
recall, precision, and F-measure.

The results are shown in the first two rows in Fig. 7 and
Table III. Notice that the case of SABS takes the whole pic-
ture of each frame into account, i.e., basic image sequence,
while SABS-R only considers the region around the tree,
i.e., rectangular region, as suggested in the default SABS
experiment setup for evaluating the performance on dynamic
background region. We can find that RPCA detects the incon-
sistent background movements caused by the moving leaves,
which decreases the precision to 0.56. And due to the greedy
property of DECOLOR, it may wrongly label the nearby back-
ground as the moving object regions by considering their
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TABLE III
PERFORMANCE COMPARISON ON THE SEQUENCES SHOWN IN FIG. 7

Fig. 6. Robustness to different noises. The source video frame and the result
form our RPCA are displayed in the upper left corner of the figure. We add
Gaussian noise, Poisson noise, salt and pepper noise, and speckle noise to
the source video, respectively. We fix the noise mean to 0 and vary the noise
variance, whose values are shown in the first row of each sub-figure, for three
noise types except Poisson noise. We plot the noisy frame examples in the
second row and the results from our proposed TVRPCA in third row. As
the variance increases, the video gradually become unclear, and the detection
task become difficult. Our method achieves good performance even in unclear
videos with large noise variance.

spatial relationship. It improves the recall by 15% while reduc-
ing the precision by 16% in dynamic background region,
which makes the F-measure stay or even decline. By tak-
ing into account the temporal relationship, TVRPCA removes

these background regions that are inconsistent in time. Our
method increases the precision by 33% and the F-measure by
24%. It is easy to conclude that TVPRCA outperforms orig-
inal RPCA and DECOLOR on synthetic data sets from the
results shown in Table III.

C. Change Detection Dataset

Change detection video database3 [49] is considered as
one of the most difficult tracking benchmarks, which con-
sists of 31 real-world videos over 80 000 frames and spanning
six categories including diverse motion and change detec-
tion challenges. To verify the performance of TVRPCA in
complex scenarios, we only select the dynamic background
category. This category is the most difficult among all the
categories for mounted camera object detection [36], which
contains six video sequences exhibiting dynamic background
motions and shelters. These sequences are much more dif-
ficult than the previous datasets due to the following three
factors.

1) One challenge comes from the significant dynamic back-
ground elements. For example, as shown in the fifth
and sixth rows of Fig. 7, from the viewpoint of cam-
era, the leaves shake heavily and the water flow of
Fountain is intense, as the tree and Fountain in the fall
and Fountain01 sequences are close to the camera.

2) The camouflage, such as the motorboat in the boats
sequence and the white car in the fall sequence, makes
it more difficult to distinguish between the foreground
and background.

3) In the sequences such as the Fountain02, the moving
object is relative small (far from the camera), and may
be partially occluded by the dynamic background, such
as the Fountain.

The sequences and their corresponding results are presented
in Fig. 7 (from third to eighth rows) and Table III (from third
to eighth rows). RPCA inevitably detects a lot of dynamic
backgrounds as moving foreground objects, which makes its
precision very low as shown in boat and Fountain02 sequence.
When there are some shelters in front of the moving object,
DECOLOR cannot remove these shelters’ regions, as shown

3http://www.changedetection.net
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Fig. 7. Sample frames of surveillance videos in SABS and change detection datasets. First and second columns show the original frames and the ground
truth foregrounds. The statics background and moving foreground objects recovered by TVRPCA are shown in third and fourth columns, respectively.
The last two columns correspond to the results from RPCA and DECOLOR, respectively.

in the fifth row in Fig. 7. One reason is that although its
greedy property is very useful to handle the camouflage prob-
lem, it also considers these shelters’ regions as the inner parts
of the objects. So, as shown in Table III, DECOLOR loses
the precision sharply, especially in the condition where there
are relatively small amounts of foreground pixels. Besides,
DECOLOR misses some details of the detected objects such
as the outline of the car in Fountain02 sequence, which
also reduces the precision. Different from above two meth-
ods, although TVRPCA drops recalls slightly, it intensively
improves the precision and F-measure by removing the incon-
sistent movements. The reason why DECOLOR achieves bet-
ter performance than TVRPCA in fall and overpass sequences

is that in these two sequences, the camouflage is more impor-
tant to F-measure than dynamic background. For example, in
the overpass sequence, the color of the person’s cloth is similar
to that of the overpass.

Besides, we provide a comparison of running time between
our proposed TVRPCA and DECOLOR which are both
impose smoothness constraint on foreground. TVRPCA is
implemented in MATLAB, while the core part of DECOLOR
is implemented in C++. This experiment is conducted on
a single PC with Intel Core i7-2600 3.4 GHz. CPU and
16.0 GB RAM. To separate foreground from a video with
633 frames and 128 × 160 pixels per frame, TVRPCA spends
about 570 s while DECOLOR costs about 790 s.
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Fig. 8. Visual results of RPCA and TVRPCA on the BadWeather category on (a) SnowFall, (b) WetSnow, and (c) Skating sequences. Example frames are
shown in first row, while the results from RPCA and TVRPCA are shown in second and third rows, respectively. From (a)–(c), we find that TVRPCA
suppresses most of the snowflakes and raindrops from the detected foreground, and makes the detected area more continuous. (d) Two failure cases
on the above sequences. The first case is caused by the rolling drops on the window, while the second case is caused by the snow brought up by the
passing car.

D. Bad Weather Sequences

In addition to common camera mounted surveillance,
TVRPCA can also be applied to video surveillance under
bad weather, which has great significance to security protec-
tion. Please consider a scenario that the border lines of many
countries are at high-altitude areas, it is important to robustly
monitor the situation with bad weather. Another instance is
that, according to the surveys [50]–[52], many serious inci-
dents, such as traffic accidents and crimes, are happened
under bad weather. Bad weather makes the moving fore-
ground detection much more difficult. For one thing, snow and
rain reduce the screen contrast of surveillance video, which
makes distinction between foreground and background diffi-
cult as shown in Fig. 8(a). For another, the movements of
snowflakes and raindrops are detected as moving foreground,
which draws down the ability to identify small objects as
shown in Fig. 8(b). Finally, the rain drops on the lens of

monitor equipments disturb the accurate detection as shown
in Fig. 8(b) and (d). As a result, moving object detection
under bad weather has become a hot topic in computer vision.
We conduct experiments on BadWeather category published
in ChangeDetection.NET 2014 dataset, which consists of four
typical bad weather sequences blizzard, Skating, SnowFall, and
WetSnow.

Fig. 8 shows the results of RPCA and TVRPCA on
BadWeather category, in which Fig. 8(a)–(c) is the results on
sequences SnowFall, WetSnow, and Skating, respectively. In
Fig. 8(a) and (b), we find that the snowflakes and raindrops
are all be detected as foreground by RPCA, especially the two
large snowflakes near the camera in the first two column of
Fig. 8(a). Furthermore, the raindrops make the detected pedes-
trians not obvious in the first and third columns of Fig. 8(b). In
the first column of Fig. 8(b), the pedestrian crosses the street
as shown in the yellow circle of the figure, while in the third
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column of Fig. 8(b) pedestrian walks on the sidewalk as shown
in the top right circle of the figure. Thus, we can find out that
TVRPCA can correctly detection small objects, such as pedes-
trian. The main reason is that although these small objects are
sparse in spatial directions, they are continuous and not sparse
in temporal direction. In summary, TVRPCA can correctly
detect small objects with continuous movements. Our method
regards the fast moving small object, such as raindrops, as
dynamics background since it is spare in both temporal and
spatial directions. Note that the detected regions in the left
top corner of all three frames in Fig. 8(b) are caused by the
continuous movements of a national flag. From the results,
we find that compared with the original RPCA, our proposed
TVRPCA largely alleviates these problems, besides the dis-
continuity problem in Fig. 8(c) caused by lingering objects. It
fully demonstrates the superiority of TVRPCA on surveillance
under bad weather.

However, there exist some problems that cannot be prop-
erly solved by TVRPCA. In Fig. 8(d), we show two fail-
ure cases on the three sequences. The first case is caused
by the rolling drops on the window, and the second case
is caused by the snow brought up by the passing car.
The reasons why TVRPCA fails are that their size is
not small and their movements are continuous over space
and time.

V. CONCLUSION

In this paper, we have proposed a novel framework named
TVRPCA to handle the scenarios with complex dynamic back-
grounds, and slowly moving or lingering objects, based on
the assumption that the moving foreground objects should
be contiguous in both space and time and dynamic back-
ground is sparser than real foreground object. We have
formulated the target problem in a unified objective func-
tion by introducing spatial and temporal continuity into the
original RPCA using total variation regularization, while the
proposed algorithm can effectively seek its optimal solu-
tion. The experimental results on synthetic and real datasets
have demonstrated the clear advantages of TVRPCA com-
pared with the state-of-the-art methods, which indicates that
our method has wider applicable range than the others,
especially in the presence of the bad weather or complex
background.

There remain some problems that cannot be perfectly solved
by our proposed TVRPCA. First, if the foreground objects
have the similar appearance with the background, our frame-
work cannot separate them as foreground. For example, in
Watersurface sequence, man’s trousers and the bush have the
similar color. Second, the decomposition of the sparser com-
ponent and the smooth component may probably miss some
objects that are both small and fast moving, such as the fast-
moving cars which are far from the camera. In the future,
we want to investigate how to integrate the structural pri-
ori information into the background subtraction to solve this
problem. Besides, we will conduct research on how to make
our algorithm more efficient and how to design its online
version.
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