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Abstract—Community structure is one of the most important
properties of complex networks and is a foundational concept in
exploring and understanding networks. In real world, topology
information alone is often inadequate to accurately find commu-
nity structure due to its sparsity and noises. However, potential
useful prior information can be obtained from domain knowl-
edge in many applications. Thus, how to improve the community
detection performance by combining network topology with prior
information becomes an interesting and challenging problem.
Previous efforts on utilizing such priors are either dedicated
or insufficient. In this paper, we firstly present a unified inter-
pretation to a group of existing community detection methods.
And then based on this interpretation, we propose a unified
semi-supervised framework to integrate network topology with
prior information for community detection. If the prior informa-
tion indicates that some nodes belong to the same community, we
encode it by adding a graph regularization term to penalize the
latent space dissimilarity of these nodes. This framework can be
applied to many widely-used matrix-based community detection
methods satisfying our interpretation, such as nonnegative matrix
factorization, spectral clustering, and their variants. Extensive
experiments on both synthetic and real networks show that the
proposed framework significantly improves the accuracy of com-
munity detection, especially on networks with unclear structures.
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I. INTRODUCTION

NETWORKS have become ubiquitous in real life. In many
different disciplines, data exist in the form of networks,

such as social networks [1], [2], biological networks [1], [3],
and technological networks [4]. The area of network analysis
has attracted many researchers from different fields such as
physics, biology, mathematics, and computer science. Networks
can be modeled as graphs by regarding each entity as a vertex
and each link as an edge. It has been shown that networks have
a structure of modules or communities which are subgraphs
whose vertices are more tightly connected with each other than
with vertices outside the subgraph [5], [6]. For example, a set of
papers which cite much more papers in their own field than other
fields can be regarded as a community. Although there is no
general and widely-accepted definition of community structure
due to the variation of applications, community structure is
one of the most important properties of networks and is the
foundational concept in exploring and understanding them.

Although a large number of community detection algorithms
have been proposed [7], [8], most of them only take into account
the topology information, and regard a community as a set of
nodes which have similar link-pattern [9], [10]. These kinds of
methods work well in the network with clear structure, i.e., the
amount of intracommunity connections is much larger than that
of the intercommunity connections. But they will degrade or
fail when nodes have a large amount of connections to nodes in
other communities. In fact, community detection is not just a
graph partition task which ignores node’s meaning, but a seman-
tic clustering problem [11]. Specifically, link information alone
is inadequate to accurately determine community structure for
two reasons. Firstly, due to the complexity of network struc-
ture, such as overlapping communities or hierarchical structures,
many traditional methods will degrade when community struc-
ture is not clear. For example, the network of U.S. political books,
shown in Fig. 11, only has two densely connected communities.
However, the real number of communities is three [12] since
the third community is the overlapping part of the two commu-
nities as we observed. Secondly, it is hard to accurately detect
the community due to the sparsity of the topology information.
Recent research [13], [14] shows that there is a phase transition
threshold on the difference between intra and inter community
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edge number, below which communities are impossible for any
algorithm to detect, which is named as community detectability.
Many community detection algorithms, such as spectral meth-
ods, succeed when the network is sufficiently dense [14], and
they fail significantly when one gradually increases the num-
ber of external edges between communities [13], [15]. And this
phenomenon has been found in heterogeneous networks [16]
and interconnected networks [17].

In many real scenarios, some prior information, which is
often in the form of pairwise constraints, is available for
community detection. Currently, several methods have been
proposed to make use of this type of information [18]–[23],
which are named as semi-supervised community detection. In
additional, it is demonstrated that the accuracy and robust-
ness will be significantly improved only with limited prior
information, especially on the most real-world complicated
and noisy networks. It is obvious that, therefore, the process
of community detection will be benefited when we incorpo-
rate all the information available from different sources, which
includes not only the information of networks topology, but
also the prior information. For example, if we have found the
keywords or tf-idf feature of papers or web pages are simi-
lar or they are written by the same authors or under the same
domain name, we can make use of these useful information as
prior to guide the community detection algorithms by putting
them into the same community, even though they may not cite
or link with each other in network topology.

In this paper, we first present a unified interpretation
under which a group of widely-used matrix based community
detection algorithms can be analyzed, including nonnegative
matrix factorization (NMF), spectral clustering (SC), and their
variants. The inputs of these community detection algorithms
are the adjacency matrices which represent the network topol-
ogy information. And each row or column can be regarded
as the feature or property representation of the corresponding
node. They first obtain new property representations in latent
space for each node by optimizing different objective func-
tions, and then clustering nodes in that latent space. For exam-
ple, NMF algorithms obtain the new property representation by
factorizing the adjacency matrix into two nonnegative matri-
ces. For another example, SC algorithms obtain it by finding
the meaningful eigenvectors. Thus we give this type of meth-
ods a unified interpretation, i.e., clustering in the latent space.

And then based on this interpretation we propose a uni-
fied semi-supervised community detection framework for these
methods which not only combines prior information with
topology information, but also balances them to improve the
performance of community detection. Under our interpreta-
tion, nodes are clustered based on the new property representa-
tion. It is believed that the property representation of intracom-
munity nodes are more similar than that of intercommunity
nodes. If we have priors that some nodes belong to the same
community, we introduce a graph regularization term to incor-
porate the prior information into the original objective func-
tions. Besides, the proposed framework is flexible to balance
the factors between the topology information and prior infor-
mation according to reliability of priors. Furthermore, because
we characterize different constraints using different terms in

the objective function, we treat semi-supervised community
detection as a brand new problem instead of handling it as a
preprocess of traditional community detection problem.

We summarize the main contributions as follows.
1) We present a unified interpretation, i.e., clustering in

the latent space, to a group of widely-used commu-
nity detection algorithms, including NMF, SC, and their
variants.

2) Based on the unified interpretation, we propose a general
semi-supervised community detection framework which
fully utilizes the must-link priors. Most importantly, we
treat semi-supervised community detection problem as a
brand new problem instead of handling it as a preprocess
of traditional community detection problem.

3) Under the proposed framework, we give a formal analy-
sis of the impacts of the topology information and prior
information, and show how to balance them to improve
the performance on different networks.

The remainder of this paper is organized as follows. A brief
review of the related works on community detection is given
in Section II. Section III introduces a unified interpretation
to a group of existing community detection algorithms, and
Section IV describes our graph regularized semi-supervised
framework in details. We also provide corresponding algo-
rithms and analyze the computational complexity. Extensive
experiments on synthetic and real datasets are presented
in Section V. Finally, Section VI concludes this paper by
highlighting our main contributions.

II. RELATED WORK

In the past few years, a large number of com-
munity detection algorithms have been proposed and
some of them have achieved good performance in many
fields [7], [8], [24]–[27]. These algorithms can be divided into
several categories: divisive algorithms, e.g., GN algorithm pro-
posed by Girvan and Newman [1]; modularity optimization
methods e.g., FN algorithm [6], extremal optimization [28],
and spectral optimization [29]; overlapping methods, e.g.,
Clique percolation method [24]; multiobjective community
detection [30]; and some methods on dynamic networks [31]
and multislice networks [32]. Most of these methods, however,
only take into account the topology information but ignore the
prior information. They work well in the network with clear
structure, but degrade or fail when network structure is vague
to detect due to the phase transition phenomenon [13], [14].
In real world, link information alone is inadequate to accu-
rately determine community structure for the complexity and
sparsity of the networks.

Recently, there are many semi-supervised com-
munity detection algorithms be proposed [18]–[23].
Eaton and Mansbach [18] employed a spin-glass model
from statistical physics, which is a generalization of mod-
ularity Q function, to combine external knowledge into the
community detection process. Ver Steeg et al. [19] examined
the impact of pairwise constraints on the clustering accuracy
from the viewpoint of statistical mechanics. However, they
only focus on a random network composed of two equal-sized
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clusters. Allahverdyan et al. [20] studied the problem of
semi-supervised graph clustering by integrating known cluster
assignments for a fraction of nodes. By proving the equiv-
alence of modularity density function [33] and symmetric
NMF (SNMF), Ma et al. [21] encoded the must-link and
cannot-link constraints into the adjacency matrix and factorize
it to get the indicator matrix. Zhang [22] extends this method
to other community detection algorithms besides SNMF. He
directly modifies the adjacency matrix, which is equivalent
to connect and disconnect edges between must-link and
cannot-link pairs. Later, Zhang et al. [23] extended [22]
by adding a logical inference step to better utilize the two
types of prior information. It is worth noting that, all these
semi-supervised community detection methods encode the
labeled data by transferring the prior information into the
topology information and modifying the adjacency matrix
directly. Although this is the easiest and most straightforward
way to use prior information, there exists a main drawback,
i.e., directly connecting the nodes belonging to the same
community cannot guarantee that they are classified into the
same community. In other words, they do not fully utilize the
must-link priors. By modifying network topology, existing
methods often transfer the semi-supervised detection into
the traditional (unsupervised) detection. They only take it as
a preprocess problem of community detection and cannot
describe the natural properties of the original semi-supervised
problem.

III. PRELIMINARY AND UNIFIED INTERPRETATION

A network can be modeled as a graph G = (V,E), in which
V is the set of the vertices, and E is the set of the edges each of
which connects two vertices in V . For simplicity, we assume
G is a undirected and unweighted graph which contains N
vertices as shown in Fig. 1. We make use of a nonnegative
symmetric binary matrix A = [aij] ∈ R

N×N+ to denote the adja-
cency matrix of G in which entry aij denotes whether there is
an edge between vertices i and j. aij = 1 if and only if there is
an edge between vertices i and j, and aij = 0 otherwise. And
we define aii = 0 for all 1 ≤ i ≤ N. Furthermore, we assume
there are K communities in the network, which is known as a
prior. Community detection problem is to divide these nodes
into K different groups based on the topology information, A.
We first briefly introduce two representative examples, i.e.,
NMF in Section III-A and SC in Section III-B, and then
give a unified interpretation to these kinds of algorithms in
Section III-C.

A. NMF in Community Detection

In the generative process of the network discussed in [9], aij

is the observed variable, which denotes the probability of inter-
actions between vertices i and j. We assume the probability of
existing a connection between vertices i and j is determined by
the probability that they generate in-edge and out-edge which
belong the same community. We define two latent variables
W = [wik] ∈ R

N×K+ and H = [hjk] ∈ R
N×K+ whose elements

wik and hik represent the probability that node i generates
an in-edge and an out-edge that belong to the community k,

respectively. These latent variables also imply the probability
that node i belongs to the in- or out- community k. Each row
of W or H can be seen as the membership distribution of one
vertex as shown in Fig. 1. So the probability that vertices i
and j connect with each other is expressed as

âij =
K∑

k=1

wikhjk. (1)

As a result, we transform community detection problem to
the NMF problem Â =WHT . And in each row of W or H, the
index of the largest element is the community. The adjacency
matrix A is asymmetric if the network is directed, while the
adjacency matrix A is symmetric and the factorized W and
H differ by a constant multiplier if the network is undirected.
In this paper, we focus on undirected unweight networks and
use H to decide the nodes’ membership. From the viewpoint
of clustering, we can regard the factorization process as pro-
jecting the N dimension feature in the adjacent matrix into a
K dimension latent space.

There are two common objective (loss) functions that quan-
tify the quality of the factorization result. The first is based on
the square loss function [10], [34] which is equivalent to the
square of the Frobenius norm of the difference between two
matrices

LLSE
(
A,WHT) = ∣∣∣∣A−WHT

∣∣∣∣2
F. (2)

And the second is based on the Kullback–Leibleer diver-
gence (KL-divergence) between two matrices

LKL
(
A,WHT) = KL

(
A||WHT). (3)

Various applications prefer different types of loss functions.
One variant of NMF is SNMF [35] which introduces the

symmetry constraints into the NMF framework. If the net-
work is undirected, the adjacency matrix is symmetric. So the
factorization should be symmetric as follows:

LSYM
(
A,HHT) = ∣∣∣∣A−HHT

∣∣∣∣2
F. (4)

Since LLSE, LKL and LSYM are not convex in both W and
H, it is not easy to develop algorithms to find the global min-
imum of these loss functions. But since they are convex in
either W or H, Lee and Seung [36] presented iterative updat-
ing algorithms to minimize the objective function LLSE as

wik ← wik
(AH)ik(

WHTH
)

ik

, hjk ← hjk

(
ATW

)
jk(

HWTW
)

jk

. (5)

Similarly, LKL in (3) and LSYM in (4) can be solved through
following two updating schemes, respectively:

wik ← wik

∑
j

(
aijhjk/

∑
k wikhjk

)
∑

j hjk

hjk ← hjk

∑
i

(
aijwik/

∑
k wikhjk

)
∑

i
wik

(6)

hik ← hik

(
1

2
+ (AH)ik(

2HHTH
)

ik

)
. (7)
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Fig. 1. Unified interpretation of some existing community detection algorithms. Although they have different formulations and meanings, these algorithms can
be interpreted as follows. First, we take the adjacency matrix which encodes the topology information as input. Next, we obtain the new property representation.
Finally, clustering is based on the new property representation and different distance metrics. For example, NMF obtains the new property representation by
factorizing the adjacency matrix into two nonnegative ones.

B. SC in Community Detection

Different from NMF which obtains the formulation from
the generative process of networks, SC is introduced to
community detection by Newman [6], [29] to maximize mod-
ularity Q. The Q is defined as the difference between the
number of edges within communities and the expected number
of such edges over all pairs of vertices

Q = 1

4m

∑

ij

(
aij − kikj

2m

) (
hihj

)
(8)

where the network has two communities. hi equals to 1 (0)
if vertex i belongs to the first (second) group, kikj/2m is the
expected number of edges between vertices i and j if edges
are placed randomly. Here ki is the degree of vertex i and
m = 1/2

∑
i ki is the total number of edges in the network. By

defining modularity matrix B = [bij] ∈ R
N×N whose elements

are bij = aij − kikj/2m, modularity Q can be written as

Q = 1

4m
hTBh (9)

where h = [hi] ∈ R
N is an indicator vector. Maximizing (9)

has been proved to be a NP-hard problem [37], and there are
many optimization algorithms be proposed, such as extremal
optimization [28]. In practice, we can relax the problem by
allowing variable hi to take any real value between −1 and 1,
i.e., hTh = 1.To generalize the formulations in (9) to K > 2
communities, by defining an indicator matrix H = [hij] ∈
R

N×K we can obtain

LMOD(H,B) = Q = Tr
(
HTBH

)

s.t.Tr
(
HTH

) = N (10)

where Tr(·) denotes the trace of a matrix. Based on Rayleigh
quotient, the solution to this problem is the largest K eigen-
vectors of the modularity matrix B. The index of the largest
element in each row of H indicates the community which
the node belongs to. This H is similar to that in (2).
Differently, researchers along this line use more flexible
clustering methods, such as k-means. As discussed in [38],
besides the modularity matrix B (LMOD), spectral analysis
achieves great success in uncovering the community structure
based on the adjacency matrix A (LADJ), standard Laplacian

matrix LS = D−A (LLAP), and normalized Laplacian matrix
LN = I−D−1A (LNLAP), where D is a diagonal matrix with
the ith diagonal element, which is the degree of node i, i.e., ki.

C. Unified Interpretation

Although why NMF and SC make sense and how they
work in community detection are very different, these types
of algorithms can be general interpreted from the viewpoint of
clustering. The input of community detection algorithms is the
topology information of the network, which can be represented
as the adjacent matrix A. Many community detection algorithms
first obtain a new matrix from adjacent matrix by minimizing
an objective function. The new matrix can be regarded as a
representation in the latent space. The algorithms then divide
nodes by clustering rows in the new matrix using k-means
or other clustering algorithms. Thus we can summarize these
methods as the process of clustering in the latent space, which is
shown in Fig. 1. Besides, there are many other algorithms, such
as Markov clustering [39], which follow our interpretation.

IV. OUR FRAMEWORK

In this section, based on the unified interpretation discussed
above, we first present the unified semi-supervised community
detection framework using latent space graph regularization
and discuss how it can be used to NMF, SC, and their variants
in Section IV-A. And then we present some specific solu-
tions to these optimization problems in Section IV-B. Finally,
the complexity analysis and model selection are offered in
Sections IV-C and IV-D.

A. Overview

In this section, we propose the unified graph regular-
ized semi-supervised framework which can make use of the
prior information to improve the performance of community
detection. The main idea is displayed in Fig. 2. Recall that
many community detection algorithms can be generally inter-
pret as the process of clustering in the latent space. It is easy
to find that the nodes belonging to the same community should
have similar representations in latent space. If we have known
that vertices i and j belong to the same community, then hi and
hj, which are the ith and jth rows in the indicator matrices H
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Fig. 2. Proposed semi-supervised framework which combines pairwise prior information with topology information. Based on the unified interpretation
shown in Fig. 1, to enforce two nodes to be classified into the same community, the natural way is to let them have similar property representations. If we
have known that nodes 3 and 9 belong to the same community, we can minimize the difference between two new property representations, i.e., h3 and h9,
by adding a graph regularization term in the original objective function. Thus in our semi-supervised framework, the node property representation, which is
used to cluster, is determined by both topology information and pairwise prior information.

in (2)–(4) and (10), should be similar. Therefore by minimizing
the difference between these two rows, we can assign them
into the same community.

To measure the similarity of the two vectors which denote
the new representations of vertices i and j, we can use either
square distance or KL-divergence

DLSE
(
hi,hj

) = ∣∣∣∣hi − hj
∣∣∣∣2

2 =
K∑

k=1

(
hik − hjk

)2 (11)

DKL
(
hi||hj

) =
K∑

k=1

(
hik log

(
hik

hjk

)
− hik + hjk

)
. (12)

There is no clear answer to the question that which distance
is better, which depends on the specific applications.

If we have priors that some nodes belong to the same com-
munity, we can formulate these information with a collection
of triples (i, j, oij) which means nodes i and j belong to the
same community with reliability oij (oij = 0 if we do not have
any prior information about the relationship between i and j).
We express collection as C = {(i, j, oij)}Ni,j=1.

The constraints from these priors can be formulated as

RLSE
({

oij
}
,H
) = 1

2

∑

(i,j,oij)∈C

oijDLSE
(
hi,hj

)

= 1

2

N∑

i=1

N∑

j=1

oij
∣∣∣∣hi − hj

∣∣∣∣2
2. (13)

By defining O = [oij] ∈ R
N×N+ , we rewrite (13) as

RLSE(O,H) =
N∑

i=1

hT
i hidii −

∑

i �=j

hT
i hjoij

= Tr
(
HTDH

)− Tr
(
HTOH

) = Tr
(
HTLH

)
(14)

where Tr(·) denotes the trace of a matrix, D = [dij] ∈ R
N×N+

is a diagonal matrix whose entries are row summation of O,
i.e., dii =∑N

j=1 oij, and L = D−O is the graph regularization

matrix (Laplacian matrix) of prior information O. Similarly,
the KL-divergence based constraints can be written as

RKL(O,H) = 1

2

∑

(i,j,oij)∈C

oij
(DKL

(
hi||hj

)+DKL
(
hj||hi

))

(15)

which takes into account the asymmetry of KL-divergence
and averages DKL(hi||hj) and DKL(hj||hi). By minimizing
RLSE(O,H) or RKL(O,H), we expect the new representations
of two nodes i and j are similar if we have some information
indicating they might belong to the same community, i.e., the
corresponding element oij is not zero.

Now that we have the graph regularization term
Rβ(O,H), β ∈ {LSE,KL}, we incorporate them into foun-
dational object function of topology information as

Fα,β(H|A,O) = Lα(A,H)+ λRβ(O,H) (16)

where α ∈ {LSE,KL,SYM,MOD,ADJ,LAP,NLAP} as
show in Section III and λ is the parameter to balance the
tradeoff between topology information and prior information.
In most cases, the sign of λ is positive. Only when the first
term is LADJ or LMOD, the sign of λ is negative since these
term need be maximized while the second term need be min-
imized. For computational simplicity, we choose the same
distance function for two parts in (16). β = LSE when
α ∈ {LSE,SYM,MOD,ADJ,LAP,NLAP}, and β = KL
when α = KL. Thus we obtain the following objective
functions:

FLSE(H|A,O) = ∣∣∣∣A−WHT
∣∣∣∣2

F + λTr
(
HTLH

)
(17)

FSYM(H|A,O) = ∣∣∣∣A−HHT
∣∣∣∣2

F + λTr
(
HTLH

)
(18)

FKL(H|A,O) =
N∑

i=1

N∑

j=1

(
aij log

(
aij∑K

k=1 wikhjk

)

− aij +
K∑

k=1

wikhjk

)

+ λ

2

N∑

i=1

N∑

j=1

K∑

k=1

(
hik log

(
hik

hjk

)

+ hjk log

(
hjk

hik

))
oij

(19)

FMOD(H|A,O) = −Tr
(
HTBH

)+ λTr
(
HTLH

)
(20)

FLAP(H|A,O) = Tr
(
HT(D− A)H

)+ λTr
(
HTLH

)
. (21)

Semi-supervised SC based on adjacency matrix FADJ and
normalized Laplacian matrix FNLAP are similar to FMOD and
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FLAP except that we take A and I − D−1A instead of B and
D − A. Details on how to solve these optimization problems
are presented in the next section.

B. Algorithms

1) Algorithms for Semi-Supervised SC: Since all the
four semi-supervised SC algorithms Fα(H|A,O), α ∈
{MOD,ADJ,LAP,NLAP} can be written as a uniform for-
mulation as

FSC(H|A,O) = Tr
(
HTGH

)+ λTr
(
HTLH

)

= Tr
(
HT(G+ λ′L)H) (22)

where λ′ = λ/N and G equals to −B, −A, D−A and I−D−1A
when α = MOD,ADJ,LAP,NLAP, respectively. It can be
optimized by finding the eigenvectors corresponding to the
smallest eigenvalues as in (10).

2) Algorithms for Semi-Supervised NMF: Since the objec-
tive functions FLSE, FSYM, and FKL of our framework
in (17)–(19) are not convex in both H and W as in the original
NMF model, it is highly unlikely to develop an algorithm to
find the global minima. In this section, we develop three iter-
ative algorithms as in [40], which can achieve local minima,
for these objective functions.

Use FLSE in (17) as an example, we introduce how to mini-
mize the objective function. Using some properties of the trace
and Frobenius norm of square matrix, i.e., Tr(A) = Tr(AT),
Tr(AB) = Tr(BA) and ||A||2F = Tr(AAT), we can rewrite
FLSE as

FLSE(H|A,O)

= Tr
((

A−WHT) (A−WHT)T)+ λTr
(
HTLH

)

= Tr
(
AAT)+ Tr

(
WHTHWT)− 2 Tr

(
AHWT)

+ λTr
(
HTLH

)
. (23)

By introducing Lagrange multiplier � = [ψij] ∈ R
N×K

and � = [φij] ∈ R
N×K for constraints W = [wij] ≥ 0 and

H = [hij] ≥ 0, respectively, we write the Lagrange LLSE as

LLSE = Tr
(
AAT)+ Tr

(
WHTHWT)− 2 Tr

(
AHWT)

+ λTr
(
HTLH

)+ Tr
(
�WT)+ Tr

(
�HT). (24)

To find W and H which minimize LLSE, we iteratively min-
imize one matrix variable while fixing another. Because LLSE
is differentiable with respect to W and H, we obtain the partial
derivatives of LLSE with respect to W and H as

∂LLSE

∂W
= −2AH+ 2WHTH+�

∂LLSE

∂H
= −2ATW+ 2HWTW+ 2λLH+�. (25)

Combining the equations that partial derivatives equal to
zero and the Karush–Kuhn–Tucker conditions ψikwik = 0 and
φjkhjk = 0, we obtain the solutions of wik and hjk

− (AH)ikwik +
(
WHTH

)
ik wik = 0

− (ATW
)

jk hjk +
(
HWTW

)
jk hjk + λ(LH)jkhjk = 0. (26)

Finally, we obtain the following updating rules:

wik ← wik
(AH)ik(

WHTH
)

ik

, hjk ← hjk

(
ATW+ λOH

)
jk(

HWTW+ λDH
)

jk

. (27)

When λ equals to zero, the updating rules in (27) reduce
to (5) which is the updating rule of standard NMF based on
Euclidean distance.

Similarly, we obtain the updating rule to minimize FSYM
in (18) as

hik ← hik
(AH+ λ′′OH)ik(
HHTH+ λ′DH

)
ik

(28)

in which we set λ′′ = 2λ for the consistency of the formulas.
Finally, we introduce the updating rules to minimize FKL

in (19) as

wik ← wik

∑
j

(
aijhjk/

∑
k wikhjk

)
∑

j hjk

hk ←
(
∑

i

wikI+ λL

)−1

ĥk (29)

in which hk is the kth column of H, I is an N × N identity
matrix and

ĥk =

⎡

⎢⎢⎢⎣

h1k
∑

i

(
ai1wik/

∑
k wikh1k

)

h2k
∑

i

(
ai2wik/

∑
k wikh2k

)

...

hNk
∑

i

(
aiNwik/

∑
k wikhNk

)

⎤

⎥⎥⎥⎦. (30)

It is proved that the updating rules in (27) and (29) can
find the local minima of objective functions FLSE(H|A,O)
in (17) and FKL(H|A,O) in (19), respectively [40].

C. Complexity Analysis

1) Complexity Analysis for Semi-Supervised SC: As men-
tioned above, the algorithm for solving semi-supervised spec-
tral problem is the same as that for common SC, i.e., eigen-
value decomposition. In theory, it has the same complexity of
matrix multiplication whose upper bound is O(N3) where N
is the number of nodes. In practice, its computational com-
plexity is O(N2.376) using Coppersmith and Winograd’s [41]
algorithm. Besides, due to the sparsity and symmetry of the
adjacency matrix A, we can make use of some existing soft-
wares, such as ARnoldi PACKage, to solve the large-scale
eigenvalue problem.

2) Complexity Analysis for Semi-Supervised NMF: In this
section, we analyze the computational complexity of our
proposed semi-supervised framework based on two different
vector distance metrics, i.e., Frobenius norm based methods
[FLSE in (17) and FSYM in (18)] and KL-divergence based
method [FKL in (19)]

For algorithms based on Frobenius norm illustrated
in (27) and (28), each iteration in the updating process needs
O(N2K) floating point operations by considering the number
of communities K 	 N. Therefore, our framework does not
increase the complexity of standard NMF algorithms. By tak-
ing into account the sparsity of the adjacency matrix A, the
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complexity of each iteration is reduced to O((NK+M+R)K),
in which R is the number of must-link priors. If the number of
the added must-links R is in the same order of magnitude with
the number of edges M, the proposed framework has the same
computational complexity with the original NMF methods.

In (29), the updating rules for KL-divergence based for-
mulation need to calculate the inverse of a matrix of size
N×N, whose computational complexity is O(N3). In practice,
however, it only requires to solve the linear equations system
Ax = b. We make use of conjugate gradient method [42]
to solve this linear equations system, because

∑
i wikI + λL

is a symmetric positive definite matrix. Since the percentage
of prior information we add to the framework is small, the
matrix to be inversed is sparse. Suppose there are average
p nonzero elements in each column of

∑
i wikI + λL, and

conjugate gradient method needs q iterations to converge, we
need O(q(p+4)N) float point operations to obtain the solution
of the linear equations system as shown in [40]. In general,
conjugate gradient algorithms can converge in few iterations.
And in our experiments, we set the maximum iterations to 20.
Usually, conjugate gradient only needs about 20 iterations to
coverage. Besides, as there are K linear equations systems to
be solved, the overall computational cost for each iteration is

O
(

N2K + q(p+ 4)NK
)
= O ((N + q(p+ 4))NK).

From the above complexity analysis, we note that Frobenius
norm based algorithms, i.e., FLSE and FSYM, are more suit-
able for large scale networks, since their complexities are
near linear with network size N. Besides, we can make use
of parallel [43] and distributed [44] computing to make our
framework applicable to more large-scale networks, since there
are many parallel algorithms on eigenvalue decomposition,
matrix multiplication and NMF have been proposed.

D. Model Selection

Model selection, which is an important problem in com-
munity detection, is to determine the number of communi-
ties K in the networks. There are several model selection
strategies available, such as consensus clustering, eigen-
value gaps [29], [45], cross-validation and Bayes Information
Criterion [46]. However, in order to make our framework
more uniform, we adopt the widely-used modularity Q [shown
in (9)] as the criterion to determine the number of communi-
ties K, as done in [6], [22], and [23]. The great advantage of
this scheme is that it is independent of the specific community
detection algorithms. On networks which we do not know the
number of communities, we can choose K which corresponds
to the maximal modularity Q.

V. EXPERIMENTS

To test the performance of the proposed semi-supervised
community detection framework, we verify the performance
improvement both on two artificial network benchmarks
and on some widely used real-world networks as shown
in Table I, and compare it with a state-of-the-art method.
To illustrate the broad applicability of the framework, we
apply it to all the algorithms mentioned in the Section IV,

TABLE I
REAL-WORLD NETWORKS

Fig. 3. Performance of original methods as a function of the number of
intercommunity edges per vertex, Zout, on GN networks. As Zout increases,
all the methods degrade and even fail when Zout ≥ 7.

i.e., square distance based NMF (NMF_LSE), KL-divergence
based NMF (NMF_KL), SNMF, adjacency matrix based
SC (SC_ADJ), standard Laplacian matrix based SC (SC_LAP)
and normalized Laplacian matrix based SC (SC_NLAP).

All experiments are conducted on a single PC (Intel Core
i7-2600 CPU @ 3.40 GHz. Processor with 4 G memory).
The source code of all the algorithms used in this paper
can be downloaded from authors’ websites. There are totally
N(N − 1)/2 pairs of membership in a undirected network with
N nodes, while the number of pairs that indicate the two nodes
belong to the same community are

Npairs =
K∑

k=1

Nk(Nk − 1)/2 (31)

in which K is the number of communities and Nk is the number
of nodes in the kth ground-truth community. The percentage
we used in this paper is based on the Npairs.

We use normalized mutual information (NMI) [50] to
evaluate the performance of the community detection. NMI
is more informative than just simply counting the num-
ber of misclassified nodes. It especially suitable for imbal-
anced datasets such as Lancichinetti–Fortunato–Radicchi
networks (LFR networks) benchmark and some real-world
networks which will be discussed in the following sections.

A. Artificial Benchmark Networks

The Girvan–Newman networks (GN networks)
benchmark [1] is a type of basic benchmark networks for test-
ing community detection algorithms. Each network consists
of 128 vertices which are divided into four communities of
32 vertices each. Each vertex has on average 16 edges which
randomly connect to Zin vertices in the own community and
Zout vertices in other communities, and Zin + Zout = 16. For
each pair of Zin and Zout, we randomly generate ten networks.
Obviously, the community structure is clear when Zout is
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Fig. 4. Performance of our framework in terms of NMI as a function of the percentage of priors added on GN networks. The left two plots are based on
NMF methods, while the right two are based on SC methods.

Fig. 5. Performance of our framework in terms of NMI as a function of the percentage of priors added on LFR networks. The first two columns are based
on NMF methods, while the last two columns are based on SC methods. We tune the generator parameters to make networks prefer small community size,
i.e., 10–50, (in odd columns) or large community size, i.e., 20–100, (in even columns). We also vary mixing parameter (μ) values to show how our framework
performs on clear (μ = 0.7, top row) and vague (μ = 0.8, bottom row) networks.

small. And, as the Zout increases, the structure of the network
becomes vague, and the task becomes challenging. In Fig. 3,
we plot the NMI of original NMF and SC methods as a
function of Zout. It is easy to find that all the methods achieve
good performance in the networks with Zout ≤ 6. And as
Zout > 6, all the methods degrade significantly. Especially, the
worst performer reaches 0.35 when Zout = 8. It implies that
the topology information becomes insufficient to accurately
discover the community when Zout > 6 and needs the help
of the prior information. So we focus on the networks
whose Zout equals to 7 or 8 in the experiments on GN
networks.

To validate our framework, we first fix the tradeoff param-
eter λ to 1 and set oij = 1 when we have the prior that
nodes i and j belong to the same community. We display
the average performance of our framework based on differ-
ent methods in Fig. 4. The NMIs of all the methods increase
consistently as the used priors. All of them reach 1 when
prior information is adequate. This validate the effectiveness
of our framework. Besides, various methods have different
growth trends. Nevertheless, the beneficial gained from the
same percentage of priors are more obvious on vague networks
(e.g., Zout = 8) than on clear ones (e.g., Zout = 7). It meets
the motivation of our framework that by encoding prior infor-
mation we enhance the performance of community detection
in networks which do not have clear structure.

Though GN networks benchmark is a popular benchmark
for community detection, the community structures are much
more complex in real life: the network is large, the number
of vertices in different communities are distinct and there is
great difference between nodes’ degree. The LFR networks
benchmark [51] aims at addressing the above problems. LFR
generator allows to specify the number of nodes (N), average
degree (k), community size distribution (β), degree distribu-
tion (γ ), minimum and maximum of the community sizes
(cmin and cmax), and the fraction of intercommunity edge (mix-
ing parameter μ). In LFR, both community size and degree
distributions are power laws, from which vertices and commu-
nities are generated by sampling. Similar to the role of Zout in
the GN benchmark, μ in LFR networks benchmark controls
the clarity of the network structure. With the increase of μ,
the structure of network becomes vague, and the detection of
communities becomes more difficult.

In this paper, we follow experiment setting designed by
Lancichinetti et al. [51], and set the number of nodes to
1000, the minimum community size to 10 or 20, the maxi-
mum community size to five times the minimum community
size, average degree as 20, the exponent of the vertex degree
and community size as −2 and −1, respectively, and mix-
ing parameter as several different values, 0.7 and 0.8. We
also fix the tradeoff parameter λ as in the experiments of
GN networks. In Fig. 5, we show the average results of our
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Fig. 6. Performance comparison with other semi-supervised approaches. BL_LSE, BL_KL, and BL_SNMF are the methods under the framework of [22]
which directly connects the must-links. The left two plots are the results on GN networks, while the right two are that on LFR networks.

Fig. 7. Impact of wrong priors on performance. The horizontal dashed lines are the results from methods without priors. By adding 30% of correct priors,
all methods achieve satisfactory results. We plot the impact of wrong priors on performance by varying the wrong priors percentage from 0% to 50%.

framework on LFR networks. It is easy to find that the role
of our framework is more significant in networks with unclear
structures, i.e., large mixing parameter μ networks. The three
different SC methods have similar performance, i.e., the NMIs
increase consistently with the increase of used priors. The
three different NMF-based methods have their own strengths
and weaknesses. Though the basic NMF_KL has the lowest
NMI without prior, it continues to increase as the percentage
of prior increases. NMF_LSE has better original performance
than NMF_KL, but it degrades after the percentage achieves
30%. Although the original performance of SNMF is the best
of all the three methods and it can achieve 1 rapidly after prior
percent exceeds 4% or 5%, it may degrade when the percent-
age of prior is small, especially when the μ is small, which
means the community structure is clear. The reason why the
performance of SNMF degrades may be that the adjacency
matrix is factorized into the product of one matrix and its
transposition which makes the priors cannot propagate to other
part of the network. Besides, the randomly selected priors also
affect the topology of the original networks. Especially, in
networks with a large number of communities, the randomly
selected priors often make some parts of one community
form some small communities instead of a big one. From
this experiment, we find that the framework based on SNMF
is suitable for the situation with sufficient prior information,
while that based of NMF_LSE is suitable for limited priors.

To illustrate the performance of our framework, we com-
pare it with the framework proposed by Zhang [22], which
directly modifies the network topology by connecting the
must-link constraints. Since both these two frameworks result
in the same optimization formulation on semi-supervised SC
approaches, we only compare their performance on NMF
approaches. On all the networks, we set the parameter λ to
10 for NMF_KL and SNMF. In Fig. 6, we display the per-
formance on GN networks (the left two figures) and LFR
networks (the right two figure) with different network settings.

We find most of our methods significantly outperform the
corresponding methods under Zhang’s framework (BL_LSE,
BL_KL, and BL_SNMF) except for NMF_LSE on LFR
networks. This further implies the efficiency of our prior
information encoding strategy.

B. Wrong Priors Impact

In general, priors are considered as the correct labels from
human, but wrong labels are also unavoidable in practice. To
demonstrate the robustness of our framework, we investigate
the impact of wrong priors on performance. As we can see
from Fig. 4, most methods can achieve satisfactory results with
30% correct priors. Thus we add 30% of priors, part of which
are not correct, to the framework, and vary the wrong priors
percentage from 0% to 50%. In Fig. 7, we plot the impact
of wrong priors on performance. By introducing 50% wrong
priors, i.e., 15% correct priors and 15% wrong priors, most
methods (NMF_KL, SNMF, SC_LAP, and SC_NLAP) only
decrease about 0.1, and the results are still higher than original
methods without priors. This shows that our framework are
robust to noises and wrong priors. The reason why NMF_LSE
is sensitive to wrong priors may be that we only impose priors
constraints on one factorized matrix.

C. Parameter Setting

To illustrate the effect of the tradeoff parameter and dis-
cuss how to determine it, we evaluate the role of balancing
parameter λ in (16). In Fig. 8, we plot the performance of
our algorithms as the λ varies from 0.1 to 10. The results
come from six algorithms on two networks with Zout equals 7
(odd rows) and 8 (even rows). For better illustration, we only
select a small portion of λ values. Because our added priors
are accurate ones, the performance of our algorithms consis-
tently increase when we weight more on prior information.
Taking SNMF on networks with Zout = 8 as an example, as
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Fig. 8. Performance of our framework with respect to the balancing parameter λ on GN networks. The left two columns are the results of our framework
based on NMF, while the right two are the results of our framework based on SC.

15% priors used, the NMI reaches 0.73, 0.81, 0.93, 0.97, 0.99,
and 1 when we set λ as 0.1, 0.2, 0.5, 1, 2, and 5, respectively.
Furthermore, to make NMI achieve 1, we need to add 13%,
30%, 40%, and 50% priors when λ equals 5, 2, 1, and 0.5.

Besides, we show the effect of the balancing parameter λ
on LFR benchmarks in Figs. 9 and 10. We first display the
performances of all the methods based on different λ values
on the network whose community scale is between 10 and 50
and mixture parameter μ = 0.8 to show the overall impact on
it in Fig. 9. And then we give a detailed analysis of the effect
of λ in SNMF on networks with different mixing parameter
μ values in Fig. 10. The reason why we choose SNMF as an
example is that SNMF-based framework is the most sensitive
one among all the methods shown in Fig. 5. The settings of
the networks in Fig. 10 are the same as the second column in
Fig. 5. Curves in each figure are based on the different tradeoff
parameters λ values varying from 0.1 to 5. From these curves
we obtain the following findings and conclusions.

1) As shown in Fig. 9, the impacts of λ in most of the
methods are positive. In other word, with the increase
of λ, most of these methods can achieve a much higher
performance with the same priors.

2) If the network structure is unclear, e.g., the right figure
in Fig. 10, increasing λ can significantly and consis-
tently improve the performance. This also means the
prior information plays a more important role in detect-
ing on complicated networks. Thus we can appropriately
choose a large parameter λ to highlight this effect on this
kind of networks.

3) In the networks with clear structure, such as the left
figure in Fig. 10, the performance of SNMF is sensitive
to the parameter λ. But this sensitivity will decrease with
the decrease of the clarity of the networks topology as
shown in the right figure in Fig. 10.

4) In the left figure of Fig. 10, the performance may
degrade when we use a large λ with limited prior
information, and this degradation becomes serious as λ
increases. Thus we should choose a relatively small λ
in SNMF when the prior information is limited.

In summary, the equal contribution of topology structure
and prior information, i.e., λ = 1, mostly achieves satisfactory
results. If we have some prior that the structure of network is
not very clear, we can increase λ appropriately, and vice versa.

D. Real-World Networks

In this section, we evaluate our framework on eight widely
used real networks which are shown in Table I. Here N, M,
and K denote the number of vertices, edges, and communities,
respectively. To save space we only select four different
methods NMF_LSE, NMF_KL, SC_ADJ, and SC_LAP to
demonstrate their improvements. The results on real-world
networks are shown in Table II. From the results we can
find that the NMIs of all the methods increase significantly
with the increase of used priors although there exists some
local nonsmoothness. On clear structure networks where orig-
inal methods can achieve good performance, e.g., Zacharys
karate club network and American college football network,
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TABLE II
PERFORMANCE OF OUR FRAMEWORK BASED ON FOUR DIFFERENT METHODS ON EIGHT REAL-WORLD NETWORKS

Fig. 9. Performance of our framework with respect to the balancing parameter
λ on LFR networks whose mixing parameters μ are fixed. The first column
is based on NMF, while the second column is based on SC. Each curve is
the result of one method under a certain λ value.

our framework also do not degrade. There are 15 methods on
networks reach 1 as we integrate 30% of prior information,
while there are only three of them achieve 1 without prior.

E. Case Study

In Fig. 11, we give an illustrative example of our framework
on political books network in which nodes represent books
about U.S. politics sold by Amazon, and edges represent fre-
quent co-purchasing of books by the same buyers. According

Fig. 10. Performance of our framework based on the SNMF with respect to
the balancing parameter λ and mixing parameter (μ) values on LFR networks.
Curves in each figure are based on the different λ.

to their political viewpoints, these books are divided into three
categories: 1) “liberal”; 2) “neutral”; or 3) “conservative.”
In Fig. 11, we use the shape to represent the ground-truth
types of the books, color to represent the results from our
framework with different prior percentages. We use the per-
centage of misclassified nodes as an intuitive visual metric
to judge the results. Assuming the co-purchasing books are
more likely to have similar politics viewpoints, one aim to
divide the books into three categories by using only topology
information. However, the network structure is not very clear
and the methods only based on network topology have the
following drawbacks.

1) We can find only two densely connected communi-
ties using the link information, but the real number
of categories is three. The reason may be that the
third community, neutral books, is the overlapping part
between the conservative and liberal books communities.
Since the neutral books community do not have clear
structure, i.e., these nodes do not densely connect with
each other, it is insufficient to accurately determine com-
munities by only using topology information, and the
help of prior information is necessary.

2) From the result of NMF_LSE without prior as shown
in Fig. 11(a), we find out that some nodes cannot be
correctly classified only with the topology information.
For example, the book Power Plays (node 47) connects
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(a) (b) (c)

Fig. 11. Illustrative example of our framework on U.S. political books network. The three plots are the results from NMF_LSE with 0%, 10%, and 20%
priors, respectively. In each plot, the shapes “circle ©,” “square �,” and “triangle 
” represent the ground-truth communities are conservative, liberal, and
neutral books, respectively. The colors “brown,” “blue,” and “green” represent the estimated communities are conservative, liberal, and neutral books using
our framework, respectively. If the color of one node does not match its ground-truth shape, the node is not classified correctly by the method. (a) Baseline,
misclassification: 18/105. (b) 10% priors, misclassification: 7/105. (c) 20% priors, misclassification: 0/105.

with three conservative books Arrogance (node 48),
A National Party No More (node 9), and Off With
Their Heads (node 13); the book Buck Up Suck Up
(node 103) connects with three liberal books We’re Right
They’re Wrong (node 96), Had Enough? (node 94),
and It’s Still the Economy, Stupid! (node 95); and also
they connect with each other. But as we know in the
ground-truth, the book Buck Up Suck Up (node 103) is
a liberal book while the book Power Plays (node 47)
is a neutral one. But the original NMF_LSE treats the
Buck Up Suck Up as a liberal book and Power Plays
as a conservative one, which is obviously not correct.
This phenomenon also implies that topology informa-
tion is not adequate to correctly classify in network
with vague community structure and prior information is
helpful.

3) It is hard for original methods to determine the bound-
aries of communities. For example, the nodes of the
lowermost portion in Fig. 11(a) are misclassified by all
original methods. Prior information is needed for solving
the boundary problem.

In Fig. 11, we plot the results from our framework based
on NMF_LSE. And the three figures are the results with 0%,
10%, and 20% of priors, respectively. As we can see, with the
increase of the prior, the percentage of mismatching nodes
decreases significantly in terms of accuracy. Besides, as we
add 10% priors the boundary between liberal books commu-
nity and neutral books community becomes clear as shown
in Fig. 11(b). Furthermore, as the used priors reach 20%,
the boundaries between conservative books community and
neutral books community become clear and the neutral books
community can be accurately detected as shown in Fig. 11(c).

In conclusion, with the increase of used priors, the three
problems mentioned above can be gradually solved.

VI. CONCLUSION

In this paper, we have provided a unified interpretation
to a group of existing community detection algorithms, i.e.,
clustering in the latent space of nodes. And then we pro-
pose a unified semi-supervised framework based on latent
space similarity, which combines the network topology with
prior information using graph regularization. The proposed
semi-supervised framework is applicable to any matrix based
community detection algorithms as far as they can be inter-
preted using our unified interpretation, such as NMF, SC, and
their variants. Different from previous works which transfer
the semi-supervised community detection problem into the
traditional community detection ones by directly modifying
the adjacency matrix, we formulate it as a unified problem
and balance the contributions of topology information and
prior information in a seamless way. Extensive experiments
on artificial and real networks illustrate the robustness and
effectiveness of our framework on encoding prior information.

In the future, we may conduct research in the following two
directions. Firstly, it would be interesting to investigate the
structure of the prior information and design corresponding
algorithms, e.g., approach to combine various types of priors
from different sources, and online semi-supervised framework
for sequently arriving prior information. Secondly, we will
investigate how to design parallel algorithms to make our
framework more efficient on large-scale networks and how to
directly apply our semi-supervised framework to some existing
efficient community detection algorithms for large networks.
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